《二次函数》全章复习与巩固
- 格式:docx
- 大小:125.39 KB
- 文档页数:6
《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习高清ID 号: 357019 关联的位置名称(播放点名称):(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限.同时满足ayx=和()y b c x=+图象的只有B.【点评】由图1得到a、b、c的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④C.①②④D.①②③【思路点拨】①二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),因而将M、N两点坐标代入即可消去a、c解得b值.②根据图象的特点及与直线MN比较,可知当﹣1<x<1时,二次函数图象在直线MN的下方.③同②理.④当y=0时利用根与系数的关系,可得到OA•OB的值,当x=0时,可得到OC的值.通过c建立等量关系求证.【答案】C;【解析】①∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x,销售量=500+100x,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润;(3)设当y=5000时x有两个解,可推出0≤x≤5时,y≥5000.【答案与解析】解:(1)依题意,得y=(50﹣40﹣x)•(500+100x)=﹣100x2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。
《二次函数》【巩固练习】一、选择题1.已知抛物线。
:丁=/+31-10,将抛物线C平移得到抛物线若两条抛物线C、C关于直线x=l对称.则下列平移方法中,正确的是().A.将抛物线C向右平移2个单位B.将抛物线C向右平移3个单位2C.将抛的线C向右平移5个单位D.将抛物线C向右平移6个单位2.已知二次函数y=4X2+bx+c的图象如图所示,则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为().A.2B.3C.4D.53.二次函数)=以2+区+。
的图象如图所示,则下列关系式不正确的是().C.a+b+c>0D. b1 -4ac > 0第2题4.在平面直角坐标系中,将抛物线y=/+2x+3绕着它与y轴的交点旋转180。
,所得抛物线的解析式是()A.j=-(x+l)2+2B.y=-(x-l)2+4C.y=-(x-l)2+2D.y=-(x+l)2+45.二次函数y=ax2+bx+c(a^0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x二-2 C.当xV,,y随x的增大而减小2D.当-1V X V2时,y>06.如图所示,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3)和(0,3);小明说:a=l,c=3;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有().A.1个B.2个C.3个D.4个已知抛物线产Q Y+B X+C与x轴交于(1,0),试添加一个条件,使它的对称轴为直线x=2.7.己知一次函数y= +的图象过点(-2,1),则关于抛物线y=一版+3的三条叙述:①过定点(2,1);②对称轴可以是直线x=L③当aVO时,其顶点的纵坐标的最小值为3・其中所有正确叙述的有().A.0个B.1个C.2个D.3个8.已知二次函数)=/—4冗+。
,下列说法错误的是().A.当xVI时,y随x的增大而减小B.若图象与x轴有交点,则aW4C.当a=3时,不等式冗2一4了+々>0的解集是1V X V3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3二、填空题9.由抛物线y=x2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为r4 、10.已知一元二次方程笈一3=0的一根为-3.在二次函数y=x2+bx-3的图象上有三点一一,州、i5 j,yi、y?、丫3、的大小关系是11.如图,一段抛物线y=-x(x-1)(OWxWl)记为1山,它与x轴交点为0、Ai,顶点为1\;,顶点为P2;将叱绕点A2旋转180°得m3,交将n绕点A1旋转180°得叱,交x轴于点A2x轴于点A:,,顶点为P3,…,如此进行下去,直至得m>,顶点为Pm则Pi。
专题2.3 二次函数(巩固篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.3 二次函数(巩固篇)(专项练习) 一、单选题知识点一、二次函数的判断1.下列函数:①2y x =-,①3y x=,①2y x ,①234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个2.下列函数中,二次函数是( ) A .y =﹣4x +5B .y =x (2x ﹣3)C .y =ax 2+bx +cD .21y x =3.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .一次函数 C .二次函数D .以上均不正确4.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4) (a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)知识点二、根据二次函数定义求参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.已知函数y =ax 2+bx +c ,其中a ,b ,c 可在0,1,2,3,4五个数中取值,则不同的二次函数的个数共有( ) A .125个B .100个C .48个D .10个7.如果函数22(2)27m y m x x -=-+-是二次函数,则m 的取值范围是( ) A .2m =±B .2m =C .m =﹣2D .m 为全体实数8.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对知识点三、列二次函数解析式9.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个B .2个C .3个D .4个10.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<11.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( ) A .221y x =-B .223y x =+C .221y x =--D .223y x =-+12.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x =-+D .2103507350y x x =-+-二、填空题知识点一、二次函数的判断 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)15.下列函数中属于一次函数的是_____,属于反比例函数的是______,属于二次函数的是______A. y =x(x +1)B. xy =1C. y =2x 2-2(x +1)2D. y =16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____. 知识点二、根据二次函数定义求参数17.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__. 18.若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足_____. 19.函数()21m y m x =++是关于x 的二次函数,则m=___ 20.若函数()2262mm y m x --=+是二次函数,则m =________.知识点三、列二次函数解析式21.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为____.22.在①ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为__________.23.