高考数学二轮专题复习 函数与导数
- 格式:doc
- 大小:831.00 KB
- 文档页数:22
强化训练24 函数与导数——大题备考第一次作业1.[2022·全国乙卷]已知函数f (x )=ax -1x-(a +1)ln x .(1)当a =0时,求f (x )的最大值;(2)若f (x )恰有一个零点,求a 的取值范围.2.[2022·全国甲卷]已知函数f (x )=exx-ln x +x -a .(1)若f (x )≥0,求a 的取值范围;(2)证明:若f (x )有两个零点x 1,x 2,则x 1x 2<1.3.[2022·新高考Ⅱ卷]已知函数f (x )=x e ax -e x. (1)当a =1时,讨论f (x )的单调性; (2)当x >0时,f (x )<-1,求a 的取值范围; (3)设n ∈N *,证明:112+1+122+2+…+1n 2+n>ln (n +1).4.[2021·新高考Ⅰ卷]已知函数f (x )=x (1-ln x ). (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b<e.强化训练24 函数与导数1.解析:(1)当a =0时,f (x )=-1x-ln x (x >0),则f ′(x )=1x 2-1x =1-x x2.当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故f (x )的最大值即为f (x )的极大值f (1)=-1.(2)因为函数f (x )恰有一个零点,所以方程a (x -ln x )-1x-ln x =0在(0,+∞)上恰有一个解,即方程a (x -ln x )=1x+ln x 在(0,+∞)上恰有一个解.又易知当x >0时,x -ln x >0,所以方程a =1x+ln x x -ln x 在(0,+∞)上恰有一个解.令g (x )=1x+ln x x -ln x(x >0),则g ′(x )=(x -1)[x -1-(x +1)ln x ]x 2(x -ln x )2.令h (x )=x -1-(x +1)ln x (x >0), 则h ′(x )=1-ln x -x +1x =-ln x -1x. 由(1)知,h ′(x )≤-1,所以h (x )在(0,+∞)上单调递减.又h (1)=0,所以当x ∈(0,1]时,h (x )≥0; 当x ∈(1,+∞)时,h (x )<0. 则当x ∈(0,1]时,g ′(x )≤0; 当x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,+∞)上单调递减.又当x →0时,g (x )→+∞,当x →+∞时,g (x )→0, 所以a ∈(0,+∞).2.解析:(1)由题意可知函数f (x )的定义域为(0,+∞),f ′(x )=e x(x -1)x2-1x+1=(e x+x )(x -1)x2. 令f ′(x )=0,解得x =1.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )min =f (1)=e +1-a .若f (x )≥0,则f (x )min =e +1-a ≥0,解得a ≤e+1. 故a 的取值范围为(-∞,e +1].(2)证明:由(1)可知,要使f (x )有两个零点, 则f (x )min =f (1)=e +1-a <0,即a >1+e. 假设0<x 1<1<x 2,要证明x 1x 2<1,即需证明1<x 2<1x 1.又因为f (x )在x ∈(1,+∞)上单调递增,所以要证明1<x 2<1x 1,则需证明f (x 2)<f ⎝ ⎛⎭⎪⎫1x 1,即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 1. 令F (x )=f (x )-f ⎝ ⎛⎭⎪⎫1x,0<x <1,则F ′(x )=f ′(x )+f ′⎝ ⎛⎭⎪⎫1x ·1x2=(x -1)(e x+x -x e 1x -1)x2.因为e x在x ∈(0,1)上单调递增,所以e x<e ,所以当x ∈(0,1)时,e x+x <e +1.又函数y =x e 1x 在(0,1)上单调递减,所以x e 1x >e ,所以-x e 1x -1<-e -1,所以e x+x -x e 1x -1<e +1-e -1=0,所以当x ∈(0,1)时,F ′(x )>0,则F (x )在(0,1)上单调递增.因为F (1)=f (1)-f (1)=0,所以F (x )<0,即f (x )<f ⎝ ⎛⎭⎪⎫1x ,所以若f (x )有两个零点x 1,x 2,则x 1x 2<1.3.解析:(1)当a =1时,f (x )=x e x-e x=(x -1)e x,f ′(x )=e x +(x -1)e x =x e x .令f ′(x )=0,得x =0,∴当x <0时,f ′(x )<0,f (x )单调递减;当x >0时,f ′(x )>0,f (x )单调递增.(2)f ′(x )=e ax +a e ax x -e x =(ax +1)e ax -e x,f ′(0)=0.设g (x )=(ax +1)e ax -e x ,则g ′(x )=a e ax +a e ax (ax +1)-e x =(a 2x +2a )e ax-e x,g ′(0)=2a -1.当2a -1>0,即a >12时,存在δ>0,使得当x ∈(0,δ)时,g ′(x )>0,此时f ′(x )在(0,δ)上单调递增.∵f ′(x )>f ′(0)=0,∴f (x )在(0,δ)上单调递增, ∴f (x )>f (0)=-1,这与f (x )<-1矛盾,故舍去.当2a -1≤0,即a ≤12时,f (x )≤x e 12x -e x.令h (x )=x e 12x -e x,则h ′(x )=e 12x+12e 12x ·x -e x =e 12x (1+12x -e 12x)<0,∴h (x )在(0,+∞)上单调递减, 此时h (x )<h (0)=-1符合条件. 综上可知,a 的取值范围为(-∞,12].(3)证明:由(2)知当a =12时,x >0时,x e 12x -e x<-1,∴x <e 12x-1e 12x .令e 12x=t ,t >1,则x =2ln t ,∴2ln t <t -1t,t >1.取t =n +1n (n ∈N *),则2ln t =ln (n +1)-ln n <n +1n- nn +1=1n 2+n, ∴112+1+122+2+…+1n 2+n>ln 2-ln 1+ln 3-ln 2+…+ln (n +1)-ln n =ln (n +1),故结论得证.4.解析:(1)函数的定义域为()0,+∞, 又f ′()x =1-ln x -1=-ln x ,当x ∈()0,1时,f ′()x >0,当x ∈()1,+∞时,f ′()x <0, 故f ()x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为b ln a -a ln b =a -b ,故b ()ln a +1=a ()ln b +1,即ln a +1a =ln b +1b,故f ⎝ ⎛⎭⎪⎫1a =f ⎝ ⎛⎭⎪⎫1b, 设1a =x 1,1b=x 2,由(1)可知不妨设0<x 1<1,x 2>1.因为x ∈()0,1时,f ()x =x ()1-ln x >0,x ∈()e ,+∞时,f ()x =x ()1-ln x <0, 故1<x 2<e. 先证:x 1+x 2>2,若x 2≥2,x 1+x 2>2必成立.若x 2<2, 要证:x 1+x 2>2,即证x 1>2-x 2,而0<2-x 2<1, 故即证f ()x 1>f ()2-x 2,即证:f ()x 2>f ()2-x 2,其中1<x 2<2. 设g ()x =f ()x -f ()2-x ,1<x <2,则g ′()x =f ′()x +f ′()2-x =-ln x -ln ()2-x = -ln []x ()2-x ,因为1<x <2,故0<x ()2-x <1,故-ln x ()2-x >0,所以g ′()x >0,故g ()x 在()1,2上为增函数,所以g ()x >g ()1=0, 故f ()x >f ()2-x ,即f ()x 2>f ()2-x 2成立,所以x 1+x 2>2成立, 综上,x 1+x 2>2成立. 设x 2=tx 1,则t >1,结合ln a +1a =ln b +1b ,1a =x 1,1b=x 2,可得:x 1()1-ln x 1=x 2()1-ln x 2, 即:1-ln x 1=t ()1-ln t -ln x 1,故ln x 1=t -1-t ln tt -1,要证:x 1+x 2<e ,即证()t +1x 1<e ,即证ln ()t +1+ln x 1<1, 即证:ln ()t +1+t -1-t ln tt -1<1,即证:()t -1ln ()t +1-t ln t <0,令S ()t =()t -1ln ()t +1-t ln t ,t >1, 则S ′()t =ln ()t +1+t -1t +1-1-ln t =ln ⎝ ⎛⎭⎪⎫1+1t -2t +1, 先证明一个不等式:ln ()x +1≤x . 设u ()x =ln ()x +1-x ,则u ′()x =1x +1-1=-xx +1,当-1<x <0时,u ′()x >0;当x >0时,u ′()x <0,故u ()x 在()-1,0上为增函数,在()0,+∞上为减函数, 故u ()x max =u ()0=0, 故ln ()x +1≤x 成立.由上述不等式可得当t >1时,ln ⎝ ⎛⎭⎪⎫1+1t ≤1t <2t +1,故S ′()t <0恒成立,故S ()t 在()1,+∞上为减函数,故S ()t <S ()1=0, 故()t -1ln ()t +1-t ln t <0成立,即x 1+x 2<e 成立. 综上所述,2<1a +1b<e.。
