《概率统计教学资料》第2章随机变量及其分布9节
- 格式:ppt
- 大小:542.50 KB
- 文档页数:19
概率论与数理统计教案-随机变量及其分布教案章节一:随机变量的概念1.1 教学目标了解随机变量的定义与分类理解随机变量分布函数的概念掌握随机变量期望的计算方法1.2 教学内容随机变量的定义随机变量的分类:离散型与连续型随机变量分布函数的定义与性质随机变量期望的计算方法1.3 教学方法采用讲授法,讲解随机变量的概念及其分类通过例题,讲解随机变量期望的计算方法开展小组讨论,巩固随机变量分布函数的理解教案章节二:离散型随机变量的概率分布2.1 教学目标掌握离散型随机变量的概率分布的定义与性质学会计算离散型随机变量的概率分布理解离散型随机变量期望与方差的计算方法2.2 教学内容离散型随机变量的概率分布的定义与性质几种常见的离散型随机变量概率分布:伯努利分布、二项分布、几何分布、泊松分布离散型随机变量期望与方差的计算方法2.3 教学方法采用讲授法,讲解离散型随机变量的概率分布的定义与性质通过例题,讲解几种常见的离散型随机变量概率分布的计算方法开展小组讨论,巩固离散型随机变量期望与方差的计算方法教案章节三:连续型随机变量的概率密度3.1 教学目标理解连续型随机变量的概念掌握连续型随机变量的概率密度的定义与性质学会计算连续型随机变量的概率密度3.2 教学内容连续型随机变量的概念连续型随机变量的概率密度的定义与性质几种常见的连续型随机变量概率密度:均匀分布、正态分布、指数分布3.3 教学方法采用讲授法,讲解连续型随机变量的概念及其概率密度的定义与性质通过例题,讲解几种常见的连续型随机变量概率密度的计算方法开展小组讨论,巩固连续型随机变量概率密度的理解教案章节四:随机变量的期望与方差4.1 教学目标理解随机变量期望与方差的概念与性质掌握计算随机变量期望与方差的方法学会运用期望与方差描述随机变量的特征4.2 教学内容随机变量期望与方差的概念与性质计算随机变量期望与方差的方法期望与方差在描述随机变量特征中的应用4.3 教学方法采用讲授法,讲解随机变量期望与方差的概念与性质通过例题,讲解计算随机变量期望与方差的方法开展小组讨论,巩固期望与方差在描述随机变量特征中的应用教案章节五:随机变量及其分布的综合应用5.1 教学目标掌握随机变量及其分布的基本知识学会运用随机变量及其分布解决实际问题培养运用概率论与数理统计思维分析问题的能力5.2 教学内容随机变量及其分布的综合应用实例实际问题中随机变量及其分布的建模方法运用概率论与数理统计思维分析问题的方法5.3 教学方法采用案例教学法,讲解随机变量及其分布的综合应用实例通过实际问题,讲解随机变量及其分布的建模方法开展小组讨论,培养运用概率论与数理统计思维分析问题的能力教案章节六:大数定律与中心极限定理6.1 教学目标理解大数定律的含义及其在实际中的应用掌握中心极限定理的条件及其意义学会运用大数定律和中心极限定理分析随机变量序列的性质6.2 教学内容大数定律的定义及其表述中心极限定理的定义及其表述大数定律和中心极限定理在实际中的应用6.3 教学方法采用讲授法,讲解大数定律和中心极限定理的定义及其表述通过例题,讲解大数定律和中心极限定理在实际中的应用开展小组讨论,巩固大数定律和中心极限定理的理解教案章节七:随机样本及抽样分布7.1 教学目标理解随机样本的概念掌握抽样分布的定义及其性质学会计算样本统计量的分布7.2 教学内容随机样本的概念抽样分布的定义及其性质样本统计量的分布的计算7.3 教学方法采用讲授法,讲解随机样本的概念和抽样分布的定义及其性质通过例题,讲解计算样本统计量的分布的方法开展小组讨论,巩固抽样分布的理解教案章节八:假设检验与置信区间8.1 教学目标理解假设检验的基本原理掌握构造检验统计量的方法学会判断假设检验的结果8.2 教学内容假设检验的基本原理构造检验统计量的方法假设检验的结果的判断8.3 教学方法采用讲授法,讲解假设检验的基本原理和构造检验统计量的方法通过例题,讲解判断假设检验结果的方法开展小组讨论,巩固假设检验的理解教案章节九:回归分析与相关分析9.1 教学目标理解回归分析的概念及其应用掌握线性回归模型的建立与估计学会利用回归分析解决实际问题9.2 教学内容回归分析的概念及其应用线性回归模型的建立与估计利用回归分析解决实际问题9.3 教学方法采用讲授法,讲解回归分析的概念及其应用和线性回归模型的建立与估计通过例题,讲解利用回归分析解决实际问题的方法开展小组讨论,巩固回归分析的理解教案章节十:总结与展望10.1 教学目标总结本门课程的主要内容和知识点了解概率论与数理统计在实际中的应用激发学生继续学习概率论与数理统计的兴趣10.2 教学内容本门课程的主要内容和知识点的总结概率论与数理统计在实际中的应用对未来学习的展望10.3 教学方法采用讲授法,总结本门课程的主要内容和知识点通过案例分析,讲解概率论与数理统计在实际中的应用鼓励学生发表对概率论与数理统计学习的看法和展望重点和难点解析:1. 随机变量的概念与分类:理解随机变量的定义以及离散型和连续型随机变量的区别是本章节的核心。
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。