职高数学——不等式
- 格式:doc
- 大小:399.50 KB
- 文档页数:13
第二单元不等式一教学要求1.理解不等式的基本性质.2.掌握区间的概念.3.掌握一元二次不等式的解法.4.了解含绝对值的不等式|ax+b|<c(或>c)的解法.5.通过解一元二次不等式的教学,培养学生计算技能.二教材分析和教学建议(一) 编写思路1.结合中职学生思维特点,注重在知识的浅层挖掘,便于学生对所学知识的掌握与应用.教材对不等式的性质,只集中介绍了三条最重要与最常用的,并对其进行了证明.2.经历从实际情境中抽象出区间、一元二次不等式等模型的过程.3.通过函数图像探究一元二次不等式与相应函数、方程的联系.4.严格控制不等式的性质,把绝对值不等式控制在一元一次的范围内.对于绝对值不等式|ax+b|>c或|ax+b|<c型,绝对值符号内限定为x的一次式,而c 则不出现负数或零,同时使练习及习题的难度与例题相一致,以便保证各种水平的学生都能达到会解绝对值不等式的要求.本单元教学的重点是一元二次不等式和含绝对值的一元一次不等式的解及解的区间表示.本单元教学的难点是不等式基本性质的证明,含绝对值的一元一次不等式的解法.(二) 课时分配本单元教学约需8课时,分配如下(仅供参考):2.1不等式的基本性质约2课时2.2区间的概念约1课时2.3一元二次不等式约3课时2.4含绝对值的不等式约1课时归纳与总结约1课时(三) 内容分析与教学建议2.1 不等式的基本性质1.本节内容包括两部分,前半部分介绍实数大小的基本性质,后半部分证明不等式的三个基本性质。
2.实数大小的基本性质a-b>0⇔a>b,a-b=0⇔a=b,a-b<0⇔a<b,反映了实数运算的性质和实数大小顺序之间的关系,它是本单元整个内容的出发点,是证明不等式基本性质的依据.3.求差比较法是实数大小的基本性质的一种应用.求差比较法应分为四个步骤,即作差——变形——判断正负——确定大小关系.在教学中,应针对每个例题分别指出这四个步骤.4.例1和例2是两个比较分数大小的例题.在“变形”这一步涉及到分数通分运算,讲前需进行适当复习.例3是一个比较代数式大小的例题,比较两个代数式的大小,实际上是比较它们值的大小,因此仍然是在比较两个实数的大小,应使学生建立这种概念.5.学生在初中已经知道了不等式的一些性质.这一节教材,只总结了三个基本性质并给出证明.性质1通常叫做不等式的传递性;性质2叫做不等式加法的单调性或保序性,为了便于学生理解,不增加不必要的学习障碍,教材把它叫做加法法则;性质3通常叫做不等式乘法的单调性,同样的理由,教材中把它叫做不等式的乘法法则.至于它们的几个重要推论,则安排在“练习”中.第31页练习第3题的证明:a>b,c>d⇒a+c>b+c,b+c>b+d⇒a+c>b+d.第31页练习第4题的证明:a>b>0,c>d>0⇒ac>bc,bc>bd⇒ac>bd.这两道证明题可以分别看做是性质2和性质3的推论.6.不等式性质的研究是培养类比思维能力很好的载体.我们知道,等式的性质是从数的运算角度提出的,研究等式在运算过程中的不变性,学生比较熟悉,例如,“等式两边同加(减)一个数,等式仍然成立”“等式两边同乘(除)一个非零数,等式仍然成立”等.由于不等式也是研究实数的关系,认知基础和等式一样,是关于数及其运算的基础知识,以及研究数的性质时所用的基本方法.因此,对不等式的研究,联系数的运算(加、减、乘、除、乘方、开方等)来思考不等式在运算过程中的变化规律是非常自然的.在开始不等式性质探究之前,对实数大小的基本性质的交待是必要的.因为不等式的基本性质的讨论是以实数大小关系为出发点,借助于实数大小的基本性质研究不等式,其基本思想是将个别的、互不相同的实数大小比较问题,转化为同一的与0的大小比较问题(判断两个实数差的符号),即0为实数比较大小提供了“标杆”,所以,这一思想简单但非常重要,是不等式性质证明的基础.教学中可以先让学生思考等式的基本性质及其得出过程(实际上是研究作加法、乘法等运算时等式是否仍然成立),然后再引导学生思考如何研究不等式的基本性质,并猜想有哪些不等式的基本性质.这里,需要明确类比等式与不等式中运算的规律性,以及等式与不等式的差异,一般来说,不等式的性质比等式要“坏”一些.例如,等式两边同乘一个数,等式仍然成立;但对不等式却不成立,只有当两边同乘一个正数时,不等号保持不变,而当两边同乘一个负数时,不等号变向.对研究方法的指导是重要的,通过与等式的性质的类比,不但可以得到一些不等式基本性质的猜想,更重要的是对研究方法的启发,可以使学生感受到数学知识发生发展的自然而亲切,获得不等式基本性质的水到渠成.数学教学最重要的是要使学生学会思维,学会数学思考.思维能力的培养不是一朝一夕的事情,需要长期地潜移默化,并落实在每一节课堂上.2.2 区间的概念在集合一章中,我们用集合的描述法来表示不等式的解集,并可以把不等式的解集在数轴上表示.不等式的解集还有另一种表示形式,这就是区间,将它们归纳起来,可有下面两种情况:(1)a,b∈R且a<b(2)集合名称区间数轴表示{x|a<x<b}开区间(a,b){x|a≤x≤b}闭区间[a,b]{x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2) a∈R集合区间数轴表示{x|x>a} (a,+∞){x|x<a}(-∞,a){x|x≥a}[a,+∞){x|x≥a}(-∞,a]R (-∞,+∞)2.3 一元二次不等式本节教材首先从实际情境中抽象出一元二次不等式的定义及标准形式.