强化训练25 函数与导数——大题备考第二次作业1.[2022·江苏苏州模拟]已知函数f(x)=x ln x+1,(1)求函数f(x)的单调区间;(2)若x>1时,函数f(x)>kx恒成立,求实数k的取值范围.2.[2022·福建厦门模拟]已知函数f(x)=e x-ax2-x-1.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的方程;(2)若f(x)≥0,求实数a的取值范围.3.[2022·山东日照三模]已知函数f(x)=(x-2)e x-ax+a ln x(a∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)当a<e时,讨论f(x)的零点个数.4.[2022·辽宁协作体二模]已知函数f (x )=x ln x -12mx 2-x (m ∈R ).(1)若直线y =x +b 与f (x )的图象相切,且切点的横坐标为1,求实数m 和b 的值; (2)若函数f (x )在(0,+∞)上存在两个极值点x 1,x 2,且x 1<x 2,证明:ln x 1+ln x 2>2.强化训练25 函数与导数1.解析:(1)∵f (x )=x ln x +1,x >0, ∴f ′(x )=ln x +1,当x ∈(0,1e )时,f ′(x )<0;当x ∈(1e ,+∞)时,f ′(x )>0.所以函数f (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增.(2)由于x >1,f (x )>kx 恒成立,即k <ln x +1x恒成立,构造函数k (x )=ln x +1x,x >1,则求导可得k ′(x )=1x -1x 2=x -1x2,当x >1时,k ′(x )>0恒成立.所以k (x )在(1,+∞)上单调递增,则k (x )>k (1)=1, 所以k ≤1.2.解析:(1)因为f (x )=e x -x 2-x -1,当x =1时,切点为(1,e -3), 求导f ′(x )=e x-2x -1,故切线斜率k =f ′(1)=e -3, 所以所求切线方程为y =(e -3)x .(2)f (x )≥0等价于e x≥ax 2+x +1恒成立, 当a >0时,上式不恒成立,证明如下:当x <0时,e x <1,当x <-1a时,ax 2+x +1=x (ax +1)+1>1,从而e x ≥ax 2+x +1不恒成立,当a ≤0时,ax 2+x +1≤x +1,下面先证明e x≥x +1, 令h (x )=e x -x -1,则h ′(x )=e x-1,当x <0时,h ′(x )<0,h (x )单调递减;当x >0时,h ′(x )>0,h (x )单调递增, 所以h (x )min =h (0)=0,即h (x )≥0,所以e x≥x +1,而ax 2+x +1≤x +1,故e x ≥ax 2+x +1, 综上,若f (x )≥0,则实数a 的取值范围为(-∞,0]. 3.解析:(1)当a =-1时,f (x )=(x -2)e x+x -ln x ,则f ′(x )=(x -1)(e x +1x ),当x ∈(0,+∞)时,e x +1x>0恒成立,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时f ′(x )>0,f (x )单调递增,即f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞).(2)由题意,函数f (x )=(x -2)e x-ax +a ln x =(x -2)e x-a (x -ln x ),x >0, 设m (x )=x -ln x ,x >0,则m ′(x )=1-1x =x -1x,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减; 当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增, 又由m (1)=1,所以m (x )≥1,令f (x )=0,可得(x -2)e x-ax +a ln x =0,所以a =(x -2)e xx -ln x,其中(x >0),令g (x )=(x -2)e x x -ln x ,可得g ′(x )=e x(x -1)(x -ln x )2(x -ln x +2x-1),令h (x )=x -ln x +2x -1,则h ′(x )=1-1x -2x 2=x 2-x -2x 2=(x -2)(x +1)x2(x >0), 可得0<x <2时,h ′(x )<0,h (x )单调递减;x >2时,h ′(x )>0,h (x )单调递增; 所以h (x )min =h (2)=2-ln 2>0,即x >0时,h (x )>0恒成立;故0<x <1时,g ′(x )<0,g (x )单调递减;x >1时,g ′(x )>0,g (x )单调递增; 所以g (x )min =g (1)=-e ,又由x →0时,g (x )→0,当x →+∞时,g (x )→+∞, 函数g (x )的图象,如图所示,结合图象可得:当a <-e 时,无零点;当a =-e 或0≤a <e 时,一个零点;当-e<a <0时,两个零点. 4.解析:(1)由题意,切点坐标为(1,-12m -1),f ′(x )=ln x -mx ,所以切线斜率为f ′(1)=-m =1,所以m =-1,切线为y +12m +1=1·(x -1),整理得y =x -32,所以b =-32.(2)证明:由(1)知f ′(x )=ln x -mx .由函数f (x )在(0,+∞)上存在两个极值点x 1,x 2,且x 1<x 2,知⎩⎪⎨⎪⎧ln x 1-mx 1=0ln x 2-mx 2=0,则m =ln x 1+ln x 2x 1+x 2且m =ln x 1-ln x 2x 1-x 2,联立得ln x 1+ln x 2x 1+x 2=ln x 1-ln x 2x 1-x 2,即ln x 1+ln x 2=x 1+x 2x 1-x 2·ln x 1x 2=(x 1x 2+1)·lnx 1x 2x 1x 2-1,设t =x 1x 2∈(0,1),则ln x 1+ln x 2=(t +1)·ln t t -1,要证ln x 1+ln x 2>2,只需证(t +1)·ln t t -1>2,只需证ln t <2(t -1)t +1,只需证ln t -2(t -1)t +1<0.构造函数g (t )=ln t -2(t -1)t +1,则g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0. 故g (t )=ln t -2(t -1)t +1,在t ∈(0,1)上递增,g (t )<g (1)=0,即g (t )=ln t -2(t -1)t +1<0,所以ln x 1+ln x 2>2.。
2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e x f x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.4.(2023秋ꞏ河南信阳ꞏ高三信阳高中校考期末)已知函数()()212ln ,e (0)x b f x x x a x g x xx -=--=->,其中0,,e a b ⎤>∈⎥⎦是自然对数的底数. (1)若()f x 在区间()1,+∞上单调递增,求a 的取值范围;(2)设函数()()()()()2f xg x f x g xh x +--=,证明:存在唯一的正实数a ,使得()h x 恰好有两个零点.5.(2023秋ꞏ内蒙古呼和浩特ꞏ高三统考期末)已知函数()e 2xx x a f x a =-+.(1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.6.(2023秋ꞏ河北衡水ꞏ高三河北衡水中学校考阶段练习)已知函数()e sin xf x x ax =+,π0,2x ⎡⎤∈⎢⎥⎣⎦. (1)若1a =-,求()f x 的最小值;(2)若()f x 有且只有两个零点,求实数a 的取值范围.7.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知函数()e cos xf x x =.(1)求()f x 在区间π0,2⎛⎫⎪⎝⎭内的极大值;(2)令函数()1()e xaf x F x x =-,当πa >时,证明:()F x 在区间π0,2⎛⎫ ⎪⎝⎭内有且仅有两个零点.8.(2023秋ꞏ江苏南通ꞏ高三统考期末)已知函数()ln f x a x =,()()1e xg x x =-,其中a 为实数.(1)若函数()f x ,()g x 的图象在1x =处的切线重合,求a 的值;(2)若e a >,设函数()()()h x f x g x =-的极值点为0x .求证:①函数()h x 有两个零点1x ,2x (12x x <);②01231x x x -->.9.(2023ꞏ全国ꞏ模拟预测)已知函数()()2sin ln 1f x x x x =-+-. (1)当10-<≤x 时,求()f x 的最小值;(2)设()()g x f x x =+,(]1,2πx ∈-,证明:()g x 有且仅有3个零点.(1.414≈,πln 1 1.544⎛⎫-≈- ⎪⎝⎭.)10.(2023春ꞏ云南ꞏ高三校联考开学考试)已知函数()(01)x f x a ax a a =->≠且. (1)当e a =时,求函数()f x 的极值;(2)讨论()f x 在区间(0,1)上的水平切线的条数.11.(2023秋ꞏ广西南宁ꞏ高三南宁二中校考期末)已知函数()()()22ln 11af x x x =+-+有两个不同的零点x 1,x 2.(1)当112x -<<-时,求证:()12ln 11x x +>-+;(2)求实数a 的取值范围;12.(2023秋ꞏ湖北武汉ꞏ高三统考期末)已知函数()xf x a =与()log a g x x =(0a >,且1a ≠)(1)求()g x 在()()1,1g 处的切线方程;(2)若1a >,()()()h x f x g x =-恰有两个零点,求a 的取值范围13.(2023秋ꞏ浙江ꞏ高三浙江省永康市第一中学校联考期末)已知函数()e x f x ax =-,()2g x x a =-+(1)当1a =时,求函数()()y f x g x =-的最小值;(2)设01a <<,证明:曲线()y f x =与曲线()y g x =有两条公切线.14.