存储器结构.
- 格式:ppt
- 大小:678.50 KB
- 文档页数:12
8051单片机的存储器结构8051 单片机是一种常见的微控制器,它具有一个复杂的存储器结构。
8051 单片机的存储器结构包括以下几个部分:程序存储器(ROM)、数据存储器(RAM)、特殊功能寄存器(SFR)和扩展存储器(EEROM)。
1. 程序存储器(ROM)程序存储器是存储 8051 单片机程序的地方,通常被称为EPROM或flash。
程序存储器的地址空间为0x0000到0xFFFF,共64K字节。
程序存储器用于存储程序代码、常量数据、用户函数和中断向量表。
由于程序存储器是只读存储器,因此它的内容只能在编程时被修改。
在8051单片机启动时,程序计数器(PC)从0x0000初始化,并指向程序存储器的第一个地址。
当任何指令被执行时,PC递增,指向下一个指令。
数据存储器是存储程序数据的地方,也称为随机存取存储器(RAM)。
数据存储器的地址空间为0x0000到0xFFFF,但是只有128个字节可以快速访问。
数据存储器中的地址在逻辑和物理上是一样的。
数据存储器通常用于存储变量、数组、堆栈等运行时数据,这些数据是程序运行时动态分配的。
数据存储器也可以被用作缓存或寄存器文件。
访问数据存储器时,通常需要将地址存储在一个或多个寄存器中,然后通过所选指令操作该地址。
3. 特殊功能寄存器(SFR)特殊功能寄存器是一组8位或16位的寄存器,用于存储控制器状态和控制器中的各种特殊功能。
特殊功能寄存器的地址范围为0x80到0xFF,共有128个字节。
特殊功能寄存器的内容可以被用于控制 CPU 的各种特殊功能,如控制定时器/计数器、外设 I/O 端口和串行通信接口等等。
特殊功能寄存器中的某些位用于确定控制器中的功能开关。
因此,通过对特殊功能寄存器的读写来控制和管理 8051 单片机的各种功能。
扩展存储器通常被称为 EEROM(Electrically Erasable Read Only Memory),它是非易失性存储器的一种。
说明嵌入式分级存储器系统的结构1.引言1.1 概述嵌入式分级存储器系统是一种用于提高计算机性能的重要技术。
随着计算机技术的发展和应用领域的拓展,对计算机存储器的要求越来越高。
嵌入式分级存储器系统通过将存储器分为多个层次,每个层次的存储介质和访问速度不同,从而在满足存储需求的同时提高了系统的性能。
嵌入式分级存储器系统的结构是由多个层次的存储介质组成的。
通常分为高速缓存、主存和辅助存储器三个层次。
高速缓存是距离处理器最近的一层,通过存储最常访问的数据和指令来提高系统性能。
主存是处理器直接访问的存储介质,存储正在运行的程序和数据。
而辅助存储器则是存储大量数据和程序的介质,包括硬盘、光盘等。
嵌入式分级存储器系统的设计原则是根据访问频率和访问速度的关系来确定存储介质的层次划分。
对于访问频率高、访问速度快的数据和指令,会优先存储在高速缓存中,以便快速访问。
访问频率较低的数据和指令则存储在主存或辅助存储器中。
这样的划分可以在一定程度上减少访问存储介质所需的时间,提高系统的响应速度。
嵌入式分级存储器系统的结构对于提高计算机的性能和效率非常重要。
通过合理地划分存储介质的层次,可以有效地减少存储器访问时间,提高系统的运行速度。
同时,嵌入式分级存储器系统也能够更好地满足计算机在不同应用场景下的存储需求,提供更好的用户体验和服务。
综上所述,嵌入式分级存储器系统作为一种提高计算机性能的重要技术,其结构是由多个层次的存储介质组成的。
通过合理划分存储介质的层次,可以提高系统的响应速度和效率,满足不同应用场景下的存储需求。
因此,研究和应用嵌入式分级存储器系统具有重要的意义和广阔的发展前景。