其次,给出了一元二次不等式的分解因式解法.第一步达标把一元二次不等式整理成标准形式,即ax2+bx+c>0或ax2+bx+c<0(a>0).如果利用一元二次方程的根分解二次三项式,则将二次项系数化为1.第二步分解把标准形式左边的二次三项式分解因式,写成关于未知数的两个因式的积的形式.第三步化组利用乘积的符号法则,转化成两个一元一次不等式组.第四步求组解分别解每个一元一次不等式组,求出它们的解集.第五步定原解每个一元一次不等式组的解集的并集,就是原一元二次不等式的解集.综上所述,用因式分解法解一元二次方程的步骤为:达标——分解——化组——求组解——定原解.这个步骤可以引导学生自己总结出来.需要指出的是,有两种情况,它的解是不能通过因式分解求得的,即当a>0,ax2+bx+c>0时,解集为整个实数域R;当a<0,ax2+bx+c>0时,解集为空集.这是用因式分解求解一元二次不等式不能解决的问题,因而,因式分解方法具有一定的局限性.利用因式分解法求解一元二次不等式除了具有上述所说的局限性之外,还容易使教师强调十字相乘法,而十字相乘法分解因式是目前初中数学教学削弱的内容.我们应该认识到,十字相乘法只是一种特殊的技巧,求根公式才是通性通法,教学应首先讲解求根公式解二次不等式,在学生对其形成深刻认识的基础上,再将十字相乘法作为一种特殊技巧介绍给学生,千万不可本末倒置.最后,通过观察具体的二次函数图像和其相应的一元二次方程根的关系,得出一般的一元二次不等式解集的图像求法.我们先确定一元二次不等式ax2+bx+c>0(a≠0)对应的一元二次函数y=ax2+bx+c的图像.①当a>0时,有三种情况,如图2-1中的(1)、(2)、(3)所示.图2-1当函数y=ax2+bx+c的图像如图2-1(1)所示时,对应的不等式解集为整个实数域R;当函数y=ax2+bx+c的图像如图2-1(2)所示时,对应的不等式解集为{x∈R|x≠x1};当函数y=ax2+bx+c的图像如图2-1(3)所示时,对应的不等式解集为{x|x<x1或x>x2}.②当a<0时,有三种情况,如图2-2中的(1)、(2)、(3)所示.图2-2当函数y=ax2+bx+c的图像如图2-2(1)所示时,对应的不等式的解集为{x|x1<x<x2};当函数y=ax2+bx+c的图像如图2-2中的(2)、(3)所示时,对应的不等式解集均为空集.用算法的思想,对任意一个一元二次不等式,可按图2-3的流程图求解.数学教师把握每一部分内容在整个课程中的定位时,应该理解和图2-3明确这部分知识的学习目的.20世纪初,在英国数学家贝利和德国数学家克莱因等人的大力倡导和推动下,函数进入了中学数学.克莱因提出了一个重要的思想——以函数概念和思想统一数学教育内容,他认为:“函数概念,应该成为数学教育的灵魂.以函数概念为中心,将全部数学教材集中在它周围,进行充分地综合.”因而,用“函数”认识其他的数学内容是非常重要的.而利用图像法求解一元二次不等式的过程,可以全面的复习和深入地认识三个“二次”:二次函数、一元二次不等式、一元二次方程,以及它们之间的联系.一元二次不等式反映函数的部分性质,如,什么时候二次函数的值大于零?什么时候二次函数的值等于零?什么时候二次函数的值小于零?用二次函数求解一元二次不等式,不仅得到了一元二次不等式的解集,同时加深了对函数的认识和理解. 2.4 含绝对值的不等式教材首先复习有关绝对值的基本概念,即|a |=⎩⎪⎨⎪⎧ a (a >0),0 (a =0),-a (a <0);|ab |=|a |·|b |;⎪⎪⎪⎪b a =|b ||a |(a ≠0).然后讲了关于形如|x |<a ,|x |>a (a >0)不等式的解法,且有:当a >0时,|x |<a ⇔ x 2<a 2 ⇔ -a <x <a ,|x |>a ⇔ x 2>a 2 ⇔ x >a 或x <-a .在解含有绝对值的不等式时,这些知识经常要用到,必须使学生熟练掌握.然后利用换元法解|ax +b |>c 及|ax+b |<c (c >0)型的不等式.显然这里换元法是个难点.在教学中,重点应放在例1的分析讲解上,帮助学生掌握解此类不等式的过程. (四) 复习建议1.构建知识结构2.梳理知识要点见本单元教材《归纳与总结》.3.需要注意的问题(1) 用因式分解法解一元二次不等式的步骤归纳为达标、分解、化组、求组解、定原解等五个步骤.(2) 从函数的观点看,一元二次不等式ax 2+bx +c >0(a ≠0)的解集就是二次函数y =ax 2+bx +c (a ≠0)的图像在x 轴上方部分的横坐标x 的集合.由此,利用二次函数的图像就可以解一元二次不等式.4.典型例题见本单元教材《归纳与总结》,通过这道例题复习一元二次不等式的解法.。
