2.1随机变量及其概率分布(1)
- 格式:doc
- 大小:107.50 KB
- 文档页数:4
2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为01分布或两点分布,并记为X~01分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。
第二章随机变量及其分布本章内容§2.1 随机变量与分布§2.2 重要概率分布本章提要(略,见大纲)§ 2.1随机变量与分布函数正确理解对概率论研究和发展起重大推动作用的两个最基本概念: “随机变量”和“分布函数”.2.1.1 随机变量和分布函数的定义和分类1.rv和df的定义定义2.1.1 设(Ω, ℱ,P)为概率空间, X为Ω上的实值函数,满足对任意的 x∈R, (X≤x):={ω : X(ω) ≤x}∈ℱ则称X为随机变量,简记rv. 而称实变量的实值函数F X( x):= P(X≤x), x∈R为X的分布函数,简记df.2. rv与df的关系rv给定则df是存在且唯一决定的.3. rv和df的分类定义2.1.2 至多取可列多个值的rv [或相应的F(x)],称为离散型的. 设{x i}是rv X可能取的值的全体,p i := P (X = x i ), i =1,2,…(,n )称实数列{p i }为离散型X 的分布. 称两行矩阵⎟⎟⎠⎞⎜⎜⎝⎛⋅⋅⋅⋅⋅⋅)()(2121n n p p p x x x为X 的分布列. 其中最后一列表示列数为有限的n 或为可列无穷多的情形.定义2.1.3 在一个有限或无限区间取值的rv X ,如存在非负可积函数f (x ) 使X 在(−∞ , x ] 的概率可写成R x dy y f x X P x X P x F xX ∈∀=≤<−∞=≤=∫∞−,)()()()(则称X [或F (x )]为连续型的,称f (x )为X [或F (x )]的概率密度函数,简记为 pdf . 也常记为 f X (x ).2.1.2 分布函数, 分布和密度函数 1. 离散型和连续型df例2.1.1 本节引例中,如该厂生产的电子元件的等级数Y 有分布列图2.1.2 离散型分布函数图象⎟⎟Y ~⎠⎞⎜⎜⎝⎛1.06.03.0321.求Y 的df【 】⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.31329.0213.010)(y y y y y F Y例2.1.2 设X 的pdf 为,)(x f X = ⎩⎨⎧∈−其它0],()/(1b a x a b ,求X 的df .【⎪⎩⎪⎨⎧≥<≤−−<=bx b x a a b ax a x x F X 1)(.】 2. df 的基本性质性质1 rv X 的df F(x ) 有下述基本性质: F 1) 非降性,即 F(x ) ≤ F(y ), ∀ x < y ; F 2) 边界极端性,即F(+∞) := lim x →∞ F ( x ) =1, F(−∞) := lim x → −∞ F ( x ) =0; F 3) 右连续性,即 F(x +0) : = )()(lim x F y F x y =↓.性质2 (存在定理) 满足性质F 1)至F 3)的任意一个实变量的实值函数, 都可作为一个df .性质3 df 的凸组合, 还是df , 即如F i (x )是df , i =1,2,…,n , 则对任意实数=1, 仍是df .∑==≥n i i i a n i a 1,,...,2,1,0∑==n i i i x F a x F 1)(:)(2.2.3. 分布与密度函数的性质性质1 (基本性质) 分布{p i }满足,,0i p i ∀≥且1=∑i i p而pdf 满足f (x ) ≥ 0, ∀ x , 且R ∈∫∞+∞−dy y f )(=1 .性质2 1) 对离散型rv ,如其分布为 {p i } 则F X (x ) =R x p i xx i i ∈∀∑≤,:2) 对有 pdf f (x ) 的连续型rvX , F X (x ) =R x dy y f x ∈∀∫∞−,)(性质3 1) 凡离散型rv 有最可能值,即存在x m ,rv X 取该值的概率不小于取其它值的概率:P(X =x m ) =p m ≥ p m , ∀ i .2) 连续型分布取任意一固定值的概率为零,即对每个固定的实数x , P(X =x ) =0.f (x )d x 为X 在x 点微分邻域的概率. 由此∫∫==∈],()()(]),((b a X ba X dx x f dx x fb a X P .对更一般的实数集合D 有 ∫=∈D X dx x f D X P )()([ 例题精选 ]z分布与df 的概念例2.1.3 将3个球逐个随机放入4个分别编号为1、2、3和4的盒子.令X 是“有球盒子的最小号码”,求X 的分布列.【⎟⎟⎠⎞⎜⎜⎝⎛64/1464/7364/19264/371】 例2.1.4 设rvX 的pdf 为 ,k 使得⎪⎩⎪⎨⎧∈∈=,0]6,3[9/2]1,0[3/1)(其它若若x x x f 若3/2)(=≥k X P , 则k 的取值范围是_________.