随机变量及其概率分布全概率
- 格式:pptx
- 大小:633.29 KB
- 文档页数:36
第7章 7.1.2A 级——基础过关练1.袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率为( )A .35B .1949C .2049D .25【答案】D 【解析】设A ={第一个人取到黄球},B ={第二个人取到黄球},则P (B )=P (A )(B |A )+P (A )P (B |A ),由题意知P (A )=2050,P (A )=3050,P (B |A )=1944,P (B |A )=2049,所以P (B )=2050×1949+3050×2049=25.2.设某工厂有甲、乙、丙三个车间生产同一种产品,已知各车间的产量占全厂产量的25%,35%,40%,而且各车间的次品率依次为5%,4%,2%.现从待出厂的产品中检查出一个次品,那它由甲车间生产的概率约为( )A .0.013B .0.362C .0.468D .0.035【答案】B3.甲、乙、丙三个车间生产同一种产品,其产量分别占总量的25%,35%,40%,次品率分别为5%,4%,2%.从这批产品中任取一件,则它是次品的概率为( )A .0.012 3B .0.023 4C .0.034 5D .0.045 6 【答案】C 【解析】由全概率公式,得所求概率为0.25×0.05+0.35×0.04+0.4×0.02=0.034 5.4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球,随机取一只袋子,再从袋中任取一球,发现是红球,则此球来自甲袋的概率为( )A .512B .37C .2041D .2141【答案】D 【解析】设A ={取得红球},B 1={来自甲袋},B 2={来自乙袋},则P (B 1)=P (B 2)=12,P (A |B 1)=610,P (A |B 2)=814,由贝叶斯公式得P (B 1A )=P B 1P A |B 1B 1P A |B 1+P B 2P A |B 2=12×61012×610+12×814=2141. 5.5张卡片上分别写有数字1,2,3,4,5,每次从中任取一张,连取两次.若第一次取出的卡片不放回,则第二次取出的卡片上的数字大于第一次取出的数字的概率为( )A .14B .12C .25D .35【答案】B6.两台机床加工同样的零件,它们常出现废品的概率分别为0.03和0.02,加工出的零件放在一起,设第一台机床加工的零件比第二台的多一倍,则任取一个零件是合格品的概率为________.【答案】7375 【解析】第一台机床加工的零件比第二台多一倍,那么第一台机床生产的零件占据总零件的比例是23,第二台机床生产的零件占据总零件的比例是13,由全概率公式,得所求概率为(1-0.03)×23+(1-0.02)×13=7375.7.根据以往的临床记录,某种诊断癌症的试验具有如下效果:若以A 表示“试验反应为阳性”,以B 表示“被诊断者患有癌症”,则有P (A |B )=0.95,P (A -|B )=0.95,现对自然人群进行普查,设被实验的人患有癌症的概率为0.005,则P (B |A )=________(保留两位有效数字).【答案】0.087 【解析】P (A |B )=1-P (A |B )=1-0.95=0.05,被试验的人患有癌症概率为0.005,就相当于P (B )=0.005,由贝叶斯公式,得P (B |A )=P B P A |BP B P A |B +PBP A |B=0.005×0.950.005×0.95+0.995×0.05≈0.087. 8.装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知道是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为________.【答案】38 【解析】设事件A 表示从箱中任取2件都是一等品,事件B i 表示丢失的为i等品,i =1,2,3,那么P (A )=P (B 1)·P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=12×C 24C 29+310×C 25C 29+210×C 25C 29=29.所以P (B 1|A )=P B 1P A |B 1P A =38.9.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查,参加活动的甲、乙两班的人数之比为5∶3,其中甲班中女生占35,乙班中女生占13,求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.解:用A 1,A 2分别表示居民所遇到的一位同学是甲班的与乙班的事件,B 表示是女生的事件,则Ω=A 1∪A 2,且A 1,A 2互斥,B ⊆Ω.由题意知P (A 1)=58,P (A 2)=38,P (B |A 1)=35,P (B |A 2)=13.