正方形边长为2,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是______. 24.用一根长为10m 的木条,做一个长方形的窗框,若长为xm ,则该窗户的面积y (m 2)与x (m )之间的函数表达式为_____. 三、解答题25.已知函数y=-(m+2)2-2m x (m 为常数),求当m 为何值时:(1)y 是x 的一次函数?(2)y 是x 的二次函数?并求出此时纵坐标为-8的点的坐标.26.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一条矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带BC 边长为xm ,绿化带的面积为ym2 , 求y 与x 之间的函数关系式,并写出自变量x的取值范围.27.如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?28.某商场销售一批名牌衬衫,每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价1元,商场每天可多售出2件.()1如果每件衬衫降价5元,商场每天赢利多少元?()2如果商场每天要赢利1200元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?()3用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?参考答案:1.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项①符合题意; 2y x 是二次函数,故选项①不符合题意;234y x x =++是二次函数,故选项①不符合题意;①y 是x 的反比例函数的个数有:1个 故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解. 2.B【分析】根据二次函数的定义判断即可.【详解】A 、y =﹣4x+5是一次函数,故选项A 不合题意; B 、y =x (2x ﹣3)是二次函数,故选项B 符合题意;C 、当a =0时,y =ax 2+bx+c 不是二次函数,故选项C 不合题意;D 、21y x =不是二次函数,故选项D 不合题意. 故选:B .【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键. 3.C【分析】设y 1=k 1x ,y 2=k 2x 2,根据y =y 1﹣y 2得到y =k 1x ﹣k 2x 2,由此得到答案. 【详解】解:设y 1=k 1x ,y 2=k 2x 2, 则y =k 1x ﹣k 2x 2,所以y 是关于x 的二次函数, 故选:C .【点睛】此题考查列函数关系式,正确理解正比例函数的定义是解题的关键. 4.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3); (b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4); (c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2). 故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键. 5.A【分析】利用二次函数定义进行解答即可. 【详解】解:由题意得:a ﹣1≠0, 解得:a ≠1, 故选:A .【点睛】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.B【分析】根据二次函数的定义得到0a ≠,依据a 、b 、c 的选法通过计算即可得到答案 【详解】由题意0a ≠, ①a 有四种选法:1、2、3、4,①b 和c 都有五种选法:0、1、2、3、4, ①共有455⨯⨯=100种, 故选:B【点睛】此题考查二次函数的定义2(0)y ax bx c a =++≠,有理数的乘法运算,根据题意得到a 、b 、c 的选法是解题的关键. 7.C【分析】根据二次函数定义可得m -2≠0,222m -=,再解即可. 【详解】解:由题意得:m -2≠0,222m -=, 解得:m=-2, 故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.8.B【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,①m=7,故选:B.【点睛】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.9.C【详解】形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.10.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.11.D【分析】根据二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x2+c求出对应的c的值,从而可得到抛物线解析式.【详解】①二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,①a=−2,①二次函数是y=−2x2+c,①二次函数y=ax2+c经过点(1,1),①1=−2+c,①c=3,①抛该二次函数的解析式为y=−2x 2+3; 故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解. 12.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解. 【详解】解:每件的利润为(x -21), ①y =(x -21)(350-10x ) =-10x 2+560x -7350. 故选B .【点睛】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润. 13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 【详解】①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点睛】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 14.①①①【分析】根据二次函数的定义与一般形式即可求解. 【详解】解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数). 15. C B A【详解】根据题意可知y=x (x+1)=x 2+x ,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y =2x 2-2(x +1)2= y =2x 2-2(x 2+2x+1)=-4x -2,是一次函数;函数y . 故答案为C 、B 、A. 16. 3 0【分析】根据二次函数的定义解答即可.【详解】二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点睛】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0. 17.k ≠2【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可. 【详解】解:由题意得:2﹣k ≠0, 解得:k ≠2, 故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键. 18.m ≠﹣1【分析】利用二次函数定义可知m+1≠0,再解不等式即可; 【详解】解:由题意得:m+1≠0, 解得:m≠﹣1, 故答案为:m≠﹣1.【点睛】本题考查了二次函数的定义,正确掌握二次函数的定义是解题的关键; 19.2【分析】根据二次函数的定义可得220m m ⎧=⎪⎨+≠⎪⎩,求解即可.【详解】解:①函数()21my m x =++是关于x 的二次函数,①220m m ⎧=⎪⎨+≠⎪⎩,解得2m =,故答案为:2.【点睛】本题考查二次函数的定义,注意二次项系数不能为0. 20.4【分析】直接利用二次函数的定义进而分析得出答案. 【详解】由题意得:2262m m --=,且20m +≠, 解得:4m =. 故答案为:4.【点睛】本题考查了二次函数的定义,解决问题的关键是明确最高次项的次数为2,且最高次项系数不为0. 