【[1, 3] 】z分布与df 的性质例2.1.5 试确定值, 使下一函数为pdf , .a )()(),1()1(3x I e a x f x ∞−−=例2.1.6 设F i (x )是X i 的df , i =1,2, 为使F (x )= aF 1(x )−bF 2(x )是df ,下列给定各组数值中应取A) a = 3/5, b = −2/5. B)a = 2/3,b = 2/3. C) a = −1/2, b =3/2. D) a =1/2, b = −3/2.z综合题例2.1.7 设某电子元件寿命的pdf 为 )100()(2>=x I xa x f1) 试确定a 值;2) 某台设备装有三个这种电子元件. 问在开始使用的150小时中它们中恰有一个要替换和至少有一个要替换的概率各是多少?【 1) .100,100)(11002====∫∫∞∞∞−a adx x a dx x f 故2) 每个元件的寿命有两个可能结果:大于或不大于150小时,即可看为Ber-E ,从而三个元件中寿命小于150小时(因此要替换)的个数,服从二项分布B(3, p ), 其中31]1[100100)(1001501501002150=⋅===∫∫∞−x dx x dx x f p .因此, 使用到150小时它们中恰有一个要替换的概率44.09432313)1(2213≈=⎟⎠⎞⎜⎝⎛××=−p p C .“至少有一个要替换”概率是 701.027193213≈=⎟⎠⎞⎜⎝⎛−.】§2.2 重要概率分布本节从两类随机试验, Poisson 流和误差问题,介绍几类最重要的rv 及其分布. 掌握这些重要分布的定义、性质、产生的背景以及它们间关系.2.2.1 重要分布的产生与定义 1. Bernoulli 试验及有关分布 1) Bernoulli 分布2) n 重Ber-试验及其产生的B(n , p ) 3) 可列重Ber-试验及其产生的Ge(p ) 2. Poisson 流及有关分布 1) Poisson 流与Poisson 定理定理2.3.1(Poisson ) 设,],0(t ξ t ≥ 0 是Poisson 流,则存在某正数λ,使)()(],0(k P t p t k ==ξ = ,)(tk e k t λλ−!k = 0, 1,...Poisson 定理中的λ称为强度. 2). Poission 流产生离散型的P(λ)分布 3) Poisson 流产生的连续型分布:Ex(λ)误差问题产生的分布:U(a ,b )与N(μ, σ 2)2.2.2 重要分布间的关系和性质 1. 重要分布间的关系2.重要分布的性质性质1 重要离散型分布的最可能值设X ~ B(n , p ), 则X 的最可能值是 [(n +1)p ] . 如 (n +1)p 是整数,则[(n +1)p ]−1=np -q 也是最可能值. 这里 [⋅]为取整函数.设X ~ Ge( p ), 则X 的最可能值是1.设X ~ P(λ), 则X 的最可能值在[λ];如λ=[λ],即λ是正整数时,则λ−1也是最可能值.性质2 B(n , p )的Poisson 逼近.定理2.3.1 (Poisson 逼近) 设∼B (n ,),即对固定的n 次试验中,每次试验成功的概率是. 又设存在极限n X n p n p n n np ∞→lim =λ > 0,则对任意非负整数k , 有P(=k )=n X k n n kn k n p p C −−)1(→∞→!−n e k k,λλ.性质3 几何分布和指数分布的无记忆性:几何分布和指数分布的都有无记忆性: 当 X ~ Ge(p ) 时P(X >n +k | X >n ) = P(X >k ). 反之,有无记忆性的离散型分布,必为几何分布.当X ~ Ex(λ)时P(X >s +t |X >s ) = P(X >t ),0 ≤ s ,0 < t .反之,有无记忆性的连续型分布,必为指数分布.均匀分布和正态分布的性质性质4 1) 遵从[a , b ]上均匀分布的rv 的均匀性, 使其值落在[a , b ]内任一子区间的概率与此子区间长度成正比. 精确地说)/()()(a b D L D X P −=∈, 其中L(D)表D 的长度, 而D 是[a , b ]的任意一个(开、闭或半开半闭)子区间, 也可以是一些子区间的并集.2) 正态分布的对称性, 使pdf 是关于直线x = μ 对称的,),;(σμμφx −= ),;(σμμφx +.由此, ),;(σμμx −Φ= 1 − ),;(σμμx +Φ.性质5 正态分布的其它性质1) ),;(σμφx >0,任意阶导函数 , ∀ n ,存在且连续. ),;()(σμφx n 2) ),;(σμφx 在 (−∞, μ )中单调升,在 x = μ 处达极大值 1/ (σπ2),而在 (μ, ∞) 时下降. 参数μ 决定它的对称位置;σ越大pdf越平缓(参看图2.2.7), 概率分布越分散.3) 如X ~ N(μ, σ 2)则其标准化σμ/)(*−≡X X ~ N(0, 1). 4) 3σ法则. 正态变量离中心位置μ的距离超过 3σ 的概率不到千分之三,依此在正态性统计判别和产品质量管理中形成很有用的3σ法则.性质 6 独立和的分布与分布的可加性可加性的证明方法:(1). 由分布产生的背景, 立即可得上述结论: 例如 B(n ,p )、F(r ,p )和Γ(r ,p )的可加性(当r 为正整数时), 以及关于Ge(p )、Ex(λ)的结论.