1.2 文章结构文章结构部分的内容可以描述文章的整体框架和各个章节的主要内容,以帮助读者更好地理解和导航整篇文章。
以下是一个可能的参考内容:文章结构部分:本文将围绕嵌入式分级存储器系统展开详细的说明和分析。
为了让读者更好地理解文章的内容和组织,下面将简要介绍本文的结构。
计算机中的存储器层次结构及其特点是什么计算机的存储器层次结构是指由多个不同速度和容量的存储器组成的层次化结构,其目的是在满足性能和成本的要求下,提供高效的数据存储和访问。
存储器层次结构包括高速缓存、主存储器和辅助存储器,每个层次的存储器都有其特定的特点和用途。
1. 高速缓存高速缓存是位于计算机中央处理器(CPU)内部的一种特殊存储器,用于存放最常用的数据和指令。
它具有以下特点:- 高速访问:由于其接近CPU,高速缓存能够以更快的速度提供数据,从而减少CPU的等待时间,提高系统性能。
- 小容量:高速缓存的容量相对较小,一般只能存储少量的数据和指令。
- 自动管理:高速缓存采用自动管理机制,通过缓存替换算法和预取策略来提高数据访问效率。
2. 主存储器主存储器属于计算机系统的核心组成部分,用于暂时存储正在执行的程序和数据。
主存储器具有以下特点:- 大容量:相比于高速缓存,主存储器的容量较大,可以存储更多的数据和指令。
- 较低的访问速度:相对于高速缓存,主存储器的访问速度慢一些,但仍然比辅助存储器快得多。
- 动态随机存取:主存储器采用动态随机存取存储器(DRAM)作为存储单元,具有读写功能。
3. 辅助存储器辅助存储器用于长期存储和备份数据和程序,其特点如下:- 大容量:辅助存储器具有非常大的容量,可以存储大量的数据和程序。
- 相对较慢的访问速度:辅助存储器的访问速度相对较慢,但它能够长期保存数据,并且可以进行离线操作。
- 持久性存储:与高速缓存和主存储器不同,辅助存储器是非易失性存储器,即断电后数据仍然会被保留。
通过这三个层次的存储器结构,计算机系统能够根据数据的访问频率和容量需求进行智能管理和分配,从而提高系统性能和运行效率。
高速缓存作为最接近CPU的快速存储器,能够快速提供数据,减少CPU的等待时间。
主存储器作为快速存取存储器,存储正在执行的程序和数据。
而辅助存储器则用于长期保存数据和进行离线操作。
总结起来,计算机中的存储器层次结构通过高速缓存、主存储器和辅助存储器的组合,实现了性能和成本的平衡。
存储器层次结构存储器层次结构存储技术计算机技术的成功很⼤程度来源于存储技术的巨⼤进步。
早期的电脑甚⾄没有磁盘。
现在电脑上的磁盘都已经按T算了。
随机访问存储器(Random-Access Memory, RAM)随机访问存储器(Random-Access Memory, RAM)分两类:静态的:SRAM,⾼速缓存存储器,既可以在CPU,也可以在⽚下。
动态的:DRAM,⽤于主存或者图形系统帧缓冲区。
通常情况下,SRAM的容量都不会太⼤,⽽相⽐之下DRAM容量可以⼤得离谱。
静态RAMSRAM将每个位存储在⼀个双稳态存储器单元⾥,每个单元⽤⼀个六晶体管电路实现。
这种电路有⼀个属性,它可以⽆限期地保持两个不同的状态的其中⼀个,其他状态都是不稳定的。
如上图,它能稳定在左态和右态,如果处于不稳定状态,它就像钟摆⼀样⽴刻变成两种稳态的其中⼀种。
也因为它的双稳态特性,即使有⼲扰,等到⼲扰消除,电路就能恢复成稳定值。
动态RAMDRAM的每个存储是⼀个电容和访问晶体管组成,每次存储相当于对电容充电。
该电容很⼩,⼤约只有30毫微微法拉。
因为每个存储单元⽐较简单,DRAM可以造的⾮常密集。
但它对⼲扰⾮常敏感,被⼲扰后不会恢复。
因此它必须周期性地读出重写来刷新内存的每⼀位。
或者使⽤纠错码来纠正任何单个错误。