21.220S x x =-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案. 【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米, ①由矩形的面积公式,得 2(20)20S x x x x =-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式. 22.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可. 【详解】①BC 边长为x(x>0),BC 边上的高比它的2倍多1, ①这条边上的高为:2x+1, 根据题意得出:y=12x (2x+1)=x 2+12x . 故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键. 23.y=x 2+4x【分析】增加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可. 【详解】新正方形的边长为2x +,原正方形的边长为2. ∴新正方形的面积为2(2)x +,原正方形的面积为4, 22(2)44y x x x ∴=+-=+,故答案为24y x x =+.【点睛】考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.24.y =﹣x 2+5x【分析】直接利用根据实际问题列二次函数解析式关系式,正确表示出长方形的宽是解题关键.【详解】设长为xm ,则宽为(5﹣x )m ,根据题意可得:y =x (5﹣x )=﹣x 2+5x .故答案是:y =﹣x 2+5x .【点睛】考查了根据实际问题列二次函数解析式,正确表示出长方形的宽是解题关键.25.(1)(2) m =2,纵坐标为-8的点的坐标是,-8),(,-8)【分析】(1)根据一次函数的定义求m 的值即可;(2)根据二次函数的定义求得m 的值,从而求得二次函数的解析式,把y =-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1)由y=-(m+2)22m x -(m 为常数),y 是x 的一次函数,得221,20,m m ⎧-=⎨+≠⎩解得 ①当y 是x 的一次函数;(2)由y=-(m+2)22m x -(m 为常数),y 是x 的二次函数,得222,20,m m ⎧-=⎨+≠⎩解得m=2,m=-2(不符合题意的要舍去),当m=2时,y 是x 的二次函数,当y=-8时,-8=-4x 2,解得故纵坐标为-8的点的坐标是-8)和(,-8).【点睛】本题考查了一次函数的定义、二次函数的定义,解题关键是掌握一次函数与二次函数的定义.26.y=﹣12x2+20x ,自变量x 的取值范围是0<x≤25.【详解】试题分析:由矩形的性质结合BC 的长度可得出AB 的长度,再根据矩形的面积公式即可找出y 与x 之间的函数关系式.试题解析:①四边形ABCD 为矩形,BC=x①AB=40-2x . 根据题意得:24012022x y BC AB x x x -⎛⎫=⨯==-+ ⎪⎝⎭,因为墙长25米,所以025x <≤. 27.(1) y =x2-9x +20;(2) 二次函数;(3) 0<x <4.【详解】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式;(2)通过二次函数的定义可判断;(3)根据x 取值不能大于原方程的长方形的宽进行分析.试题解析:(1)根据长方形的面积公式,得y =(5-x)·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20.(2)上述函数是二次函数.(3)自变量x 的取值范围是0<x <4.点睛:此题主要考查了根据题意列函数的解析式,熟悉掌握根据题意列函数关系式是解决此题的关键.28.(1)如果每件衬衫降价5元,商场每天赢利1050元;()2每件衬衫应降价20元.()3每件衬衫降价15元时,商场平均每天盈利最多.【分析】总利润=每件利润×销售量.设每天利润为w 元,每件衬衫应降价x 元,据题意可得利润表达式,(1)把x =5代入求得相应的w 的值即可;(2)再求当w =1200时x 的值;(3)根据函数关系式,运用函数的性质求最值.【详解】(1)设每天利润为w 元,每件衬衫降价x 元,根据题意得w =(40−x )(20+2x )=−2x 2+60x +800=−2(x−15)2+1250当x =5时,w =−2(5−15)2+1250=1050(元)答:如果每件衬衫降价5元,商场每天赢利1050元;;()2当w 1200=时,22x 60x 8001200-++=,解之得1x 10=,2x 20=.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.()3商场每天盈利()()40x 202x -+22(x 15)1250=--+.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查了配方法的应用,一元二次方程的应用.根据题意写出利润的表达式是此题的关键.。
二次函数y=a (x-h)2+k(a ≠0)的图象与性质—巩固练习(基础)【巩固练习】一、选择题1.抛物线2(2)3y x =-+-的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)2.函数y=21x 2+2x+1写成y=a(x -h)2+k 的形式是( ) A.y=21(x -1)2+2 B.y=21(x -1)2+21 C.y=21(x -1)2-3 D.y=21(x+2)2-13.抛物线y=21x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=21(x+3)2-2B.y=21(x -3)2+2C.y=21(x -3)2-2D.y=21(x+3)2+24.把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x y D .2)1(2-+=x y5.由二次函数22(3)1y x =-+,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当3x <时,y 随x 的增大而增大 6.(2020•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.二、填空题7. (2020•怀化)二次函数y=x 2+2x 的顶点坐标为,对称轴是直线.8.已知抛物线y=-2(x+1)2-3,如果y 随x 的增大而减小,那么x 的取值范围是______. 9.抛物线y=-3(2x 2-1)的开口方向是_____,对称轴是_____. 10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线22y x x =-向上平移3个单位,再向右平移4个单位得到的抛物线是_______.12.抛物线22(2)6y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数的图象与两坐标轴所围成的三角形面积为________. 三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式. 14. 已知抛物线212y x =-向上平移2个单位长度,再向右平移1个单位长度得到 抛物线2()y a x h k =-+;(1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出2()y a x h k =-+与212y x =-的图象; (3)观察2()y a x h k =-+的图象,当x ________时,y 随x 的增大而增大;当x ________时,函数y 有最________值,最________值是y =________; (4)观察2()y a x h k =-+的图象,你能说出对于一切x 的值,函数y 的取值范围吗? 15.(2020•珠海)已知抛物线y=ax 2+bx+3的对称轴是直线x=1. (1)求证:2a+b=0;(2)若关于x 的方程ax 2+bx ﹣8=0的一个根为4,求方程的另一个根. 【答案与解析】 一、选择题 1.【答案】D ;【解析】由顶点式可求顶点,由20x +=得2x =-,此时,3y =-. 2.【答案】D ;【解析】通过配方即可得到结论. 3.【答案】A ; 【解析】抛物线y=21x 2向左平移3个单位得到y=21(x+3)2,再向下平移2个单位后, 所得的抛物线表达式是y=21(x+3)2-2.4.