= 1, = 2.
案例探究
误区警示
易错辨析:对复数概念理解不透彻 当m为何实数时,复数2m2-5m-3+(2m2-m-1)i是纯虚数? 思路分析:
案例探究
误区警示
错解:令2m2-5m-3=0,解得m=3或m=
-1.
2
所以当m=3或m=
时,复-数12 2m2-5m-3+(2m2-m-1)i为纯虚数.
复数 z 实数(������ = 0), 虚数(������ ≠ 0)(当������ = 0 时为纯虚数)
一二
知识精要
典题例解
迁移应用
4.判定含有参变量的复数是实数,虚数,纯虚数利用定义. 先看a,b的取值是a∈R,b∈R,还是a∈C,b∈C. 若a∈R,b∈R,则a为实部,b为虚部;若a∈C,b∈C,则还应进一步进行运算(在后面学习)求得z的实部、虚部. 再结合纯虚数应满足的两个条件,实部为0,虚部不为0进行进一步判断,特别是虚部不为0,易漏掉而出错.
3.1 数系的扩充和复数的概念
3.1.1 数系的扩充和复数的概念
目标导航
预习导引
学习 目标
重点 难点
1.会分析数系扩充的必要性及其过程. 2.能知道复数的基本概念及复数相等的充要条件. 3.能知道复数的表示法及有关概念.
重点:1.复数的分类和复数相等的充要条件. 2.复数的表示法及有关概念. 难点:与复数有关的相关概念及复数相等的充要条件的 应用.
.
答案:kπ+π4(k∈Z)
解析:由题意知,cos θ=sin θ,即tan θ=1,又在
π
ππ 内tan -=12, , 2
π 4
故在R上由周期性知θ=kπ+
(k∈Z).