(2023ꞏ全国ꞏ模拟预测)已知函数()ln f x a x x =-1e a ⎛⎫> ⎪⎝⎭(e 是自然对数的底数).(1)若12,x x (120x x <<)是函数()y f x =的两个零点,证明:12112ln x x x x <-; (2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()e 1xf x a x a =--∈R .(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()ln e 0f x x +-=在()1,+∞无实数解,求实数a 的取值范围.16.(2023ꞏ全国ꞏ高三专题练习)已知函数2()eln (R),()eln x f x ax x a g x x x=+∈=-. (1)讨论函数()()2F x f x =在()0,∞+上的单调性;(2)若函数()f x 的图象与()g x 的图象有三个不同的交点,求实数a 的取值范围.17.(2023ꞏ全国ꞏ高三专题练习)已知函数()ln f x a x x =-(e 是自然对数的底数). (1)讨论函数()f x 的单调性;(2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.参考答案【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况. 【答案解析】(1)因为()()ln 11f x x a x =--+,所以()()11(0)f x a x x'=-->, 当10a -≤,即1a ≤时,()0f x ¢>,则()f x 为单调递增函数,不可能有极值,舍去; 当10a ->,即1a >时,令()0f x '=,解得11x a =-, 当101x a <<-时,()0f x ¢>;当11x a >-时,()0f x '<;所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减, 所以()f x 在11x a =-取得极大值,符合题意; 综上:1a >,故实数a 的取值范围为()1,+∞.(2)当2a =时,()ln 1sin (0)g x x x x x =-++>,则()11cos g x x x'=-+, 令()()11cos 0h x x x x =-+>,则()21sin h x x x'=--, (i )当(]0,πx ∈时,()0h x '<,则()h x 单调递减,即()g x '单调递减, 注意到()cos101g '=>,()120ππg '=-<, 所以存在唯一的()01,πx ∈使()00g x '=,且当00x x <<时,()0g x '>,()g x 单调递增, 当0πx x <≤时,()0g x '<,()g x 单调递减,注意到22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭,()1sin10g =>,2ln πln e 2π1<=<-,则()πln ππ10g =-+<,所以()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点;(ii )当(]π,2πx ∈时,sin 0x ≤,故()ln 1g x x x ≤-+, 令()()ln 1π2πx x x x ϕ=-+<≤,则()110x xϕ'=-<, 所以()x ϕ在(]π,2π上单调递减,故()()πln ππ10x ϕϕ<=-+<, 所以()()0g x x ϕ≤<,故()g x 在(]π,2π上无零点; (iii )当()2π,x ∈+∞时,sin 1x ≤,则()ln 2g x x x ≤-+, 令()()ln 22πm x x x x =-+>,则()110m x x=-<',所以()m x 在()2π,+∞上单调递减, 又3ln 2πln e 32π2<=<-,故()()2πln 2π2π20m x m <=-+<, 所以()()0g x m x ≤<,故()g x 在()2π,+∞上无零点;综上:()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点,共有两个零点.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.【答案解析】(1)证明:因为()()1e cos ,0,2πx f x x x -=+∈,所以()1e sin x f x x --'=- 设()()1e sin xg x f x x -==--',()0,2πx ∈,所以()()111e cos e 1e cos xx x g x x x ---=--'=,其中1e 0x ->恒成立,令()11e cos x h x x -=-,()0,2πx ∈,则()111πecos e sin sin 4x x x h x x x x ---⎛⎫=-+='- ⎪⎝⎭,因为()0,2πx ∈,所以ππ7π,444x ⎛⎫-∈- ⎪⎝⎭, 所以当π0,4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递减,当π5π,44x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()h x 单调递增,当5π,2π4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递增;又()π1104π01e 0,1e 1e 0422h h --⎛⎫=->=->-> ⎪⎝⎭,5ππ044h h ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,7π1147π1e 1e 0422h -⎛⎫=-<-< ⎪⎝⎭,()7π2π04h h ⎛⎫<< ⎪⎝⎭所以05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得()01001e cos 0x h x x -=-= ,即010e cos xx -=,故对于()()1e x g x h x -'=有()00g x '=,当()00,x x ∈时,()00g x '>,函数()f x '单调递增,当()0,2πx x ∈时,()00g x '<,函数()f x '单调递减,所以0x 是函数()f x '的极大值点,()f x '无极小值点,故()f x '有且仅有一个极值点. (2)()f x 的所有零点之和大于2π,理由如下:函数()()1e cos ,0,2xf x x x π-=+∈,其导函数()1e sin x f x x --'=-,05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得当()00,x x ∈时,()f x '单调递增,当()0,2πx x ∈时,函数()f x '单调递减,又010ecos x x -=,所以()()0100000π0e 0,e sin cos sin 4xf f x x x x x -⎛⎫=-<=--=--=+' ⎝'⎪⎭,因为057π,π44x ⎛⎫∈ ⎪⎝⎭,所以0π3π,2π42x ⎛⎫+∈ ⎪⎝⎭,所以()00f x '>,又()12π2πe0f -'=-<, 故()100,x x ∃∈,使得()10f x '=,()20,2πx x ∃∈,使得()20f x '=,于是可得:当()10,x x ∈时,()0f x '<,()f x 单调递减,当()12,x x x ∈时,()0f x ¢>,()f x 单调递增,当()2,2πx x ∈时,()0f x '<,()f x 单调递减, 又()3π11π23ππe0,e 102f f --⎛''⎭<⎫=-=-+> ⎪⎝,故13ππ,2x ⎛⎫∈ ⎪⎝⎭,则()π11π2πe 0,πe 102f f --⎛⎫=>=-< ⎪⎝⎭,所以存在π,π2α⎛⎫∈ ⎪⎝⎭使得()0f α=,所以()()1π0f x f <<,又3π123πe 02f -⎛⎫=> ⎪⎝⎭,所以()23π02f x f ⎛⎫>> ⎪⎝⎭,则存在3ππ,2β⎛⎫∈ ⎪⎝⎭使得()0f β=,又()12π2πe10f -=+>,所以函数()f x 在区间()2,2πx x ∈上无零点;故函数在()0,2πx ∈上有两个零点,αβ,且π3ππ22αβ<<<<, 由()()0f f αβ==可得:11e cos 0,e cos 0αβαβ--+=+=,所以11cos e ,cos e αβαβ--=-=-, 又111111e e e e αβαβαβαβ----<⇒->-⇒>⇒-<-, 所以()cos cos cos 2παββ<=-, 根据π3ππ22αβ<<<<,可得:ππ2α<<,π2ππ2β<-<,并且函数cos y x =在π,π2⎛⎫⎪⎝⎭上单调递减,所以2παβ>-,即2παβ+>,故()f x 的两个零点之和大于2π.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.【答案解析】(1)因为1a =,所以()2()ln 0f x x x x x =-->,令()()ln 0x x x x ϕ=->,则()111x x x xϕ-'=-=, 令()0x ϕ'>,得1x >;令()0x ϕ'<,得01x <<; 所以()x ϕ在()0,1上单调递减,在()1,+∞上单调递增, 所以()()11ln10x ϕϕ≥=->,即ln 0x x ->恒成立, 所以2()ln f x x x x =-+,则1()21f x x x'=-+, 所以切线的斜率为()12k f '==,又切点为(1,0),所以切线方程为()21y x =-,即22y x =-.