(2). 利用全概率公式, 例如 B(n ,p )、F(r ,p )、P(λ)和Γ(r ,p )的可加性;(3). 利用求独立和的df 或者密度的卷积公式[ 典型例题 ]例 2.2.1 设某车间需要安排维修工人负责对一批相同型号设备进行保全维修,有两种建议方案.方案A :1人维修固定的20台. 方案B :3人维修固定的80台. 设每台设备的故障率为0.01,哪种方案较好,即出现设备需要维修而得不到维修(维修人员正忙于其它设备的维修)的概率较小?解 Y n : n 台中的故障数, 则 Y n ~B(n , p ),0169.01)1()0(1)1(1912020202020≈−−==−=−=>=pq C qY P Y P Y P p a用Poisson 近似,λ = 0.2, 则 0175.02.012.02.0≈×−−=−−e e p a0091.0e !)01.080(1)3(30.01)(8080≈×−≈>=∑=×i -i b i Y P p . p b > p a , 方案B 较好.例2.2.2 一大批产品,其次品率为p ,采取下列方法抽样检查:抽样直至抽到一个次品时为止,或一直抽到10个产品时就停止检查. 设X 为停止检查时抽样的个数. 求X 分布列.【,】9....,,2,1,)(1===−k p q k X P k 9)10(q X P ==例2.2.3 (非中心的指数分布) 设某流水线上一类电子元件寿命(小时)X 的pdf 为 )()()10(a x I e x f x X >=−−λλ, 其中λ>0是常数. 试求常数a ; 如令y=x −a , 将作平移, 得到新的函数是否仍然为)(x f Xpdf ? 能判断它是什么类型分布吗?例2.2.4 已知X ~ . ),(2σμN 1) 求P(a ≤X ≤ b );2) 设 μ=20,σ2=402,求P(|X | ≤ 20)的值,并找点x 0, 使P(X > x 0 )= 0.05.【()(σμσμ−Φ−−Φa b ;1587.05.0)1()0(−=−Φ−Φ=0.3413, x 0=85.6】例2.2.5 对某射手打靶考核,有两次命中6环以下(不含6环)时,立即淘汰出局. 如果此射手每次命中6环及其以上的概率是0.8, 则他在第4次射击后即被淘汰的概率是 .【p 2 := P(X = 2) =, p = 0.2】 2421214−−−qp C。
第二章随机变量及其分布§2.1随机变量及其分布教学目的要求:使学生掌握随机变量、离散型随机变量、连续型随机变量的概念及其分布,会应用这些概念、分布求分布列.教材分析:1.概括分析:概率论所要考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统规律性.为此,就有必要把随机试验的每一个可能的结果与一个实数联系起来.随机变量正是为适应这种需要而引进的。
随机变量实质上是定义在样本空间Ω={e}上的一个实值单值函数X(e).从此,对随机事件的研究转变为对随机变量的研究,通过随机变量将各个事件联系起来,进而去研究随机试验的全部结果.而且,随机变量的引入,使我们有可能借助于微积分等数学工具,把研究引向深入.2.教学重点:随机变量、离散型随机变量、连续型随机变量的概念及其分布函数.3.教学难点:求随机变量分布函数.教学过程:在第一章里,我们研究了随机事件及其概率,可以会注意到,在某些例子中,随机事件和实数之间存在着某种客观的联系.例如,在伯努利概型这一节中,曾经讨论过“在n 重伯努利试验中,事件A 出现k 次”这一事件的概率,如果令ξ=n 重伯努利试验中事件A 出现的次数则上述“n 重伯努利试验中事件A 出现k 次”这个事件就可以简单地记作(ξ=k),从而有P(ξ=k)=⎪⎪⎭⎫ ⎝⎛k n p k q n-k.并且ξ所有可能取到的数值也就是试验中事件A 可能出现的次数:0,1,…,n.在另一些例子中,随机事件与实数之间虽然没有上述那种“自然的”联系,但是我们常常可以人为地给它们建立起一个对应关系.例如抛掷一枚均匀的硬币,可能出现正面,也可能出现反面,现在约定若试验结果出现正面,令η=1,若试验结果出现反面,令η=0,这时就有:{试验结果出现正面}=(η=1),{试验结果出现反面}=(η=0).在上述例子中,对每一个试验结果ω,自然地或人为地对应着一个实数X(ω),这与高等数学中熟知的“函数”概念本质上是一致的.只不过在函数概念中,函数f(x)的自变量是实数x,而在X(ω)的自变量是样本点ω.因为对每一个试验结果ω,都有实数X(ω)与之对应,所以,X(ω)的定义域是样本空间,显然值域是实数域.显然,一般来讲此处的实数X 值将随ω的不同而变换,它的值因ω的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量。
随机变量及其概率分布(1)
【教学目标】
1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。
2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。