两者总结传统的DRAMDRAM芯⽚内的每⼀个单元被叫做超单元。
在芯⽚内,总共有d 个超单元,它们被排列成⼀个r×c ⼤⼩的矩阵,也就是说d=r×c,每个超单元都可以⽤类似(i,j) 之类的地址定位⽽每个超单元则是由w 个DRAM单元组成。
因此⼀个DRAM芯⽚可以存储dw 位的信息。
上图是⼀个16×8 的DRAM芯⽚的组织。
⾸先由两个addr引脚依次传⼊⾏地址i 和列地址j 。
每个引脚携带⼀个信号。
由于这是4×4 的矩阵,因此两个就够了。
然后定位到(i,j) ,将该地址的超单元信息传出去。
n局部性原理★n存储器层次结构☆n高速缓存存储器☆n到目前为止的计算机模型中,我们假设计算机的存储器系统是一个线性的字节数组,而CPU能够在一个常数时间内访问每个存储器位置。
但它没有反映现代系统实际的工作方式。
n实际上,存储器系统是一个具有不同容量、成本和访问时间的存储设备的层次结构。
n如果你的程序需要的数据是存储在CPU寄存器中,那在指令的执行期间,在零个周期内就能访问到它们;如果存储在高速缓存中,需要1~30个周期;如存储在主存中,需要50~200个周期;如存储在磁盘上,需要大约几千万个周期n作为一个程序员,需要理解存储器层次结构,它对应用程序的性能有着巨大的影响,这是因为计算机程序的一个称为局部性的基本属性引起的。
•不同矩阵乘法核心程序执行相同数量的算术操作,但有不同程度局部性,它们运行时间可以相差20倍•本章将介绍基本的存储技术、局部性、高速缓冲存储器等内容。
n局部性原理★n存储器层次结构☆n高速缓存存储器☆•RAM(随机访问存储器,Random-Access Memory )–静态RAM (SRAM)•每个cell使用6个晶体管电路存储一个位•只要有电,就会无限期地保存它的值•相对来说,对电子噪声等干扰不敏感•比DRAM更快、更贵–动态RAM (DRAM)•每个cell使用1个电容和1个访问晶体管电路存储一个位•每隔10-100 ms必须刷新值•对干扰敏感•比SRAM慢,便宜ü拍、太、吉、兆、千、毫、微、纳(毫微)、皮(微微)、飞(毫微微)•传统DRAM芯片–所有cell被组织为d个supercell,每个supercell包含了w个cell,一个d×w的DRAM总共存储了dw位信息。
supercell被组织成r行c 列的矩阵,即rc=d。
•步骤1(a): Row access strobe (RAS)选择row 2•步骤1(b): 从DRAM阵列中拷贝Row 2到行缓冲区•步骤2(a): Column access strobe (CAS)选择column 1。
存储器的基本结构原理
存储器是计算机中重要的硬件组成部分,其作用是存储和读取数据。
存储器按照存储介质的不同可分为内存和外存,其中内存又分为RAM和ROM两种类型。
内存是计算机中最快、最容易访问的存储器,但是它只能存储临时数据,一旦计算机关闭,所有数据就会消失。
RAM是一种易失性存储器,它只有在通电的情况下才能保存数据,当电源关闭后内存中的数据就会消失。
而ROM不同,它是只读存储器,数据写入后永久保存,无法被修改或删除。
存储器的基本单位是位(bit),多个位组成一个字节(byte)。
内存的基本结构由存储单元和地址线组成,存储单元是存储数据的基本单元,每个存储单元都有一个唯一的地址,通过地址线可以访问特定的存储单元。
存储器的速度和容量是计算机性能的重要指标,随着技术的不断发展,存储器的速度和容量都在不断提高。
目前,内存的容量已经达到了数十GB,而且速度越来越快。
总之,存储器的基本结构原理是存储单元和地址线,其容量和速度是计算机性能的重要指标。
随着技术的不断发展,存储器的容量和速度都在不断提高,为计算机的发展提供了强有力的支撑。
- 1 -。