(2)令()0f x =,则2ln x x a x =-,该式等价于2ln x x a x =-或2ln x x a x =-+,当2ln x x a x =-时,有2ln x a x x =--,令()()20m x x x x =->,()ln n x a x =-,则2ln x x a x =-的解的个数即为()m x 与()n x 的交点个数,易知()m x 开口向上,对称轴为12x =, 所以()m x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,且()()010m m ==,而ln y x =在()0,∞+上单调递增,02e a <<,所以()ln n x a x =-在()0,∞+上单调递减,且()10n =,作出()m x 与()n x 的图像,如图,所以()m x 与()n x 的交点只有一个,且为()1,0,故2ln x x a x =-只有一个解;当2ln x x a x =-+时,因为当1x =时,该式不成立,所以2ln x a xx=+,令()()20ln x x h x x x+=>,则2(12)ln (1)()(ln )x x x h x x +-+'=, 令()()(12)ln (1)0s x x x x x =+-+>,则1()2ln 1s x x x'=++, 令()()12ln 10g x x x x=++>,则()221x g x x -'=,令()0g x '>,得12x >;令()0g x '<,得102x <<;所以()g x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 112ln 2132ln 2022g x g ⎛⎫==++=-> ⎪⎝⎭,故()()0s x g x '=>,所以()s x 在(0,)+∞上单调递增,因为()10,e e 02ss =-<=>,所以存在0x ∈,使得()00s x =,则()s x 在0(0,)x 上()0s x <,在0(,)x +∞上()0s x >, 所以()()2()ln s x h x x '=在()0,1上()0h x '<,在()01,x 上()0h x '<,在()0,x +∞上()0h x '>,所以() h x 在()0,1上单调递减,在()01,x 上单调递减,在()0,x +∞上调递增, 因为()00s x =,所以000(12)ln (1)0x x x +-+=,即000121ln 1x x x +=+, 所以()()()2200000000min0012ln 112x x x h x h x x x x x x x ++===+⋅=++,因为22y x x =+在()0,∞+上单调递增,0x ,所以20022e 2e 2x x +>⨯+>,故()()02e h x h x ≥>, 又因为02e a <<,所以方程()a h x =无解,即方程2ln x a x x=+无解,故2ln x x a x =-+无解;综上:当02e a <<时,2ln x x a x =-与2ln x x a x =-+只有一个解,即()f x 只有一个零点. 例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.【答案解析】(1)由题意()0f x ≥在(π,π)-上恒成立,得π()sin e 0x f x x a --≥= ,即πe e sin x a x ≤恒成立,令()e sin x m x x =,则()()e sin cos xm x x x '=+ ,当(π,π)x ∈-时,π3π5π(,)444x +∈-,令()()e sin cos 0xm x x x '=+>π04x +>,则π(0,π)4x +∈,得π3π44x -≤<,令()()e sin cos 0xm x x x '=+<π04x +<,π3π(,0)44x +∈-或π5π(π,)44x +∈得 ππ4x -<<-或3ππ4x <<, 所以()()e sin cos xm x x x '=+在π(π,)4--和(3π,π)4为减函数,在π3π(,)44-上为增函数,()π(π)=0m m =- ,ππ()()44ππ(e sin()44m ---=-=,故π()4min ()m x -=,故π(π4e a -≤,即5π()4a -≤,综上 ,实数a 的取值范围5π()4(,e ]2--∞ .(2)由题意()sin e ()cos e x x f x x a f x x a π-π-'=-=+,, ()π10,1f a a '=-+=∴= ,由()1f x =-,得πsin e 10x x --+= , 令()πsin e1xs x x -=-+ ,()πcos e x s x x -'=+ 令()πcos e x x x g -=+,π()sin e x g x x -'=--,令ππ()sin e ()cos e ,x x h x x h x x --'=--=-+()h x '在[]*(21)π,(22)π,N k k k ++∈上单调递减,注意到2ππ2π((21)π)1e 0,((22)π))1e 0k k h k h k ---''+=+>+=-+<, ∴存在()()021π,22()πx k k ∈++,使0()0h x '=, 且当()021πk x x +≤<时,()0h x '> ,()g x ' 单调递增, 当()02π2x x k <≤+时,()0h x '<,()g x '单调递减,且2ππ2π((21)π)e 0,((22)π)e 0k k g k g k ---''+=-<+=-< ,π2π23((21e 02k g k --'+=-> ,所以()g x '在3(21)π,(22k k ⎛⎫++ ⎪⎝⎭和3(2)π,(22)π2k k ⎛⎫++ ⎪⎝⎭上各有一个零点,设为12,x x ,且当()1[21π,)x k x ∈+时,()s x '单调递减;12(,)x x x ∈时,()s x '单调递增, 当()2(,22π]x x k ∈+时,()s x '单调递减 且()()()()2ππ2π211ππe0,221e 0k k s k s k ---''+=-+<+=+> ,∴当()121πk x x +≤≤时,()()()21π0x s k s +''<< , 当()222πx x k <≤+ 时,()()()22π0x s k s +''>>, 故()s x '在12(,)x x 上有唯一的零点,设为3x ,且当()321πk x x +<< ,时,()0s x '< ,()s x 在()321π)(,k x +上单调递减; 当()322πx x k <<+ 时,()0s x '>,()s x 在()3,22π()x k +上单调递增. 注意到2ππ2π((21)π)e 10,((22)π)e 10k k s k s k ---+=-+>+=-+> ,π2π23((2)π)e 02k s k --+=-< ,所以:()s x 在3((21)π,(2)π)2k k ++和3((22)π)2k k ++上各有一个零点,设为45,x x ,所以()s x 共两个零点,故方程()1f x =-()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数为2. 例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e xf x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.【答案解析】(1)()()2e 2x h x x x a =-++定义域为R ,所以()()2e 2x h x a x '=+-,①当20a +≤即2a ≤-时,()0h x '≤恒成立, 函数()h x 在(),x ∈-∞+∞上为单调递减函数.②当20a +>即2a >-时,令()0h x '>得:x <<,令()0h x '<得:x <x >所以,函数()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减综上所述,当2a ≤-时,函数()h x 在(),x ∈-∞+∞上为单调递减;当2a >-时,()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减;(2)构造()()()2e 2x F xf xg x x x a =-=+--,所以()22e xF x x '=+-.记()()m x F x '=,()20e xm x '=+>恒成立,即()m x 在(),x ∈-∞+∞上单调递增.而()00210e m =-=-<,1102m ⎛⎫=> ⎪⎝⎭,所以存在唯一的010,2x ⎛⎫∈ ⎪⎝⎭使得()00m x =,即000e 22xx +-=,由()e x f x =,()22g x x x a =-++可得()e xf x '=,()22g x x '=-+,所以()00e xf x '=,()0022g x x '=-+,所以()()00f x g x ''=,即曲线()y f x =与()y g x =在点M 处有相同的切线.又因为当()0,x x ∈-∞时,()0F x '<,当()0,x x ∈+∞时,()0F x '>, 故()F x 在()0,x x ∈-∞上单调递减,在()0,x x ∈+∞上单调递增, 故()F x 在0x x =上取得极小值,也是最小值, 即()()min 0F x F x =,由于函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,所以()00F x =,即0200e 20x x x a +--=,故()02220000e 24222x a x x x x x =+-=-+=--,010,2x ⎛⎫∈ ⎪⎝⎭,所以()2022a x =--在010,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以1,24a ⎛⎫∈ ⎪⎝⎭,综上,曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.