【答案】B ;【解析】通过配方即可得到结论. 5.【答案】C ;【解析】可画草图进行判断. 6.【答案】D ;【解析】解:A 、由直线与y 轴的交点在y 轴的负半轴上可知,n 2<0,错误;B 、由抛物线与y 轴的交点在y 轴的正半轴上可知,m >0,由直线可知,﹣m >0,错误;C 、由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m <0,错误;D 、由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m >0,正确, 故选D .二、填空题 7.【答案】(﹣1,﹣1); x=﹣1; 【解析】∵y=x 2+2x=(x+1)2﹣1,∴二次函数y=x 2+4x 的顶点坐标是:(﹣1,﹣1),对称轴是直线x=﹣1.8.【答案】x ≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y 随x 的增大而减小,故x ≥-1.9.【答案】向下,y 轴; 10.【答案】249y x x =---;【解析】设2(2)5y a x =+-过点(1,-14)得1a =-,所以22(2)549y x x x =-+-=---.11.【答案】21027y x x =-+;【解析】先化一般式为顶点式,再根据平移规律求解. 12.【答案】 1; 【解析】C(2,-6),可求932y x =-+与x 轴交于2(,0)3,与y 轴交于(0,3),∴123123S =⨯⨯=. 三、解答题13.【答案与解析】∵ 抛物线的顶点为(-1,-2),∴ 设其解析式为2(1)2y a x =+-,又图象经过点(1,10),∴1042a =-,∴3a =, ∴ 解析式为23(1)2y x =+-. 14.【答案与解析】(1)由212y x =-向上平移2个单位,再向右平移1个单位所得到的抛物线是21(1)22y x =--+. ∴12a =-,1h =,2k =. (2)函数21(1)22y x =--+与212y x =-的图象如图所示.(3)观察2()y a x h k =-+的图象,当1x <时,y 随x 的增大而增大;当1x =时,函数y 有最大值,最大值是2y =. (4)由图象知,对于一切x 的值,总有函数值2y ≤. 15.【答案与解析】(1)证明:∵对称轴是直线x=1=﹣,∴2a+b=0;(2)解:∵ax 2+bx ﹣8=0的一个根为4,∴16a+4b ﹣8=0, ∵2a+b=0, ∴b=﹣2a ,∴16a ﹣8a ﹣8=0, 解得:a=1,则b=﹣2,∴ax 2+bx ﹣8=0为:x 2﹣2x ﹣8=0, 则(x ﹣4)(x+2)=0, 解得:x 1=4,x 2=﹣2,故方程的另一个根为:﹣2.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( ).A .70°B .64°C .62°D .51°2.在半径为27m 的圆形广场中心点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图所示),则光源离地面的垂直高度SO 为( ). A .54m B .63m C .93m D .183m第1题图 第2题图 第3题图 第4题图3.设计一个商标图案,如图所示,在矩形ABCD 中,AB=2BC ,且AB=8cm ,以A 为圆心、AD 的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm 2B.(4π+16)cm 2C.(3π+8)cm 2D.(3π+16)cm 24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ). A. B. C. D. 5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸 6.(2020•贵港)如图,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM .若⊙O 的半径为2,OP=4,则线段OM 的最小值是( )A .0B .1C .2D .37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC的度数是( ).A .65°B .115°C .65°或115°D .130°或50° 二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是____ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.14.已知正方形ABCD外接圆的直径为2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为________,面积为________.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为________,图(2)中4条弧的弧长的和为________;(2)求图(m)中n条弧的弧长的和为________(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要________m2的毛毡.三、解答题17.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC=12∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a ; 2(222)a ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴222x x a ⨯+=,21)x a =, 即正八边形的边长为(21)a .222224[(21)](222)AEL S S S a x a a a =-=-=-=△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°,∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴2215l h r =+=,∴223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC , ∴OF 垂直平分BC∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形. 19.【答案与解析】A BCDEO 12345A BCD EO 12解:∵公共弦AB=120.20. 【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵ BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴ BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。
专题22.35 《二次函数》全章复习与巩固(知识讲解)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.特别说明:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即 、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).特别说明:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等20()y ax bx c a =++≠,,a bc 2y ax bx c =++实根; (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解特别说明:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.特别说明:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.如图,已知二次函数y=x2+bx+c的图象经过点A(4,5)与点B(0,﹣3),且与x轴交于点C、D.(1)求该二次函数的表达式,以及与x 轴的交点坐标.(2)若点Q (m ,n )在该二次函数图象上,①求n 的最小值;②若点Q 到x 轴的距离小于3,请结合函数图象直接写出m 的取值范围.