3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。
4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。
【教学过程】
1、相关知识回顾:
(1)随机现象:
在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件:
在一次试验中可能出现的每一个基本结果 (3)古典概型:
我们将具有:①试验中所有可能出现的基本事件只有有限个;
②每个基本事件发生的概率相等.
满足这两个特点的概率模型称为古典概率模型
2、新课引入:
(1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数;
(3)新生婴儿的性别,抽查的结果可能是男,也可能是女。
如果将男婴用0表示,
女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点?
上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。
例如:上面的植树问题中成活的树苗棵数X :
X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思?
3、新授:
知识点1:随机变量:
一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。
通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。
引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。
注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。
如掷一枚硬币,“正
面向上”用数字“1”表示,即X=1。
(2)这个数在随机试验前是无法预先确定的,在不同的随机试验中,结果可能有变化,
说明随机试验的结果可以用一个变量来表示。
如某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能结果用0,1,2,…,10这11个数表示。
(3)所谓随机变量不过是建立起基本时间空间与实数的一个对应关系。
如设随机变量X
为骰子掷出的点数,于是X=1,2,3,4,5,6,或者说X 的值域为}.6,5,4,3,2,1{ (4)随机变量十八随机试验的结果映射为实数,函数是把实数映射为实数,与函数概念
本质上是相同的。
在函数的概念中,函数)(x f 的自变量是实数x ,随机变量的概念中,随机变量X 的自变量是随机试验结果。
例1 (1)掷一枚质地均匀的硬币一次,用X 表示掷得正面的次数,则随机变量X 的可能
取值有哪些?
(2)一实验箱中装有标号为1,2,3,3,4的五只白鼠,从中任取一只,记取到的白鼠
的标号为Y ,则随机变量Y 的可能取值有哪些?
(3)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是
白球为止所需要的取球次数为Z ,则随机变量Z 的可能取值有哪些?
知识点2:随机变量的概率分布列
一般地,若随机变量X 可能取的不同值为.,,,,21n i x x x x ⋯⋯
X 取每一个),,2,1(n i x i ⋯=的概率,)(i i p x X P ==称为随机变量X 的概率分布列, 简称X 的分布列。
则称上表为随机变量X 的概率分布表。
随机变量X 的概率分布列与随机变量X 的概率分布表都叫做随机变量X 的概率分布 注:
(1)随机变量分布列不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一
个值得概率的大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究随机试验数量特征的基础。
(2)一般地,随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
例2 从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的白球个数”, 即⎩⎨⎧=当取到红球时,
当取到白球时,
,0,1X 求随机变量X 的概率分布。
求此射手“射击一次命中的环数7≥”的概率。
知识点3:随机变量分布的性质
(1);,,3,2,1,0n i p i ⋯=≥ (2).11=∑=n
i i p
注:(1)在求概率i p 时,要用到古典概型的概率公式、互斥事件的概率、分步计数原理、分类技术原理、排列、组合等知识和方法,因此对学过的内容要多加复习。
(2)在求概率i p 时,要充分运用分布列的性质,一是可以减小运算量,二是可验证所求的分布列是否正确。
例3 设随机变量ε概率分布列为,3,2,1,)3
2
()(===i a i p i ε则a 的值是--------------------( )
A
3817 B 3827 C 1917 D 19
27
练习:
1 判断下列表格是否是随机变量的分布列?
求常数K 。
练习:教材P48练习
作业:数学之友P57:T2.1:1 ~16。