【答案解析】(1)函数2()e x f x x x =-,x ∈R ,则()()1e 2xf x x x =+-', 令()()()1e 2x h x f x x x ==+-',则()()2e 2x h x x +'=-,设()()2e 2xm x x =+-,则()()3e 0x m x x +'==,得3x =-,故(),3x ∈-∞-时,()0m x '<,函数()m x 即()h x '单调递减,()3,x ∈-+∞时,()0m x '>,函数()m x 即()h x '单调递增,所以min 31()(3)20e h x h =-=--<',又x →-∞时,()h x '→-∞,又(0)0h '=, 所以(),0x ∈-∞时,()0h x '<,函数()f x '单调递减,()0,x ∈+∞时,()0h x '>,函数()f x '单调递增,故()f x '的单调减区间为(),0∞-,增区间为()0,∞+;(2)关于x 的方程21e =e 2x x x ax +有两个不相等的实根,即函数()21e e 2x xg x x ax =-+,在x ∈R 上有两个零点,又()()()1e e e x x xg x x ax x a =+-+=+',①当0a ≥时,()0g x '=,得0x =,所以当(),0x ∈-∞时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()min 01g x g ==-,又x →-∞时,()g x →+∞,()22e 20g a =+>,则函数()g x 在x ∈R上有两个零点;②当0a <时,()0g x '=,得0x =,()ln x a =-,(i )当1a =-时,()ln 0a -=,此时()0g x '≥恒成立,函数()g x 单调递增,在x ∈R 上不可能有两个零点,不符合题意;(ii )当10a -<<时,()ln 0a -<,则当()(),ln x a ∈-∞-时,()0g x '>,函数()g x 单调递增,()()ln ,0x a ∈-时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()()()()()2211ln ln ln ln 11022g a a a a a a a a ⎡⎤-=--++-=--+<⎣⎦,()01g =-,故函数()g x 在区间(),0x ∈-∞无零点,在()0,x ∈+∞不可能存在两个零点,故不符合题意;(iii )当1a <-时,()ln 0a ->,则当(),0x ∈-∞时,()0g x '>,函数()g x 单调递增,()()0,ln x a ∈-时,()0g x '<,函数()g x 单调递减,当()()ln ,x a ∈-+∞时,()0g x '>,函数()g x 单调递增,又()01g =-,故函数()g x 在区间()(),ln x a ∈-∞-无零点,在()()ln ,x a ∈-+∞不可能存在两个零点,故不符合题意; 综上,实数a 的取值范围[)0,∞+.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.【答案解析】(1)2()e x f x ax =-,则()e 2x f x ax '=-, 因为2x =是函数()f x 的极值点,所以(2)0f '=,即2e 40a -=,解得2e 4a =.当2e 4a =时,2e ()e 2xf x x '=-,当(1,2)x ∈时,()0f x '<,函数()f x 单调递减, 当(2,)x ∈+∞时,()0f x '>,函数()f x 单调递增, 所以2x =是函数()f x 的极小值点,故2e 4a =; (2)由(1)知,22e ()e 4xf x x =-,令()0f x =,则22e e 4xx =,作e xy =和22e 4y x =函数图象,如图所示,由图可知,两函数图象有2个交点,且一个交点分布在(,0)-∞上,另一个分布在(0,)+∞上, 所以方程()0f x =有2个解,即函数()y f x =有2个零点. 易知2是函数()f x 的一个零点,设另一个零点为0x ,又(0)10=>f ,2222e e 2e 2()e ()e 10e 4ef ---=--=-<,所以2(0)()0e f f -<,又函数()f x 在定义域上连续,由零点的存在性定理,知02(,0)ex ∈-;(3)由(1)知,22e ()e 4xf x x =-,当0x =时,(0)1f =, 当0x ≠时,令()0f x =,则22e 14x x -=, 设22e (0)()x h x x x -=≠,则()0h x >,23e (2)()x x x h x --=',令()00h x x '>⇒<或2x >,令()002h x x '<⇒<<,所以函数()h x 在(,0)-∞和(2,)+∞上单调递增,在(0,2)上单调递减, 又1(2)0,(2)4h h ->=,2ln 221-<-<-,得111ln 222-<<-- 所以213132,0()1ln 222ln 22-<-<-<<--,又332e >16e 4⇒>,所以当1ln 22x =-时,1322ln 2223322221e e (ln 22)11()11ln 224(()e e ln 22ln 22h ----=<=<<---, 作出函数()y h x =和14y =的图象,如图所示,由图可知,两函数图象的交点的的横坐标都大于1ln 22-,故函数()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.【答案解析】(1)函数f (x )的定义域为()()()21,00,,e xf x x '-∞⋃+∞=-记()()g x f x '=,则()3332e 2e x x x g x x x '+=+=. 当()0,x ∈+∞时,()0g x '>,则()g x 在()0,+∞上单调递增,当(),0x ∈-∞时,记()()()32e 2,3e xx x x x x x ϕϕ'=+=+,所以(),3x ∈-∞-时,()0x ϕ'<,()x ϕ递减;()3,0x ∈-时,()0x ϕ'>,()x ϕ递增,()x ϕ的极小值为()333332e e 332e 0ϕ⎛⎫-=-> ⎪-⎝=⎭,即有()0x ϕ>, 因此()0g x '<, g (x )在(,0)-∞上单调递减,所以函数()f x '在()0,+∞上单调递增,在(,0)-∞上单调递减.(2)令()()()()211e ,e xx F x f x ax ax F x f x a a x x'=-=+-=-=--' 方程()f x ax =(R a ∈)有三个实数根等价于F (x )有三个零点123,,x x x ,12301x x x <<<<,当0a ≤时,因为0x >,则()0F x >,此时F (x )在()0,+∞无零点; 当0a >时,由(1)知()F x '在()0,+∞上单调递增,显然1()402F a '=--<,21(ln(e ))e e 10(ln(e ))F a a '+=->->+, 因此存在00x >,使得()00F x '=,()00,x x ∈,()()0,F x F x '<单调递减,()0,x x ∈+∞,()()0,F F x x '>单调递增,①若e 1a =+,则()1e 10F a =+-=,不符合题意;②若0e 1a <<+,()1e 10F a =+->,当01x ≥时,(0,1)x ∈,()0F x >,()F x 在()0,1上无零点,当01x <时,()()1,,0x F x ∈+∞>,()F x 在()1,+∞上无零点,不符合题意, ③若e 1a >+,则()1e 10F a =+-<,()1e 10F a '=--<,于是01x >, 而当01x <<时,1e e x <<,0a ax -<-<,但1x的取值集合是(1,)+∞, 因此存在(0,1)t ∈,使得()0F t >,当1x >时,令2()e x h x x =-,()e 2x h x x '=-,令()()e 2x u x h x x '==-,则()e 2e 20x u x '=->->,即()h x '在(1,)+∞上单调递增,()(1)e 20h x h ''>=->, ()h x 在(1,)+∞上单调递增,()(1)e 10h x h >=->,因此当1x >时,2e x x >,有()2211e xF x ax x ax x ax x x=+->+->-,因为当x a ≥时,二次函数2x ax -的值域是[0,)+∞,于是得当x a ≥时,()0F x >,因此存在2301x x <<<,使得()()230F x F x ==,此时当0x <时,()e 10xF x a a '<-<-<,即函数F (x )在(,0)-∞上单调递减, 由()11111e 10,e 1e e 0a a F a F a a ---⎛⎫-=-+>-=-+<-< ⎪⎝⎭因此存在10x <,使得()10F x =,从而当e 1a >+时,F (x )有三个零点123,,x x x ,且12301x x x <<<<, 所以实数a 的取值范围是()e 1,++∞.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【答案解析】(1)因为()e x f x =,则()e x f x '=,所以,()()001f f '==,所以,()y f x =在0x =处的切线方程为1y x =+. (2)当()1,x ∈+∞时,不等式()ln g x x x a <+等价于()1ln 01a x x x -->+. 设()()1ln 1a x p x x x -=-+,则()()()()2222111211x a x a p x x x x x +-+'=-=++,且()10p =. 对于函数()2211y x a x =+-+,()()241442a a a ∆=--=-.(ⅰ)当2a ≤且()1,x ∈+∞时,()22211210x a x x x +-+≥-+>,故()0p x '>,则()p x 在()1,+∞上单调递增,因此()()10p x p >=; (ⅱ)当2a >时,令()0p x '=得11x a =-21x a =-由122110x x x x =⎧⎨>>⎩得101x <<,21x >,故当()21,x x ∈时,()0p x '<,()p x 在()21,x 单调递减,因此()()210p x p <=,不合乎题意.综上,a 的取值范围是(],2-∞.(3)①()e xh x ax =-的定义域为R ,而()e x h x a '=-,若0a ≤,则()0h x '>,此时()h x 无最小值,故0a >. 函数()ln g x ax x =-的定义域为()0,∞+,而()11ax g x a x x-'=-=. 