【答案】(1)223y x x =--,与x 轴的交点坐标为(3,0)和(1,0)-(2)①-4;②1m <0或2<m <【分析】(1)利用待定系数法即可求得二次函数的解析式,令0y =,解2230x x --=即可求得交点坐标.(2)①把函数解析式变形为顶点式即可求得答案;②根据平面直角坐标系内点到x 轴的距离的特点即可求解.(1)解:将点A 、B 的坐标代入抛物线表达式得,51643b c c =++ìí=-î,解得23b c =-ìí=-î,故抛物线的表达式为223y x x =--,令y =x 2﹣2x ﹣3=0,解得3x =或1x =-,故抛物线与x 轴的交点坐标为(3,0)和(1,0)-.(2)①2223(1)44y x x x =--=--³,故n 的最小值为﹣4;②令223|3|y x x =﹣﹣=,解得0x =或2或1故m 的取值范围为:10m <<或21m <<.【点拨】本题考查了二次函数的图象及性质、利用待定系数法求函数解析式,熟练掌握二次函数的图象及性质和待定系数法是解题的关键.举一反三:【变式1】已知x 与y 之间的函数关系式为21y ax bx =++(其中a 、b 是常数),且有下列对应关系:x 1-2y-117(1)求y 与x 之间的函数关系式;(2)若点(3,)n ,点(,10)m n +均在抛物线21y ax bx =++上,求m 的值.【答案】(1)2241=-+y x x (2)14m =,22m =-.【分析】(1)利用待定系数法,将对应的x ,y 代入21y ax bx =++,解二元一次方程组即可;(2)先将3x =代入y 与x 之间的函数关系式求出n 的值,再将10y n =+代入y 与x 之间的函数关系式求出m 的值.(1)解:由题意得,1142117a b a b ++=-ìí-+=î解得,24a b =ìí=-î∴y 与x 之间的函数关系式为2241=-+y x x .(2)解:∵点(3,)n 在抛物线2241=-+y x x 上,∴2234317n =´-´+=.∴1017n +=,∵点(,10)m n +在抛物线2241=-+y x x 上,∴217241m m =-+,整理得2280m m --=,解得14m =,22m =-.【点拨】本题考查待定系数法求二次函数解析式以及二次函数图象上点的坐标的特征,难度较小,牢记二次函数图象上的点均满足函数解析式是解题的关键.【变式2】如图,在平面直角坐标系xOy中,一次函数y=x的图象与二次函数y=-x2+bx(b为常数)的图象相交于O,A两点,点A坐标为(3,m).(1)求m的值以及二次函数的表达式;(2)若点P为抛物线的顶点,连结OP,AP,求△POA的面积.【答案】(1)m的值为3,二次函数的表达式为:y=-x2+4x;(2)△POA的面积为3.【分析】(1)把点A的坐标为(3,m)代入y=x可求出m的值,然后再把A点坐标代入二次函数表达式即可解答;(2)过点P作PC⊥x轴,垂足为C,交OA于点D,然后把△OPD的面积与△APD的面积相加即可.(1)解:把点A坐标为(3,m)代入一次函数y=x中可得:m=3,∴A(3,3),把点A坐标为(3,3)代入二次函数y=-x2+bx中可得:3=-9+3b,解得:b=4,∴y=-x2+4x,答:m的值为3,二次函数的表达式为:y=-x2+4x;(2)解:过点P作PC⊥x轴,垂足为C,交OA于点D,过点A作AE⊥PC,垂足为E,∵y=-x2+4x=-(x-2)2+4,∴顶点P(2,4),把x=2代入y=x中得:y=2,∴D(2,2),∴PD=4-2=2,∵△POA 的面积=△OPD 的面积+△APD 的面积,∴△POA 的面积=12PD •OC +12PD •AE =12PD (OC +AE )=12×2×3=3,答:△POA 的面积为3.【点拨】本题考查了待定系数法求二次函数解析式,二次函数的性质,正比例函数的图象,把△POA 的面积分成△OPD 的面积与△APD 的面积之和是解题的关键.类型二、根据二次函数图象及性质判断代数式的符号2.已知二次函数2y ax bx c =++的图象如图,它与x 轴的两个交点分别为(1,0),(3,0)-,对于下列结论:①20b a -=;②0abc <;③420a b c ++<;④80a c +>.其中结论正确的个数有( )A .3个B .2个C .1个D .0个【答案】B【分析】根据开口方向确定a 的符号后再根据抛物线与x 轴的交点坐标得到对称轴,确定b 的符号,即可判断①,利用抛物线与y 轴交点位置确定c 的符号,即可判断②,令2x =即可判断③,利用根与系数的关系即可判断④.解:∵二次函数2y ax bx c =++的图象开口向上,且与x 轴的两个交点分别为(1,0),(3,0)-,∴0a >,且该图象的对称轴为12bx a=-=,∴2b a =-,∴240b a a -=-<,故①错误;由图可知,抛物线交y 轴负半轴,∴0c <,又∵0a >,20b a =-<,∴0abc >,故②错误;由图可知,当2x =时,420y a b c =++<,故③正确;∵()133ca=-´=-,∴3c a =-,∴850a c a +=>,故④正确;故选:B .【点拨】本题考查了抛物线的解析式以及它的图象与性质,解题关键是理解并掌握对称轴公式、一元二次方程根与系数的关系以及会根据点的坐标判断代数式的取值情况.举一反三:【变式1】如图,抛物线2y ax bx c =++经过点()1,0,且对称轴为直线1x =-,其部分图像如图所示.下列说法正确的个数是( ).①0ac >;②240b ac -<;③930a b c -+>;④2am bm a b +<-(其中1m ¹-)A .0B .1C .2D .3【答案】B【分析】根据抛物线的性质,对称性,抛物线与x 轴的交点,与y 轴的交点,最值去分析判断即可.解:∵ 抛物线2y ax bx c =++经过点()1,0,开口向下,与y 轴交点位于y 轴的正半轴,且对称轴为直线1x =-,∴ a <0,c >0,a +b +c =0,1112x +=-,102ba-=-<,∴ac <0,13x =-,240b ac ->,930a b c -+=,故①②③都是错误的;∵a <0,∴抛物线有最大值,且当x =-1时,取得最值,且最大值为a -b +c ,∴当m ≠-1时,2am bm c a b c ++<-+,故2am bm a b +<-,故④正确,故选B .【点拨】本题考查了抛物线的性质,对称性,最值,抛物线与坐标轴的交点,熟练掌握抛物线的性质和最值、对称性是解题的关键.【变式2】如图,已知二次函数2y ax bx c =++的图象交x 轴于()3,0-,对称轴为1x =-.则下列结论:①0abc >;②420a b c ++>;③30a c +=;④若13,2y æö-ç÷èø,21,2y æöç÷èø是图象上的两点,则12y y >;⑤若y c £,则20x -££.其中正确结论的个数是( )A .2B .3C .4D .5【答案】B【分析】由图象可知当x =0时,c <0,再根据开口向上及对称轴<02ba-,即可得a 、b 的取值范围,据此即可判定①;根据题意可求得函数图象与x 轴的另一个交点坐标,再根据二次函数的性质,即可判定②;根据对称轴所在的直线为12ba-=-,可得b =2a ,由当x =1时,a +b +c =0,即可判定③;首先可求得点13,2y æö-ç÷èø关于对称轴对称的点的坐标为11,2y æö-ç÷èø,再根据二次函数的性质,即可判定④;首先可求得点(0,c )关于对称轴对称的点的坐标为(-2,c ),再根据函数图象即可判定⑤,据此即可解答.解:由图象可知,当x =0时,y <0,∴c <0,Q 该二次函数的图象开口向上,>0a \,<02ba-Q ,>0b \ <0abc \,∴①不正确;∵对称轴为直线x =−1,二次函数2y ax bx c =++的图象交x 轴于()3,0-,∴二次函数2y ax bx c =++的图象与x 轴的另一个交点为()1,0,Q 该二次函数的图象开口向上,\当x =2时,420a b c ++>∴②正确;12ba-=-Q ,2b a \=,Q 二次函数2y ax bx c =++的图象与x 轴的另一个交点为()1,0,\当x =1时,a +b +c =0,∴a +2a +c =0,即3a +c =0,∴③正确;∵函数图象的对称轴为直线x =-1,∴点13,2y æö-ç÷èø关于对称轴对称的点的坐标为11,2y æö-ç÷èø,Q 该二次函数的图象开口向上,∴在对称轴的右侧,y 随x 的增大而增大,∴12<y y ,∴④不正确;Q 该函数图象与y 轴的交点坐标为(0,c ),\点(0,c )关于对称轴对称的点的坐标为(-2,c ),y c \£时,20x -££,∴⑤正确;故正确的有3个,故选:B .