<2222高职高考不等式问题专题复习一、不等式基础题1、不等式 x 2+1>2x 的解集是 ()A.{x|x ≠1,x ∈R}B.{x|x >1,x ∈R}C.{x|x ≠-1 ,x ∈R }D. {x|x ≠0,x ∈R} 2、不等式|x+3|>5 的解集为 ( ) A.{x|x >2|} B.{x|x <-8 或 x >2} C.{x|x >0} D.{x|x >3} 3、二次不等式 x 2 -3x+2<0 的解集为 ()A.{x ︱x ≠0}B.{x ︱1<x<2}C.{x ︱-1<x<2}D. {x ︱x>0}1 14. 已知 a>b ,那么 > a b的充要条件是()A.a 2+b 2≠0B.a>0C.b<0D.ab<05、若 a ≥b ,c ∈R ,则 () A.a 2≥b 2 B.∣ac ∣≥∣bc ∣ C.ac 2≥bc 2 D. a - 3≥b - 36、下列命题中,正确的是 ()A.若 a >b,则 ac 2>bc 2B. 若a> b ,则 a>b1 1C.若 a>b ,则 a bc 2 c 2D.若 a>b ,c>d ,则 ac>bd7、如果 a>0,b>0,那么必有()A. b > 2b - a aB. b ≥ 2b - a aC. b < 2b - a aD. b ≤ 2b - a a8、对任意 a ,b ,c∈R +,都有 ()A. b + c + a> 3 a b c B. b + c + a< 3a b c C. b + c + a ≥ 3a b c D. b + c + a≤ 3a b c9、对任意 x∈R,都有 ( )A.(x-3)2>(x-2)(x-4)B.x 2>2(X+1)C.( x - 3)2 x - 4 > x - 2D. x 2 + 1 > 1 x 2 + 110、已知 0<x<1,都有 ( )A.2x>x 2>xB.2x>x>x 2C. x 2>2x>xD.x > x 2 >2x11 、 若 不 等 式 2x 2-bx+a<0 的 解 集 为 {x ︱ 1<x<5}, 则 a= ( ) A.5 B.6 C.10 D.12x - 3 12、不等式x + 2> 1的解集是()A.{x∣x<-2}B.{x∣x<-2 或 x>3}C.{x∣x>-2}D.{x∣-2<x<3}13、不等式 lgx+lg(2x-1)<1 的解集是 ()A.{x - 2 < x < 5}2 B.{x 0 < x < 5}2C. {x< x < 5 }2D. {x x > 1}214、不等式︱x+2︱+︱x-1︱<4 的解集是()1 2A. { x - 2 < x < 1 }B.{x x < 3}2C. {x - 5 2 < x < 3}2 D. {x x > - 5}215、已知 a 是实数,不等式 2x 2-12x+a≤0 的解集是区间[1,5],那么不等式 a x 2-12x+2≤0 的 解 集 是 () A. [1, 1]5B.[-5,-1]C.[-5,5]D.[-1,1]16、不等式(1+x )(1-︱x ︱)>0 的解集是 ( )A.{x∣-1<x<1}B.{x∣x<1}C.{x∣x <-1 或 x<1}D.{x∣x<1 且 x≠-1} 17、若不等式 x 2 + m (x - 6) < 0 的解集为{x - 3 < x < 2},则 m=()A .2B .-2C .-1D .12x18、函数 y =x 2+ 1的值域为区间()A .[-2,2]B .(-2,2)C .[-1,1]D .(-1,1)a 2 +b 2 19、如果 a>b ,ab=1,则的取值范围为区间( )a - bA .[2 2,+ ∞)B .[17 , 6+ ∞)C . (3,+ ∞)D . (2 , + ∞)17、不等式︱3x -5︱<8 的解集是 . 18、不等式|5x+3|>2 的解集是 .19、不等式|3-2x|-7≤0 的解集是 . 1 3 20 、不等式|6x - |≤ 的解集是.221、不等式4-x -3 2(1 ) x-4>0 的解集是 . 222、不等式log 2 x < log 4 (3x + 4) 的解集是.二、不等式的简单应用23、已知关于 x 的不等式 x 2-ax+a >0 的解集为实数集 R ,则 a 的取值范围是 ( )A.(0,4)B.[2,+∞)C.[0,2)D.(-∞,0)∪(4,+∞) (98 年成人)x 24、函数 y =1 + x 2(x > 0) 的值域是区间.25、 已知方程( k+1) x=3k -2 的解大于 1, 那么常数 k 的取值范围是数集{kx 2 - x - 2 3 ∣}.26、解下列不等式:(x - 6)(3x + 15) (1) > 04 + x三、不等式解答题(2) 23x -1 >2(3) ( 1 )2 x 2+5 x +5 > 1(4) lg(x + 2) - lg(x - 3) > 12 4(5)∣5x -x 2∣>6(6) x + 4≥ 3x 2(7)4x -6x -2×9x <0(8) log 1 (x + 2) > log 1 (3x + 4)24(9) <x 2 x - 1(10) < 22+ 2(11) log 2 (4 + 3x - x 2) > log (4x - 2)5x - 4 (12)≤ 2x + 427、k 取什么值时,关于 x 的方程(k -2)x 2-2x+1=0 有:(1)两个不相等的实数根; (2)两个相等的实数根; (3)没有实数根.28、设实数 a 使得方程 x 2+(a -1)x+1=0 有两个实根 x 1,x 2. (1) 求 a 的取值范围;(2) 当 a 取何值时, 1 1 1 x 2取得最小值,并求出这个最小值.