当ln x a <时,()0h x '<,故()h x 在(),ln a -∞上为减函数, 当ln x a >时,()0h x '>,故()h x 在()ln ,a +∞上为增函数, 故()()min ln ln h x h a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故()min 111ln 1ln g x g a a a ⎛⎫==-=+ ⎪⎝⎭.因为()e xh x ax =-和()ln g x ax x =-有相同的最小值,故1n ln l a a a a =-+,整理得到1ln 1a a a-=+,其中0a >, 设()1ln 1a s a a a -=-+,其中0a >,则()()()222211011a s a a a a a --'=-=<++, 故()s a 为()0,∞+上的减函数,而()10s =,故()0s a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =.②由①可得()e xh x x =-和()ln g x x x =-的最小值为1ln11+=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数, 所以()()min 010S x S b ==-<, 而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即方程e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,()0T x '<,当1x >时,()0T x '>, 故()T x 在()0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由①讨论可得ln x x b -=、e x x b -=仅有一个解, 当1b <时,由①讨论可得ln x x b -=、e x x b -=均无根,故若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x t x x x =+-,其中0x >,故()1e 2xt x x'=+-, 设()e 1x r x x =--,其中0x >,则()e 10xr x '=->,故()r x 在()0,∞+上为增函数,故()()00r x r >=即e 1x x >+, 所以()11210t x x x'>+-≥->,所以()t x 在()0,∞+上为增函数, 而()1e 20t =->,31e 333122e 3e 30e e e t ⎛⎫=--<--< ⎪⎝⎭,故()t x 在()0,∞+上有且只有一个零点2x ,且2311e x <<, 当20x x <<时,()0t x <,即e ln x x x x -<-,即()()h x g x <, 当2x x >时,()0t x >,即e ln x x x x ->-,即()()h x g x >,因此若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点, 故()()221b h x g x ==>,此时e x x b -=有两个不同的根1x 、()2120x x x <<, 此时ln x x b -=有两个不同的根2x 、()32301x x x <<<,故11e xx b -=,22e x x b -=,33ln 0x x b --=,22ln 0x x b --=,所以33ln x b x -=,即33e x bx -=,即()33e 0x bx b b ----=,故3x b -为方程e x x b -=的解,同理2x b -也为方程e x x b -=的解,又11e x x b -=可化为11e xx b =+,即()11ln 0x x b -+=,即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理2x b +也为方程ln x x b -=的解,所以{}{}1223,,x x x b x b =--,而1b >,故2312x x bx x b =-⎧⎨=-⎩,即1322x x x +=.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.【答案解析】(1)()f x 的定义域是(1,)-+∞,22212(42)(1)()1(2)(1)(2)a x a x f x x x x x +'-+=-=++++. ①当2a ≤时,()0f x '≥,所以()f x 在(1,)-+∞上单调递增, 又因为(0)0f =,所以当0x ≥时,()(0)0f x f ≥=,满足题意; ②当2a >时,令22()(42)(1)(42)(42)g x x a x x a x a =+-+=+-+-, 由()0g x =,得1(2)0x a =-<,2(2)0x a -=>. 当()20,x x ∈时,()0g x <,()0f x '<,所以()f x 在()20,x 上单调递减, 所以()()200f x f <=,不满足题意. 综上所述,2a ≤.(2)①当2a ≤时,由(1)可得()f x 在(1,)-+∞上单调递增,且(0)0f =,所以()f x 在(1,)-+∞上存在1个零点;②当2a >时,由(1)可得()0g x =必有两根1x ,2x ,又因为(1)10g -=>,(0)420g a =-<所以1(1,0)x ∈-,2(0,)x ∈+∞.x ()11,x -1x()12,x x2x()2,x +∞()f x '+-+()f x单调递增 极大值()1f x 单调递减 极小值()2f x 单调递增当()12,x x x ∈时,因为(0)0f =,所以()f x 在()12,x x 上存在1个零点, 且()()100f x f >=,()()200f x f <=; 当()11,x x ∈-时,因为()()e 12ee 1ln e 0e 1e l---------=-=<++a aa a aaa a f ,1e 10--<-<a ,而()f x 在1(0,)x 单调递增,且1()0f x '=,而(e 1)0a g -->,故11e 1ax --<-<,所以()f x 在()11,x -上存在1个零点; 当()2,x x ∈+∞时,因为()()e 12e 1ln e 0e 1e 1a a a a a a af --=-=>++, e 10a ->,而()f x 在2(,)x +∞单调递增,且2()0f x '=,而(e 1)0ag ->, 所以2e 1ax ->,所以()f x 在()2,x +∞上存在1个零点.从而()f x 在()1,-+∞上存在3个零点.综上所述,当2a ≤时,()f x 存在1个零点;当2a >时,()f x 存在3个零点.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案解析】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=因为0x >,所以1x =()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=, 若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=, 01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=. 设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解, 即(1)0g a -=无解,故a<0不符合题意.综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围. 【答案解析】(1)由()1e e e 1log e e ea g a =⇒++=⇒=, 所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>, 所以()f x 在(,1)-∞上递减,在(1,)+∞上递增, 所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >), ()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭, 令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+, 令()10ln x x aϕ'=⇒=-, 当10ln x a<<-时,()0x ϕ'<; 当1ln x a>-时,()0x ϕ'>, 所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增, 所以()11ln min11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,。