【点拨】本题考查了二次函数的图象及性质;能够从函数图象获取相关信息,采用数形结合的思想是解题的关键.类型三、二次函数与一次函数、不等式3.抛物线y =﹣x 2+bx +c 经过点A (﹣3,0)和点C (0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D 的坐标;(2)若过顶点D 的直线将△ACD 的面积分为1:2两部分,并与x 轴交于点Q ,则点Q 的坐标为 .注:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标(24,24b ac b a a--)【答案】(1)y=-x2-2x+3,顶点D(-1,4);(2)(-1,0)或7 (,0)3-【分析】(1)利用待定系数法构建方程组即可解决问题;(2)根据点A,C的坐标,利用待定系数法可求出直线AC的函数表达式,设点E的坐标为(x,x+3)(-3<x<0),结合已知可得AE=2CE或CE=2AE,从而得出方程2(x+3)2=2或2(x+3)2=8,得出点E的坐标,再求出直线DE的解析式即可得出点Q的坐标.解:(1)∵抛物线y=-x2+bx+c与x轴交于点A(-3,0)和点B,与y轴相交于点C(0,3),∴9303b cc--+=ìí=î,解得:23bc=-ìí=î;∴抛物线的解析式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,∴顶点D(-1,4).(2)设直线AC的函数表达式为y=kx+b(k≠0),将A(-3,0),C(0,3)代入y=kx+a,得:303k bb-+=ìí=î;解得:13kb=ìí=î,∴直线AC的函数表达式为y=x+3.设点E的坐标为(x,x+3)(-3<x<0),∵直线AC将△ADC的面积分成1:2的两部分,且△ADE和△CDE等高,∴AE=2CE或CE=2AE,∵AC=∴AE=AE=∴2(x+3)2=2或2(x+3)2=8∴x=-2或-4或-1或-5∵-3<x<0∴x=-2或-1∴点E的坐标为(-2,1)或(-1,2)当点E的坐标为(-2,1)时设直线DE的函数表达式为y=mx+n(m≠0),将E(-2,1),D(-1,4)代入y=mx+n,得:2m n1m n4-+=ìí-+=î;解得:m3n7=ìí=î,∴直线AC的函数表达式为y=3x+7.当y=0时,x=7 3 -∴点Q的坐标为(73-,0)当点E的坐标为(-1,2)时,∵D(-1,4),∴直线DE//y轴,点Q的坐标为(-1,0)∴点Q的坐标为(-1,0)或7 (,0)3-【点拨】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.举一反三:【变式1】二次函数2y ax bx c =++的图象如图所示:(1)根据图象解答问题:方程 20ax bx c ++=的两个根为 ;不等式20ax bx c ++<的解集为 ;(2)试根据图象信息,求二次函数的解析式.【答案】(1)13x =-,21x =;31x -<<(2)224233y x x =+-【分析】(1)根据函数图象与x 轴交点的横坐标就是方程20ax bx c ++=的两个根即可解出;根据不等式与函数图象的关系可知不等式20ax bx c ++<对应着x 轴下方的图象,写出图象对应的x 范围即可;(2)根据题中二次函数图象可知其与x 轴交于两点()3,0-、()1,0,可设二次函数交点式,再将与y 轴的交点()0,2-代入交点式方程求解a ,即可得出解析式.(1)解:由图象可知,2y ax bx c =++图象与x 轴交于两点()3,0-、()1,0,即当3x =-时,0y =;当1x =时,0y =,\当0y =时,得到方程20ax bx c ++=的两个根为13x =-,21x =;Q 不等式20ax bx c ++<对应着0y <,从不等式与函数图象的关系看来,不等式20ax bx c ++<的解集意味着x 轴下方图象对应着的x 的取值范围,\不等式20ax bx c ++<的解集为31x -<<;(2)解:由图象可知,2y ax bx c =++图象与x 轴交于两点()3,0-、()1,0,与y 轴交于点()0,2-,设二次函数交点式为()()31y a x x =+-,将()0,2-代入()()31y a x x =+-,得到()()203013a a -=+-=-,23a \=,即()()()222224312323333y x x x x x x =+-=+-=+-,\二次函数的解析式为224233y x x =+-.【点拨】本题主要考查二次函数的图象与性质.准确掌握二次函数图象与一元二次方程的根、二次不等式解集之间的关系是解决此类问题的关键.【变式2】先阅读理解下面的例题,再按要求解答后面的问题.例题:解一元二次不等式x 2﹣3x +2>0.解:令y =x 2﹣3x +2,画出y =x 2﹣3x +2如图所示,由图象可知:当x <1或x >2时,y >0.所以一元二次不等式x 2﹣3x +2>0的解集为x <1或x >2.填空:(1)x 2﹣3x +2<0的解集为 ;(2)﹣x 2+2<0的解集为 ;(3)用类似的方法解一元二次不等式﹣(x ﹣1)2﹣5(x ﹣1)+6>0.【答案】(1)12x <<(2)x <x >;(3)52x -<<.【分析】(1)求出2320x x -+=的解,然后根据函数图像取中间值即可;(2)求出220x -+=的解,然后根据函数图像取两边的值即可;(3)求出2(1)5(1)60x x ----+=的解,然后根据函数图像取中间值即可.(1)解:解2320x x -+=得11x =,22x =,由图象可知:当12x <<时,y <0.所以,不等式2320x x -+<的解集为12x <<;(2)令22y x =-+,画出22y x =-+如图所示,解220x -+=得,1x =2x =所以,由图象可知:不等式220x -+<的解集为x <x >;(3)令2(1)5(1)6y x x =----+,画出函数图像如图,解2(1)5(1)60x x ----+=得,12x =,25x =-,所以,由图象可知:一元二次不等式2(1)5(1)60x x ----+>的解集为52x -<<.【点拨】本题考查了二次函数与不等式,读懂题目信息得到一元二次不等式的解集的求解方法是解题的关键.类型四、二次函数与一元二次方程4.如图,在平面直角坐标系中,点O 为坐标原点,抛物线25y ax bx =++经过点M(1,3)和N (3,5)(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (﹣2,0),且与y 轴交于点B ,同时满足以A 、O 、B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【答案】(1)抛物线与x 轴没有交点;(2)先向左平移3个单位,再向下平移3个单位或将原抛物线先向左平移2个单位,再向下平移5个单位.【分析】(1)把M 、N 两点的坐标代入抛物线解析式可求得a 、b 的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x 轴的交点情况;(2)利用A 点坐标和等腰三角形的性质可求得B 点坐标,设出平移后的抛物线的解析式,把A 、B 的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.(1)解:把点M (1,3)和N (3,5)代入抛物线解析式,得:539355a b a b ++=ìí++=î,解得:13a b =ìí=-î,∴抛物线解析式为235y x x =-+,令y =0,得2350x x -+=,∵△=(-3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x 轴没有交点;(2)解:∵△AOB 是等腰直角三角形,A (﹣2,0),点B 在y 轴上,∴OA =OB ,∴B 点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为2y x mx n =++,①当抛物线过点A (﹣2,0),B (0,2)时,代入,得:2420n m n =ìí-+=î,解得:32m n =ìí=î,∴平移后的抛物线为232y x x =++,∴该抛物线的顶点坐标为(32-,14-),∵原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A (﹣2,0),B (0,﹣2)时,代入,得:2420n m n =-ìí-+=î,解得:12m n =ìí=-î,∴平移后的抛物线为22y x x =+-,∴该抛物线的顶点坐标为(12-,94-),∵原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【点拨】本题主要考查了二次函数的图象和性质,二次函数的平移,熟练掌握二次函数的图象和性质,二次函数的平移的性质是解题的关键.