附:参考答案(四)1-16 ABBDC BBCAB CACCAD 17.{x - 1 < x <13318.{x x < -1或x > -1} 519.{x ︱-2≤x ≤5} 20.{x ︱ - 1 6 ≤ x ≤ 1} 21.{x ︱x<-2} 22.{x ︱0<x<4} 23.A324. (0 , 1 ] 2 25.{x ︱ k < -1或k > 3 1} 26.(1){x ︱-5<x<4 或 x>6} (2) {x ︱x> } 2 6x2 2 }(3) {x︱-32<x <-1 } (4) {x︱3<x<32} (5) {x︱x<-1 或2<x<3 或x>6}9(6) {x︱x≥-1} (7) {x︱x> log 2 2 } (8) {x︱-1<x< 0} (9) {x︱x<0 或1<x<3}3(10) {x︱-2<x≤-1 或2≤x<3} 27. (1)k<3 且k≠2 (2)k=3 (3)k>328.(1) a≤-1 或a≥3 (2) a= -1 或3,最小值为2.。
职高高一数学不等式知识点数学不等式是职高高一数学学科中的重要内容,它在数学问题求解、函数图像分析等方面扮演着重要的角色。
接下来,我们将介绍一些职高高一数学不等式的基本知识点。
一、不等式的定义和性质不等式是数学中一种表示数之间大小关系的符号语言,用符号"<"(小于)、">"(大于)、"≤"(小于等于)、"≥"(大于等于)等来表示。
不等式的解是使不等式成立的数的范围。
不等式具有以下性质:1. 若 a>b,则 -a<-b;2. 若 a>b 并且 c>0,则 ac>bc;3. 若 a>b 并且 c<0,则 ac<bc。
二、一元一次不等式一元一次不等式形如 ax+b>0(或ax+b<0),其中 a、b 为已知实数,a ≠ 0。
解一元一次不等式需要考虑 a 的正负情况。
例:解不等式 2x+3>5。
解: 2x+3>52x>2x>1三、一元二次不等式一元二次不等式形如 ax^2+bx+c>0(或ax^2+bx+c<0),其中 a、b、c 为已知实数,a ≠ 0。
解一元二次不等式需要考虑 a 的正负情况以及不等式的开口方向。
例:解不等式 x^2-4x+3>0。
解: x^2-4x+3>0(x-1)(x-3)>0x<1 或 x>3四、绝对值不等式绝对值不等式是一种特殊的不等式形式,可以表示数与零或另一个数的距离关系。
绝对值不等式的解需要考虑绝对值的正负情况。
例:解不等式 |2x-3|≥5。
解: 2x-3≥5 或 2x-3≤-52x≥8 或2x≤-2x≥4 或x≤-1.五、不等式的图像不等式的图像是通过图形的方式直观地表示不等式的解集。
可以使用数轴或平面直角坐标系来绘制不等式的图像。
六、不等式组不等式组是多个不等式同时存在的情况,解不等式组需要考虑每个不等式的解集的交集或并集。
不等式知识点职高高三不等式是高中数学中的重要知识点之一,也是高职高三数学难点中的一个重要内容。
掌握不等式的相关知识,对于考生提高数学成绩、应对高考具有重要意义。
下面将从不等式的基本定义、性质和解不等式的方法等几个方面来探讨不等式知识点。
一、基本定义不等式是数学中的一种关系式,用来比较两个数或者表达两个数之间的数量关系。
不等式的基本符号有"大于"和"小于"两种,分别用>和<表示。
当两个数之间满足大小关系时,就可以用不等式来表示。
二、性质1. 不等式的传递性:如果a > b,b > c,那么a > c。
这个性质可以推广到多个数之间的关系,非常有用。
2. 不等式的加减性:如果a > b,那么a+c > b+c。
同样地,如果a > b,那么a-c > b-c。
通过这个性质,我们可以对不等式进行加减运算,简化形式,求得更简洁的解。
3. 不等式的乘除性:如果a > b,c > 0,那么ac > bc。
同样地,如果a > b,c < 0,那么ac < bc。
这个性质可以帮助我们对不等式进行乘除运算,找到不等式的解集。
4. 不等式的倒置性:如果a > b,那么-b > -a。
这个性质告诉我们,对于不等式两边同时取负号,不等号方向需要倒置。
三、解不等式的方法1. 利用不等式性质简化问题:通过不等式的加减性、乘除性和倒置性,可以将不等式简化为更简单的形式,进而求解。
例如,对于不等式3x - 2 > 4x + 1,可以依次进行加2、减3、除-1的操作,得到x < -1,即可求得不等式的解集。
2. 图像法:对于一些简单的不等式,可以通过画图来找到解。
例如,对于不等式x^2 - 4x + 3 < 0,可以将不等式左边的二次函数图像画出来,找到函数图像位于x轴下方的部分,即可求得不等式的解集。
数学高职高考专题复习__不等式问题数学高职高考专题复习:不等式问题一、概述不等式是数学中的一个重要概念,是解决许多数学问题的工具。
在数学高职高考中,不等式的考查也是必不可少的。
掌握不等式的性质和解法,对于解决实际问题具有重要的意义。
二、知识点梳理1.不等式的定义和性质(1)不等式的定义:用不等号表示的大小关系,如a>b表示a比b 大,a<b表示a比b小。
(2)不等式的性质:包括传递性、加法单调性、乘法单调性、正值不等式、等式两边同加(减)同一个数,等式不变等。