由全概率公式可知P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)=58×35+38×13=12.10.有三个箱子,分别编号为1,2,3.1号箱装有1个红球4个白球,2号箱装有2个红球3个白球, 3号箱装有3个红球.某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.B 级——能力提升练11.某试卷只有1道选择题,但有6个答案,其中只有一个是正确的.考生不知道正确答案的概率为14,不知道正确答案而猜对的概率为16.现已知某考生答对了,则他猜对此题的概率为( )A .14 B .119 C .1116D .1924【答案】B 【解析】设A ={不知道正确答案},B ={猜对此题},则P (A )=14,P (A )=1-14=34,P (B |A )=16.∴P (A |B )=P A P B |APA PB |A +PAP B |A=14×1614×16+34×1=119. 12.甲箱中有3个白球,2个黑球;乙箱中有1个白球,3个黑球.现从甲箱中任取一球放入乙箱中,再从乙箱任取一球.(1)已知从甲箱中取出的是白球的情况下,从乙箱也取出的是白球的概率是________; (2)从乙箱中取出白球的概率是________.【答案】25 825【解析】设A =“从甲箱中取出白球”,B =“从乙箱中取出白球”,则P (A )=35,P (A )=25,P (B |A )=25,P (B |A )=15,利用全概率公式,得P (B )=P (A )P (B |A )+P (A )P (B |A )=35×25+25×15=825.13.设袋中装有10个阄,其中8个是白阄,2个是有物之阄,甲、乙二人依次抓取一个,求没人抓得有物之阄的概率.解:设A ,B 分别为甲、乙抓得有物之阄的事件.∴P (A )=P (B )P (A |B )+P (B )P (A |B ) =210×19+810×29=15, P (B )=P (A )P (B |A )+P (A )P (B |A )=210×19+810×29=15. ∴1-P (A )-P (B )=1-15-15=35.C 级——探究创新练14.盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率.解:设A ={第一次抽出的是黑球},B ={第二次抽出的是黑球}. 由全概率公式,得P (B )=P (A )P (B |A )+P (A -)P (B |A -).由题意P (A )=ba +b,P (B |A )=b +c a +b +c ,P (A -)=a a +b,P (B |A -)=b a +b +c.所以P (B )=b b +ca +b a +b +c +ab a +b a +b +c =ba +b.。
第1讲 概率、随机变量及其分布列概率的研究对象是随机现象,为人们从不确定性的角度认识客观世界提供重要的思维模式和解决问题的方法,统计的研究对象是数据,核心是数据分析。
概率为统计的发展提供理论基础,高考中概率与统计考题常常具有鲜明的时代和文化背景,试题难度逐渐加大,重点提升数据分析、数学建模、逻辑推理和数学运算素养。
基础知识回顾1.古典概型概率公式: ()试验的样本点总数包含的样本点数事件A A P =。
2.条件概率公式:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫作条件概率,用符号()A B P 来表示,其公式为()()()()()0>=A P A P AB P A B P 3.全概率公式:设n A A A ,...,21n A A A ,...,21是一组两两互斥的事件,Q A A A n = ...21,且()n i A P i ,...,2,1,0=>,则对任意的事件Q B ⊆,有()()()i ni i A B P A P B P ∑==1。
4.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()m k C C C k X P n N k n M N k M ,...,2,1,0,===--,其中{}n M m ,m in =, 且()NM n X E N N M n N M N n •=∈≤≤*,,,,,。
5.二项分布 :一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p<1),用X 表示事件A 发生的次数,则X 的分布列为()()()()()p np X D np X E nk p p C k X P k n k k n -===-==-1,,...,2,1,0,1 6.正态分布: 如果对于任何实数a ,b(a<b),随机变量X 满足()()dx x b X a P b au σϕ,⎰=≤<(即x=a ,x=b ,正态曲线及x轴围成的曲边梯形的面积),那么称随机变量X 服从正态分布记作()2,~σu N X 。