举一反三:【变式1】已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标.【答案】(1)k =-3;(2)点P 的坐标为(2,-5)或(-2,-5).【分析】(1)根据抛物线的对称轴是y 轴以及对称轴公式可得关于k 的方程,解方程后再根据抛物线与x 轴的交点个数即可确定答案;(2)由点P 到y 轴的距离即可确定出点P 的横坐标,再根据抛物线的解析式即可求得点P 的纵坐标即可得答案.解:(1)∵抛物线y=x 2+(k 2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k 2+k -6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意,∴k=-3;(2)∵P 到y 轴的距离为2,∴点P 的横坐标为-2或2,当x=2时,y=-5;当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).【点拨】本题考查了抛物线的对称轴,抛物线与x 轴的交点等知识,熟练掌握相关内容是解题的关键.【变式2】如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)若过点D 作DE x ^轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标.【答案】(1)2y x 2x 3=-++;(2)()2,3D .【分析】(1)利用待定系数法求函数解析式即可;(2)令0x =时,2233y x x =-++=,求出()0,3C ,进一步求出直线BC 的解析式为3y x =-+,设()2,23D m m m -++,则223DE m m =-++,表示出(),3M m m -+,(),0E m ,利用2DM ME =,可得2m =,所以()2,3D .(1)解:∵抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,∴10930b c b c --+=ìí-++=î,解得:23b c =ìí=î,∴抛物线解析式为.2y x 2x 3=-++(2)解:∵当0x =时,2233y x x =-++=,∴()0,3C ,设直线BC 的解析式为y kx n =+,∴303k n n +=ìí=î,解得:13k n =-ìí=î,∴直线BC 的解析式为3y x =-+,设()2,23D m m m -++,则223DE m m =-++,∵DE x ^轴于点E ,∴(),3M m m -+,(),0E m ,∴3ME m =-+,∴()222333DM DE ME m m m m m =-=-++--+=-+,∵2DM ME =,∴()2323m m m -+=-+,解得12m =,23m =(此时B ,D 重合,不合题意舍去),∴2m =,∴()2,3D .【点拨】本题考查一次函数和二次函数的综合,解题的关键是掌握待定系数法求函数解析式,表示出3ME m =-+,2=3-+DM m m ,解一元二次方程.类型五、二次函数与实际问题5.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.【答案】(1)y 与x 的函数关系式为y =50-10x ;(2)当房价为260元时,宾馆每天的利润为10560元(3)宾馆每天获得的最大利润是11520元【分析】(1)根据当每个房间每天的房价每增加10元时,就会有一个房间空闲,可以写出y 与x 的函数关系式;(2)根据题意,可以得到(200+x -20)(50-10x )=10560,然后求解即可;(3)根据题意,可以写出利润与x 的函数关系式,然后将函数解析式化为顶点式,再根据二次函数的性质和x 的取值范围,即可得到利润的最大值.(1)解:由题意可得,y =50-10x ,即y 与x 的函数关系式为y =50-10x ;(2)解:由题意可得,(200+x -20)(50-10x )=10560,解得x 1=60,x 2=260,∵每个房间每天的房价不得高于340元,∴200+x ≤340,∴x ≤140,∴0≤x ≤140(x 为10的整数倍),∴x =60,∴200+x =260,答:当房价为260元时,宾馆每天的利润为10560元;(3)解:设利润为w 元,由题意可得:w =(200+x -20)(50-10x )=-0.1(x -160)2+11560,∴当x <160时,w 随x 的增大而增大,∵每个房间每天的房价不得高于340元,∴200+x ≤340,∴x ≤140,∴0≤x ≤140(x 为10的整数倍),∴当x =140时,w 取得最大值,此时w =11520,答:宾馆每天获得的最大利润是11520元.【点拨】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,写出相应的函数关系式,利用二次函数的性质解答.举一反三:【变式1】“一脉温泉韵,满城桂花香”,咸安因加大对桂花产业的宣传力度,年初,我区某工厂接到一批桂花制品的生产任务,要求必须在20天内完成.已知该产品的出厂价为65元/件,工人小王第x 天(x 为整数)生产的产品数量为y 件,y 与x 满足如下关系:y =5x +10,第x 天生产该产品成本为P 元/件,P 与x 的函数关系图象如下:(1)求P 与x 之间的函数关系式;(2)设小王第x 天创造的利润为w 元.①求w 与x 的函数关系式;②为响应国家的“乡村振兴”政策,小王决定,将这20天中单日所创造的最大利润捐给自己所在的村委会,试问,该村委会本次可获得多少元的捐款?【答案】(1)45(010)35(1020)x P x x <£ì=í+<£î(且x 为整数)(2)①2100200(010)5140300(1020)x x w x x x +<£ì=í-++<£î(且x 为整数);②1280元【分析】(1)根据函数图象,结合x 的取值范围,利用待定系数法求出函数解析式即可;(2)①根据利润=售价-成本价,结合(1)中P 与x 的函数解析式,列出w 与x 的解析式即可;②根据一次函数的性质和二次函数的性质,求出w 的最大值,然后进行比较,得出答案即可.(1)解:由图象可知,当010x <£时,45P =;当1020x <£时,设P 与x 的函数解析式为P kx b =+,将(10,45)和(20,55)分别代入,10452055k b k b +=ìí+=î,解得:135k b =ìí=î,∴P 与x 的函数解析式为35P x =+,∴P 与x 的函数解析式为:()()45010351020x x P x x x ì£ï=í+£ïî<,为整数<,为整数.(2)①当010x <£时,()()6545510100200w x x =-+=+,当1020x <£时,()()265355105140300w x x x x =--+=-++,∴w 与x 的函数解析式为2100200(010)5140300(1020)x x x w x x x x +<£ì=í-++<£î,且为整数,且为整数;②当010x <£时,100200w x =+,∵1000>,∴w 随x 的增大而增大,∴当10x =时,100102001200w =´+=最大值,当1020x <£时,()2251403005141280w x x x =-++=--+,∴当14x =时,1280w =最大值,∵12801200>,∴村委会本次可获得1280元捐款.【点拨】本题主要考查了一次函数和二次函数的应用,根据函数图象获得信息,利用待定系数法求出P 与x 的函数解析式,是解题的关键.【变式2】科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+;(2)22540y x x =-+;(3)70米【分析】(1)先设出一次函数的解析式,再用待定系数法求函数解析式即可;(2)用待定系数法求函数解析式即可;(3)当1<x ≤6时小钢球在无人机上方,因此求y 2-y 1,当6<x ≤8时,无人机在小钢球的上方,因此求y 1-y 2,然后进行比较判断即可.解:(1)设y 1与x 之间的函数关系式为y 1=kx +b',∵函数图象过点(0,30)和(1,35),则'35'30k b b +=ìí=î,解得5'30k b =ìí=î,∴y 1与x 之间的函数关系式为1530y x =+.