2.不等式的解法(1)不等式的求解步骤:将不等式转化为标准形式(ax>b或ax<b),根据不等式的性质求解。
(2)一元一次不等式的解法:根据一元一次方程的解法,找出根和系数的关系,再根据不等式的性质求解。
(3)二元一次不等式的解法:根据线性规划的原理,利用平面区域的概念求解。
3.不等式的应用(1)利用不等式解决实际问题:如最值问题、优化问题等。
(2)利用不等式证明数学问题:如排序不等式、均值不等式等。
三、解题技巧总结1.解题技巧(1)熟练掌握不等式的性质和基本不等式,如均值不等式等。
(2)熟练掌握一元一次不等式和二元一次不等式的解法。
(3)能够利用线性规划解决实际问题。
2.注意事项(1)注意不等式两边同乘(除)一个负数时,不等号方向要改变。
(2)注意边界值的取舍,尤其是大于小于取舍时。
四、复习建议1.夯实基础,熟练掌握不等式的定义、性质、解法和应用。
2.注重练习,加深对不等式的理解和掌握。
3.关注实际应用问题,提高解决实际问题的能力。
五、练习题1.已知a>b>0,求证a+b>0。
2.设a,b为任意实数,求证a^2+b^2≥ab+a-b。
3.设a,b,c为任意实数,求证a^2+b^2+c^2≥ab+bc+ca。
六、总结不等式是数学中的一个重要概念,是解决许多数学问题的工具。
在数学高职高考中,不等式的考查也是必不可少的。
不等式的性质与证明一、高考要求:掌握不等式的性质、简单不等式的证明和重要不等式及其应用. 二、知识要点:1.实数大小的基本性质: a-b >0⇔a >b; a-b=0⇔a=b; a-b <0⇔a <b.2.不等式的性质:(1)传递性:如果a >b,b >c,则a >c;如果a <b,b <c,则a <c; (2)加法法则:如果a >b,则a+c >b+c;如果a >b,则a-c >b-c; (3)乘法法则:如果a >b,c >0,则ac >bc;如果a >b,c <0,则ac <bc; (4)移项法则:如果a+b >c,则a >c-b;(5)同向不等式的加法法则:如果a >b 且c >d,则a+c >b+d;如果a <b 且c <d,则a+c <b+d;(6)两边都是正数的同向不等式的乘法法则:如果a >b >0,且c >d >0,则ac >bd. 3.几个拓展的性质: a >b >0⇒a n>b n(n∈N,n>1);a >b >0⇒n a >n b (n∈N,n>1);a >b 且c >d ⇒a-d >b-c; a >b >0,且c >d >0⇒cb d a >; a >b >0(或0>a >b)⇒ba 11<; 4.重要不等式:(1) 整式形式: a 2+b 2≥2ab(a 、b∈R); a 2+b 2+c 2≥3abc(a 、b 、c∈R +);ab ≤22⎪⎭⎫ ⎝⎛+b a (a 、b∈R); abc ≤33⎪⎭⎫ ⎝⎛++c b a (a 、b 、c∈R +);(2) 根式形式:2b a +≥ab (a 、b∈R +); 3c b a ++≥3abc (a 、b 、c∈R +); (3) 分式形式:b a a b +≥2(a 、b 同号); c ab c a b ++≥3(a 、b 、c 同号);(4) 倒数形式:a a 1+≥2(a∈R +); aa 1+≤-2(a∈R -). 三、典型例题:例1:已知a >b,则不等式①a 2>b 2;②b a 11<;③ab a 11>-中不能成立的个数是( ) A.0个 B.1个 C.2个 D.3个 例2:证明不等式:(1)对∀实数a 、b,求证:22⎪⎭⎫⎝⎛+b a ≤222b a +; (2)求证:对∀正实数a 、b 、c,a+b+c≥ca bc ab ++;(3)若p >0,q >0,p 3+q 3=2,试用反证法证明p+q≤2; (4)对∀实数x 、y,求证:x 2+xy+y 2≥0; (5)对∀实数a 、b∈R +,且a+b=1,求证:)11)(11(ba ++≥9.四、归纳小结:1.实数大小的基本性质反映了实数运算的性质和实数大小顺序之间的关系,是不等式证明和解不等式的主要依据.2.不等式证明的常用方法:(1)比较法常和配方法结合使用.用比较法证明的一般步骤是:作差→变形→判断符号;(2)综合法和分析法常结合使用.综合法就是“由因导果”,使用不等式的性质和已证明的不等式去直接推证;分析法就是“执果索因”,叙述的形式是:要证A,只要证B;(3)反证法的步骤:假设→推理→矛盾→原命题成立;3.在利用不等式求最大值或最小值时,要注意变量是否为正,和或积是否为定值,等号是否能成立.通过变形,使和或积为定值,是用不等式求最值的基本技巧. 五、基础知识训练: (一)选择题:1. 在下列命题中,是真命题的是( )A.x >y 和|x|>|y|互为充要条件B.x >y 和x 2>y 2互为充要条件 C.a 2>b 2(b≠0)和2211ba >互为充要条件 D.b a 4131-<-和4a >3b 互为充要条件 2. 已知a >b,c∈R,由此能推出下列不等式成立的是( )A.a+c >b-cB.ac >bcC.ac 2>bc 2D.a c2⋅>b c2⋅ 3. 