高三数学二轮复习专题讲解 第14讲 易错点-函数与导数专题综述函数与导数是高考中的重点和难点,各种题型都有考查,也有一定的计算量!但我们要必拿选择填空的中等题分数,主要考查的知识点有函数的概念(函数的定义域、解析式、值域)、性质(单调性、奇偶性、对称性)、图象,导数的概念及其几何意义;对这些知识理解不到位或把握不全面或对题意理解不准确,就容易造成会而不对、对而不全的结果专题探究探究1:函数性质掌握不牢致错函数的单调性、奇偶性、周期性等在考题中不限制于以课本的定义给出,我们要关注它们等价变形形式和相关结论,如单调性的等价变形形式有: (1)若[]12,,x x a b ∀∈,12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦()()12120f x f x x x -⇔>-()f x ⇔在[],a b 上是增函数;()()()12120x x f x f x --<⎡⎤⎣⎦()()12120f x f x x x -⇔<-()f x ⇔在[],a b 上是减函数.(2) 若12x x ≠,且()()1212f x f x k x x ->-,则()y f x kx =-是增函数.奇偶性的相关结论有:(1)()f x 是偶函数⇔()()()()()()0f x f x f x f x f x f x =-⇔=⇔--=; (2)()f x 是奇函数⇔()()()()0f x f x f x f x -=-⇔+-=; (3)若函数()f x 在0x =处有意义,则()00f =;(4)()f x a +是偶函数,则()()f x a f x a +=-+,()f x 是偶函数,则()()f x a f x a +=-+. 利用函数的对称性与奇偶性会推导函数的周期性:(1)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =;若()f x 为偶函数,则其周期为2T a =.(2)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x ∈R 的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(2022江苏联考)已知函数(1)y f x =-的图象关于直线1x =-对称,且对x R ∀∈有()() 4.f x f x +-=当(0,2]x ∈时,() 2.f x x =+则下列说法正确的是(). ()f x 的最小正周期是8 . ()f x 的最大值为5 . (2022)0f = . (2)f x +为偶函数 【规范解析】解:.A 因为(1)y f x =-的图象关于直线1x =-对称,所以()f x 关于直线2x =-对称;即有()(4)f x f x =--,()(4)f x f x -=-,又()()4f xf x +-=,所以(4)(4)4f x f x --++=,即()(4)4f x f x ++=,所以()4(f x f x =-+,又()4f x f x=--,()(4)(4)f x f x f x -=+=-,所以()(8)f x f x =+,所以()f x 的周期8T =,故 正确; .由 知(2022)(20228)f f =-(202288)(6)(2)4(2)440f f f f =--===-=-=-=,故 正确; .由 知()(4)f x f x -=+所以(2)(2)f x f x +=-+,则(2)f x +为偶函数,故 正确; .当(0,2]x ∈时,()2f x x =+,结合以上知函数图象大致为则()f x 的最大值为4,故 错误.故答案选:.ACD(2022福建联考)已知定义在 上的函数()f x ,对任意实数x 有(4)()f x f x +=-,函数(1)f x +的图象关于直线1x =-对称,若当(0,1]x ∈时()f x x =,则()A. ()f x 为偶函数B. ()f x 为周期函数C. (2023)1f =-D. 当[3,4)x ∈时,()f x =探究2:函数图象识别时不细致致错函数图象是函数性质的直观反映,由函数表达式识别函数图象时由于我们平时形成的一些错误的认识,还有惯性思维,不做深入的研究,导致得出错误的结论.我们在辨别图象时可从奇偶性、单调性、特殊值等方面来排除不合适的,从而得到正确答案.(2022福建联考)函数31()cos (66)31x x f x x x -=-+剟的图象大致为()A. B. C. D.【规范解析】解:函数31()cos (66)31x x f x x x -=-+剟,满足3113()cos()cos ()3113x xx x f x x x f x -----=-==-++,()f x ∴为奇函数,()f x 的图象关于原点对称,排除 ,.B 当x π=时,13()013f πππ-=<+,排除.C 故选.D (2022福建省福州市期中)我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.观察以下四个图象的特征,试判断与函数()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟相对应的图象是()A. B. C.D.探究3:比较大小时没有选对方法致错在比较数与式的大小时常利用指数函数、幂函数及对数函数单调性比较大小.若比较指数式与对数式的大小,或同是指数式(对数式)但底数不相同,这些情况下常利用中间量比较大小,常用的中间量是0,1,1-,有时也可借助13,2,22等中间量来比较大小.若两个式子结构比较复杂,但结构类似,这种情况下常利用式子的结构构造函数,然后利用函数单调性比较大小.(2022江苏联考)如果01a <<,那么下列不等式中正确的是()A. 1132(1)(1)a a ->- B. (1)log (1)0a a -+>C. 32(1)(1)a a ->+D. 1(1)1a a +->【规范解析】解:由题意 01a <<,所以()()10,1a -∈,()()11,2a +∈,得()1xy a =-为R 上的减函数,又1123>,所以()()113211a a ->-,10(1)(1=)1a a a +-<-而(1)log a y x -=单调递减,(1)(1)log (1)log 1=0a a a --+<, 32(1)1(1)a a -<<+,故选:.A(2022安徽省池州市单元测试)已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若ln3(4)a f =,(2)eb f -=,1(ln)(c f π=其中e 为自然对数的底数,π为圆周率),则a ,b ,c 的大小关系为()A. a c b >>B. a b c >>C. c a b >>D. c b a >>探究4:混淆两类切线致错求曲线的切线方程一定要注意区分“过点A 的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点,求曲线过某点的切线方程一般先设切点把问题转化为在某点处的切线,求过某点的切线条数一般也是先设切点,把问题转化为关于切点横坐标的方程实根个数问题.(2022山东模拟)已知直线y kx =是曲线x y e =的切线,也是曲线ln y x m =+的切线,则实数k =__________,实数m =__________. 【规范解析】解:设y kx =与x y e =和ln y x m =+的切点分别为11(,)x x e ,22(,ln )x x m +,x y e =的导数xy e '=,1x e k ∴=,且11x k x e=,解得11x =,k e ∴=;ln y x m =+的导数1y x'=,21k e x ∴==,21x e ∴=,又22ln kx x m =+,11ln 2.m e e e∴=⨯-=故答案为 ;2.(2022河南信阳月考)若曲线2y x =与ln()y x a =-有一条斜率为2的公切线,则()a =A. 1ln 22- B. 1ln 22C. ln 2-D. ln 2探究5:混淆导数与单调性的关系致错研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零.若研究函数的单调性可转化为解不等式()()()()1200a x x x x x --><>或0,首先根据a 的符号进行讨论,当a 的符号确定后,再根据12,x x 是否在定义域内讨论,当12,x x 都在定义域内时在根据12,x x 的大小进行讨论.(2022福建省福州市期中)已知函数()ln nx f x x mx xe =+-(1)当0n =时,讨论函数()f x 在区间(0,3)的单调性【规范解析】解:(1)当0n =时,函数()ln (03)f x x mx x x =+-<<,1(1)1()1m x f x m x x-+'=+-=当1m …时,(0,3)x ∈,()0f x '>,()f x ∴在(0,3)上单调递增, 当1m <时,令1()0,1f x x m'==-, ①当131m <-时,即23m <时, 由()0f x '>得:101x m <<-,由()0f x '<得:131x m<<-, ∴当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m-上单调递减. ②当131m-…时,即213m <…时,由03,()0x f x <<'>得03x <<,∴当213m <…时,函数()f x 在(0,3)上单调递增,综上所述:当23m …时,函数()f x 在(0,3)上单调递增;当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m -上单调递减.(2022河北联考)已知函数()ln sin f x a x x x =-+,其中a 为非零常数.(1)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围;探究6:混淆导数与极值的关系致错对于可导函数f (x ):x 0是极值点的充要条件是在x 0点两侧导数异号,且0()0f x '=,即0()0f x '=是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又考虑检验“左正右负”或“左负右正”,防止产生增根.(2022河北省张家口市期中)已知函数()f x 的导函数()f x '的图象如图,则下列叙述正确的是()A. 函数()f x 只有一个极值点B. 函数()f x 满足(4)(1)f f -<-,且在4x =-处取得极小值C. 函数()f x 在2x =处取得极大值D. 函数()f x 在(),4-∞-内单调递减【规范解析】解:由导函数的图象可得,当2x <时,()0f x '≥,函数()f x 单调递增;当2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递减区间为()2,+∞, 只有当2x =时函数取得极大值,无极小值. 故选:.AC(2022湖南联考)已知函数()(3)2.x f x x e x -=++(1)证明:()f x 恰有两个极值点;探究7:函数零点与方程的根不会转化致错确定函数零点所在区间、零点个数或已知函数零点情况求参数,常通过数形结合转化为两个函数图象的交点个数问题,所以研究函数与方程问题不要得“意”忘“形”.(2022河北期中)已知函数,()e ,x xx a f x x x a⎧⎪=⎨⎪<⎩…,若存在不相等的1x ,2x ,3x ,满足123()()()f x f x f x ==,则实数a 的取值范围是__________.