(2)∵6x =时,1563060y =´+=,∵2y 的图象是过原点的抛物线,∴设22y ax bx =+,∴点()1,35,()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=ìí+=î,即35610a b a b +=ìí+=î,解得540a b =-ìí=î,∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米,由25400x x -+=得10x =或28x =.①16x <£时,21y y y =-2540530x x x =-+--253530x x =-+-27125524x æö=--+ç÷èø,∵50a =-<,∴抛物线开口向下,又∵16x <£,∴当72x =时,y 的最大值为1254;②68x <£时,12y y y =-2530540x x x=++-253530x x =-+27125524x æö=--ç÷èø,∵50a =>,∴拋物线开口向上,又∵对称轴是直线72x =,∴当72x >时,y 随x 的增大而增大,∵68x <£,∴当8x =时,y 的最大值为70.∵125704<,∴高度差的最大值为70米.答:高度差的最大值为70米.【点拨】本题考查了二次函数以及一次函数的应用,关键是根据根据实际情况判断无人机和小钢球的高度差.类型六、二次函数与几何综合6.如图,一次函数y =A 、B ,二次函数2y bx c =++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为:2y x =(2)Q 点坐标为(1,(3,0)或(-1,0).【分析】(1)由直线y x =A ,B ,代入抛物线解析式,求出b ,c 坐标即可;(2)分BC 为对角线和边两种情况讨论,其中当BC 为边时注意点Q 的位置有两种:在点P 右侧和左侧,根据菱形的性质求解即可.解:(1)对于y =x =0时,y =;当y =00x =,妥得,x =3∴A (3,0),B (0,把A (3,0),B (0,2y bx c ++得:=0c c ìïí=ïî解得,b c ì=ïíï=î∴抛物线的解析式为:2y =(2)抛物线的对称轴为直线2b x a =- 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直,∴BC 与对称轴垂直,且BC //x 轴∵在菱形BQCP 中,BC ⊥PQ。
《二次函数》全章复习与巩固
【知识网络】
【要点梳理】
要点一、二次函数的定义
一般地,如果是常数,,那么叫做的二次函数.
要点诠释:
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.
要点二、二次函数的图象与性质
1.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④,
其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:
当时开口向上当时开口向下(轴)
(轴) (0,)
(,0)
(,)
()
2. 抛物线的三要素: 开口方向、对称轴、顶点.
(1)
的符号决定抛物线的开口方向:当
时,开口向上;当
时,开口向下;
相等,抛物线的开口
大小、形状相同. (2)平行于
轴(或重合)的直线记作.特别地,轴记作直线.
3.抛物线2
0()y ax bx c a =++≠中,,,a b c 的作用: (1)
决定开口方向及开口大小,这与
中的
完全一样.
(2)和共同决定抛物线对称轴的位置.由于抛物线
的对称轴是直线
, 故:①时,对称轴为轴;②
(即
、同号)时,对称轴在
轴左侧;③
(即
、异
号)时,对称轴在
轴右侧.
(3)的大小决定抛物线与
轴交点的位置.
当时,
,∴抛物线
与
轴有且只有一个交点(0,):
①
,抛物线经过原点; ②,与
轴交于正半轴;③
,与轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则
.
4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对
、的值,通常选择一般式.
(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.
(可以看成
的图象平移后所对应的函数.)
(3)“交点式”:已知图象与轴的交点坐标
、
,通常选用交点式:
(a≠0).(由此得根与系数的关系:
).
要点诠释:
求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 要点三、二次函数与一元二次方程的关系 函数
,当
时,得到一元二次方程
,那么一元二次方程
的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;
(2)当二次函数的图象与x 轴有且只有一个交点,这时
,则方程有两个相等实根;
2
y ax bx c =++
(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.
的图象
的解
要点诠释:
二次函数图象与x轴的交点的个数由的值来确定.
(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;
(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;
(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.
要点四、利用二次函数解决实际问题
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
【典型例题】
类型一、求二次函数的解析式
1.已知抛物线的顶点是(3,-2),且在x轴上截得的线段长为6,求抛物线的解析式.
【变式】已知抛物线2
442y mx mx m =-+-(m 是常数). (1)求抛物线的顶点坐标; (2)若1
55
m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.
类型二、根据二次函数图象及性质判断代数式的符号
2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:
①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣
其中正确的结论个数有( )
A .1个
B .2个
C .3个
D .4个
类型三、数形结合
3. 已知平面直角坐标系xOy(如图所示),一次函数3
34
y x =
+的图象与y 轴交于点A ,点M 在正比例函数3
2
y x =
的图象上,且MO =MA ,二次函数2y x bx c =++的图象经过点A 、M . (1)求线段AM 的长;
(2) 求这个二次函数的解析式;
(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数3
34
y x =+ 的图象上,且四边形ABCD 是菱形,求点C 的坐标.
类型四、函数与方程
4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x≧60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单件为多少元时,月销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
举一反三:
【变式1】抛物线与直线只有一个公共点,则b=________.
【变式2】二次函数的图象如图所示,根据图象解答下列问题:
(1)写出方程的两个根;
(2)写出不等式的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程有两个不相等的实数根,求k的取值范围.
类型五、分类讨论
5.若函数
22(2)
2(2)
x x
y
x x
⎧+≤
=⎨
>
⎩
,则当函数值y=8时,自变量x的值是( ).
A. B.4 C.或4 D.4或
类型六、与二次函数有关的动点问题
6.在平面直角坐标系xOy中,二次函数y=mx2-(m+n)x+n(m<0)的图象与y轴正半轴交于A 点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当-3<p<0时,点M关于x 轴的对称点都在直线l的下方,求m的取值范围.。