如果ab >0且a >b,则有( )A.a 1>b 1 B.a 1<b1 C.a 2>b2 D.a 2<b 24. “a<b <0”是“a 1>b1”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件 5. 不等式2>+abb a 成立的充要条件是( ) A.ab >0且a≠b B.ab≠0且a≠b C.a>0,b >0且a≠b D.a≠1且b≠1 6. 已知x >2,则函数21-+=x x y 的最小值是( )7. 不等式①a 2+2>2a;②a 2+b 2>2(a-b-1);③(a 2+b 2)(c 2+d 2)>(ac+bd)2中,恒成立的个数是( )A.0个B.1个C.2个D.3个8. 若实数a 、b 、c 满足b+c=3a 2-4a+6,b-c=a 2-4a+4,则a 、b 、c 的大小关系是( ) A.b≥c>a B.b >c >a C.b <c <a D.b <c≤a 9. 若f(x)=3x 2-x+1,g(x)=2x 2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x 值变化而变化 10. 若a≠2或b≠-1,则M=a 2+b 2-4a+2b 的值与-5的大小关系是( ) A.M >-5 B.M <-5 C.M=-5 D.不能确定 11.已知0<a <1,则aa 1、aa -、aa 的大小关系是( ) A.aa 1>aa >aa- B.aa->aa >aa 1 C.aa >aa 1>aa- D.aa->aa 1>a a12.已知a <b <0,则下列不等式中不能成立的是( ) A.a 2>b 2B.b a >C.b a 11> D. ab a 11>- 13.设a 、b 是不相等的正数,则( )A.2222b a ab ba +<<+ B.2222b a b a ab +<+< C.2222b a b a ab +<+< D.2222ba ab b a +<<+ 14.若0<x <1,0<y <1,且x≠y,而x 2+y 2,x+y,2xy,xy 2中最大的一个是( )A.2xyB.x+yC.xy 2D.x 2+y 215.若a 、b 为非零实数,则在①222b a +≥ab;②22⎪⎭⎫⎝⎛+b a ≤222b a +;③2b a +≥b a ab +;④baa b +≥2中,恒成立的个数是( ) A.4个 B.3个 C.2个 D.1个 16.设正数a,b 满足ab=4,则2a+3b 的最小值是( )A.12B.10C.64D.34 17.设a,b∈R 且a+b=3,则ba 22+的最小值是( )A.6B.8C.24D.22 18.若实数x,y 满足方程x+y-4=0,则x 2+y 2的最小值是( )19.令0<a <b,且a+b=1,则下列四数中最大的是( ) A.21 B.a C.2ab D.a 2+b 220.设a 、b 是两实数,给出下列条件:①a+b>1;②a+b =2;③a+b>2;④a 2+b 2>2;⑤ab>1.其中能推出“a、b 中至少有一个数大于1”的条件是( )A.②③B.①②③C.③④⑤D.③21.下列命题中,(1)x x 1+的最小值是2;(2)1222++x x 的最小值是2;(3)4522++x x 的最小值是2;(4)xx 432--的最小值是2.正确命题的个数是( ) A.1个 B.2个 C.3个 D.4个 (二)填空题:22.若x >y 且a >b,则在“①a -x >b-y ; ②a+x>b+y ; ③ax>by ;④x -b >y-a ; ⑤xby a >”这五个式子中恒成立的不等式的序号是 . 23.已知三个不等式: ①ab>0;②bda c -<-;③bc>ad.以其中两个作为条件,余下的一个作为结论,则可以组成 个正确的命题.24.以下四个不等式: ①a<0<b ;②b<a <0;③b<0<a ;④0<b <a.其中使ba 11<成立的充分条件有 . 25.已知x >0,函数xx y 432--=的最大值是 . 26.已知函数xx y 22+=,(x >0),则y 的最小值是 .一次不等式和不等式组的解法一、高考要求:熟练求不等式组的解集. 二、知识要点:1.能直接表明未知数的取值范围的不等式叫做最简不等式,解集相等的不等式叫做同解不等式,一个不等式变为它的同解不等式的过程叫做同解变形.2.一次不等式ax >b(a≠0)的解法:当a >0时,解集是{a b x x >},用区间表示为(a b,+∞); 当a <0时,解集是{a b x x <},用区间表示为(-∞,ab).3.不等式组的解集就是构成不等式组的各不等式解集的交集. 三、典型例题: 例1:解下列不等式(组):(1) (x-3)2(x-4)≥0. (2) ⎩⎨⎧-<+<-+65430)3)(1(2x x x x .四、归纳小结:一次不等式和不等式组的解法是解各种不等式(组)的基础.解不等式实际上就是利用数与式的运算法则,以及不等式的性质,对所给不等式进行同解变形,直到变形为最简不等式为止.五、基础知识训练: (一)选择题:1.已知方程x 2+(m+2)x+m+5=0有两个正根,则实数m 的取值范围是( ) A.m <-2 B.m≤-4 C.m >-5 D.-5<m≤-4 2.已知方程mx 2+(2m+1)x+m=0有两个不相等的实根,则实数m 的取值范围是( ) A.m <41-B.m >41-C.m≥41-D.m >41-且m≠0 (三)解答题:解不等式(组): (1)52(x-2)≤x -5210(2)250360x x x -<⎧⎪+>⎨⎪-<⎩分式不等式的解法一、高考要求:会解线性分式不等式:0>++d cx b ax 或)0(0≠<++c dcx bax .二、知识要点:在分式的分母中含有未知数的不等式叫做分式不等式.线性分式不等式的一般形式为:0>++d cx b ax 或)0(0≠<++c dcx bax ,不等号也可以是“≥”或“≤”.三、典型例题: 例:解不等式:1523-+>-+x x x x .四、归纳小结:1. 分式不等式的求解可应用同解原理转化为整式不等式求解,常用的解法有: (1)转化为一次不等式组;(2)区间分析法.2. 解分式不等式的关键是利用除法运算的符号法则化成不等式组或用区间分析法. 注意:①不能按解分式方程的方法去分母;②不能忘记分母不能为零的限制. 五、基础知识训练: (一)选择题:1.满足21<x 与31->x 的x 适合的条件是( ) A.2131<<x B. 21>x C. 31-<x D. 3121-<>x x 或2.下列不等式中与xx --34≥0同解的是( )A.(x-4)(3-x)≥0B.43--x x≥0 C.)3(-x Ig ≤0 D.(x -4)(3-x)>03.不等式1212>-+x x 的解集是( )A.{x|0≤x<3}B.{x|-2<x <3}C.{x|-6≤x<3}D.{x|x <-3或x >2} 4.不等式1232+--x x x <0的解集是( ) A.{x|x <3} B.{x|1<x <3} C.{x|x <3或x≠1} D.{x|x<3且x≠1}5.不等式2)1()3(2--+x x x ≤0的解集是( )A.{x|1≤x<2}B.{x|1<x <2或x=-3}C.{x|1≤x<2或x=-3}D.{x|1≤x≤2或x=-3} 6.设a >b >c,则不等式cx b x a x ---))((≥0的解集是( )A.(-∞,c)∪[b,a)B.(c,b]∪[a,+∞)C.(c,b]∪(b,a]D.(c,a]∪[b,+∞) (二)填空题: 7.不等式1312>+-x x 的解集是 . 8.不等式)3)(4()2()1(22x x x x --+-≥0的解集是 .9.若不等式342+++x x ax ≥0的解集为{x|-3<x <-1或x≥2},则a= . (三)解答题: 10. 解下列不等式: (1) 12+<x x (2) 110<-<xx含有绝对值的不等式一、高考要求:熟练求绝对值不等式的解集. 二、知识要点:1.|x-a|(a≥0)的几何意义是x 在数轴上的对应点到a 的对应点之间的距离.2.不等式|x|≤a(a>0)的解集是{x|-a≤x≤a};不等式|x|>a(a >0)的解集是{x|x <-a 或x>a}.3.不等式|ax+b|<c(c >0)的解集是{x|-c <ax+b <c},然后解这个一次不等式,求出原不等式的解集;不等式|ax+b|>c(c >0)的解集是{x|ax+b <-c 或ax+b >c},然后解这个一次不等式,求出原不等式的解集,即这两个一次不等式的解集的并集为原不等式的解集. 三、典型例题: 例:解下列不等式:(1) |x 2-3x|>4 (2) 1≤|2x -1|<5 (3) x+|x-1|<2四、归纳小结:解绝对值不等式时,应先了解基本绝对值不等式|x|<a 、|x|>a (a >0)的解法,并把含有绝对值的不等式转化为不含绝对值的不等式. 五、基础知识训练: (一)选择题:1. 不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞) 2. 不等式|2-3x|>5的解集是( )A.(-1,37) B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x≤21或x≥65}D. {x|21≤x≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A∪B 等于( ) A.{x|x≤7或x >1} B.{x| -7≤x<1} C.{x|x∈R} D.{x|x≤7或x≥3}5. 已知A={x 2-x <3},B={x 1-x >1},则A∩B 等于( ) A.{x|x <0或x >2} B.{x| -1<x <5} C.{x|-1<x <0} D.{x|-1<x <0或2<x <5} (二)填空题:6.若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 7.若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= . 8.若x∈Z,则不等式382<-x 的解集是 . (三)解答题:9.设集合A={x||2x-1|≤3},B={x||x+2|<1},求集合C,使其同时满足下列三条件: (1)C ⊆[(A∪B)∩Z];(2)C 中有三个元素;(3)C∪B≠Φ.10. 解下列不等式: (1) 3<322-x ≤7 (2)123-+x x ≥1一元二次不等式的解法一、高考要求:熟练求一元二次不等式的解集.二、知识要点:三、典型例题:例1:求下列不等式的解集:2x+3>0;(4)x2+6(x+3)>3;(1)2x+3-x2>0;(2)x(x+2)-1≥x(3-x);(3)x2-3(5)3x2+5≤3x.例2:m是什么实数时,方程(m-1)x2-mx+m=0有两个不相等的实数根?例3:已知ax 2+2x+c >0的解集为2131<<-x ,试求a 、c 的值,并解不等式-cx 2+2x-a >0.四、归纳小结:解一元二次不等式的方法主要有:(1)转化为一次不等式组;(2)区间分析法;(3)配方法;(4)利用二次函数的图象. 五、基础知识训练: (一)选择题:1.(97高职-1)不等式x 2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x≠-1,x∈R} 2.不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0} 3.不等式ax 2+2x+c >0(a≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0 B.a <0且b 2-4ac <0 C.a <0且b 2-4ac≥0 D.a<0且b 2-4ac≤0 4.下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0 B.2x 2-34x+6≤0 C.3x 2-3x+1>0 D.2x 2-2x+1<05.若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m≠±2D.m∈R 6.若ax 2+5x+c >0的解集是}2131{<<x x,则a+c 的值为( ) A.7 B.5 C.-5 D.-7 (二)填空题:7.已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8.已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x∈R 都成立,则实系数m 的取值范围为 . (三)解答题:9.设集合A={x|x 2-2x-8≥0, x∈R},B={x|1-|x-a|>0, x,a∈R},A∩B=Φ,求a 的取值范围.10.不等式(a2-1)x2-(a-1)x-1<0的解是全体实数,求实数a的取值范围.11.若函数y=x2-(1+k)x-k+2的值域为非负实数,求实数k的取值范围.12.若关于x的方程x2+(a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围.不等式的应用一、高考要求:了解不等式或不等式组在解决实际问题中的应用,会列不等式或不等式组解简单的实际问题.二、知识要点:列不等式解应用题的主要步骤是:(1)设未知数;(2)根据题意,列出不等式(或不等式组);(3)解不等式(或不等式组);(4)检验结果是否符合实际,并作答.三、典型例题:例1:某渔业公司年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)该船捕捞几年开始盈利(即总收入减去总成本及所有费用为正值)?(2)该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出,问哪一种方案较为合算?请说明理由.例2:某种商品,现在定价每件p 元,每月售货卖出n 件,因而现在每月售货总金额为np 元.设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍.(1) 用x 和y 表示z;(2) 设y=kx,其中k 是满足0<k <1的常数,利用k 来表示当售货总金额最大时的x 值;(3) 若x y 32=,求使售货总金额有所增加时的x 的范围.四、归纳小结:应用不等式知识解应用题的关键是建立不等量关系.五、基础知识训练:(一)选择题:1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( ) A.x=2b a + B.x≤2b a + C.x >2b a + D.x≥2b a + (二)填空题:2.(97高职-19)设某型号的汽车在普通路面上的刹车距离S(米)与汽车车速x(千米/时)之间的关系是20005.02x x S +=,为了避免交通事故,规定该车的刹车距离不大于10米,则该车的车速不得超过 (千米/时).3.(98高职-23)1998年世界杯足球赛组委会决定以每张25美元的单价发行普通入场券,预计可发行80万张,如果定价每张提高1美元,发行量就减少2万张,欲使门票收入不低于2000万美元,则入场券的最高定价不超过 .(三)解答题:4.(2003高职-21)(本小题满分12分)某厂若以50元的价格销售一种产品,则可以销售8000件.如果这种产品的单价每增加1元,则销售量就将减少100件.为了使这种产品的销售收入不低于420000元,那么单价的取值范围应为多少?5.工厂生产某种产品,每月固定成本10万元,而每件产品的变动成本为25元,产品销售单价为60元,若每月要获得最低利润3万元,求每月最少要销售多少件产品?。