【规范解析】解:由题意可知,对于()xx f x e=,则1().x xf x e -'=当1x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减,当1x =时,函数()f x 取得最大值为1(1)f e =,如图,分别画出函数x xy e =和y x =在 上的图象,用一条平行于x 轴的直线y m =截图象,有3个交点时,即存在1x ,2x ,3x ,使得123()()()f x f x f x m ===,当(1,)a ∈+∞或(,0]a ∈-∞时,最多有2个交点,所以不成立;当(0,1)a ∈时,存在3个交点,所以a 的取值范围是(0,1). 故答案为:(0,1)(2022福建月考)函数()ln (),0()(2),(0)x x f x x x x ⎧-<=⎨-⎩…,若关于x 的方程22()()10f x af x -+=有6个不相等的实数根,则a 的取值范围是__________.专题升华函数的定义域是研究函数图象与性质的第一要素,性质是函数的基本属性,图象是其性质的外在表现;把握各性质的定义和等价表达式是根本;导数是研究函数性质的的根本工具,遇到参数时要紧记“分类讨论”;导函数图象与原函数图象的关系不能混淆!复合函数要会分解,定义域先行,内层函数的值域是外层函数的定义域,要清醒对待两者的身份!【答案详解】变式训练1【答案】.ABD【解析】由函数(1)f x +的图象关于直线1x =-对称可知,函数()f x 的图象关于 轴对称, 故()f x 为偶函数.选项 正确;由(4)()f x f x +=-,得(44)(4)()f x f x f x ++=-+=,()f x ∴是周期8T =的偶函数,(2023)(25381)(1)(1) 1.f f f f ∴=⨯-=-==选项 正确,选项 错误;设[3,4)x ∈,则4[1,0),4(0,1],x x -∈--∈()f x 为偶函数,(4)(4)f x f x ∴-=-,由(0,1]x ∈时,()f x =,得(4)(4.f x f x -=--又(4)()f x f x +=-,()(4)f x f x ∴=--=选项 正确.故选:.ABD变式训练2【答案】【解析】因为()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟,所以()()1sin f x x x f x x ⎛⎫-=-+=- ⎪⎝⎭,所以()f x 为奇函数,其图象关于原点中心对称,故排除 、 选项; 又0x π<<时,()10f =,令6x π=,则6sin 0666f ππππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,故排除 选项.故选:.D变式训练3【答案】【解析】根据题意,函数(2)y f x =-的图象关于直线2x =对称,则函数()f x 的图象关于 轴对称,即函数()f x 为偶函数,满足()()f x f x -=,则1(l n )(l n )c f f ππ==,ln31444ln ln 120e e π->=>>=>>, 又由(0,)x ∈+∞时,()f x 单调递增,则有a c b >>;故选:.A变式训练4【答案】【解析】由2y x =得2y x '=,令22y x '==,解得1x =,由点斜式得切线方程:12(1)y x -=-,即21y x =-,由l n ()y x a =-,得1y x a '=-,令12y x a '==-,解得12x a =+,代入ln()y x a =-得:ln 2y =-,将1(,ln 2)2a +-代入21y x =-,得:11ln 22()1ln 222a a -=+-⇒=-,故选:.A变式训练5【解析】(1)由题知()cos 1(0)af x x x x'=-+>,若0a >,因为0x >,1cos 0x -…,则()0f x '>,所以()f x 在(0,)+∞上单调递增,若0a <,则当0,2a x ⎛⎫∈- ⎪⎝⎭时,2a x <-,从而11 / 11 ()2cos 1(1cos )0f x x x '<--+=-+…,所以()f x 在0,2a ⎛⎫- ⎪⎝⎭上单调递减,不满足题意,综上分析,a的取值范围是(0,).+∞变式训练6【解析】(1)证明:依题意()f x 的定义域为 ,()(2)2x f x x e -'=-++,令()(2)2x m x x e -=-++,()(1).x m x x e -'=+当(1,)x ∈-+∞时,()0m x '>,所以()f x '在(1,)-+∞单调递增;当(,1)x ∈-∞-时,()0m x '<,所以()f x '在(),1-∞-单调递减.又因为(1)20f e '-=-<,(0)0f '=,(2)20f '-=>,所以()f x '在(),1-∞-恰有1个零点0x ,在()1,-+∞恰有1个零点0,且当0(,)x x ∈-∞时,()0f x '>,当0(,0)x x ∈时,()0f x '<,当(0,)x ∈+∞时,()0.f x '>所以()f x 在0(,)x -∞单调递增,在0(,0)x 单调递减,在(0,)+∞单调递增.所以()f x 恰有一个极大值点0x 和一个极小值点0,即()f x 恰有两个极值点.变式训练7【解析】函数()f x 的图象如图所示,令()t f x =,结合图象可知,若关于x 的方程22()()10f x af x -+=有6个不等的实数根,则关于 的方程2210t at -+=在[0,1)有两个不等实数根,因为221y t at =-+的图象过点(0,1),则280014210a a a ⎧∆=->⎪⎪<<⎨⎪-+>⎪⎩,解得3.a <<故答案为:。
专题19:双变量问题1.已知函数2()1(0)f x lnx ax x a =--++>.(Ⅰ)若()f x 是定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若()f x 在定义域上有两个极值点1x ,2x ,证明:12()()522f x f x ln +>-.【解析】(Ⅰ)2()1f x lnx ax x =--++,∴221()ax x f x x-+'=-令2()21(0)g x ax x x =-+>则△18a=-0a >,∴对称轴104x a=>①当18a 时,△0 ,()0g x ,()0f x '∴ ,故()f x 在(0,)+∞单调递减.②当108a <<时,△0>,方程2210ax x -+=有两个不相等的正根1x ,2x 不妨设12x x <,则当(0x ∈,12)()x x +∞时,()0f x '<,当1(x x ∈,2))x 时,()0f x '>,这时()f x 不是单调函数.综上,a 的取值范围是18a .(Ⅱ)由(Ⅰ)知,当1(0,)8a ∈,()f x 有极小值点1x 和极大值2x ,且1212x x a+=,1212x x a=,2212111222()()2f x f x lnx ax x lnx ax x +=--+--++12121211()(1)(1)()222lnx lnx x x x x =-+----+++121211()()3(2)324ln x x x x ln a a=-+++=++,令11()(2)3,(0,]48g a ln a a a =++∈,则当1(0,)8a ∈时,221141()044a g x aa a -'=-=<,g ∴(a )在1(0,8单调递减,所以1()(5228g a g ln >=-,故12()()522f x f x ln +>-.2.已知函数21()(0)2f x x x alnx a =-+>(1)若1a =,求()f x 的图象在(1,f (1))处的切线方程;(2)若()f x 在定义域上是单调函数,求a 的取值范围;(3)若()f x 存在两个极值点1x ,2x ,求证:12322()()4ln f x f x ++>-.【解析】(1)11,(1)2a f ==-,函数21()(0)2f x x x alnx a =-+>,可得1()1f x x x'=-+,f '∴(1)1=,∴切线方程为2230x y --=;(2)()1a f x x x'=-+依题意有()0f x ' 或()0f x ' 在(0,)+∞上恒成立,即2a x x -+或2a x x -+ 在(0,)+∞上恒成立,显然2a x x -+不可能恒成立,2a x x ∴-+ ,解得14a ;(3)由()1a f x x x'=-+,()0f x '=得20x x a -+=,即1x ,2x 是()0f x '=的两根,121x x ∴+=-,12x x a =,222121112221212121211111()()()()122222f x f x x x alnx x x alnx x x x x x x alnx x a alna a alna +=-++-+=+-+-+=--+=--+,由已知14a <,∴112244a lna ln ln ->->=-,∴2222ln alna aln >->-,∴12322()()4ln f x f x ++>-.3.设函数241()(0)f x lnx ax a a x=-+>.(1)若()f x 在定义域上为单调函数,求a 的取值范围;(2)设1x ,2x 为函数()f x 的两个极值点,求12()()f x f x +的最小值.【解析】(1)221()(0,0)x ax f x x a x-+'=->>设2()21g x x ax =-+.①△280a =-,即0a < 时,()0g x 恒成立,()0f x ∴' ,()f x ∴在(0,)+∞上为减函数;②△0>,即a >时,()0g x =在(0,)+∞上有两相异实根,()f x ∴在(0,)+∞上不是单调函数,不合题意,综上,0a < ;(2)由(1)知,1x ,2x 为2210x ax -+=的两根,122a x x +=,1212x x =222121122441211()()2814a f x f x ln x ax ln x ax ln lna a x a x ∴+=-++-+=-++.设h (a )22814a ln lna =-++,则h '(a )(4)(4)2a a a+-=,h ∴(a)在4)上单调递减,在(4,)+∞上单调递增,h ∴(a )min h =(4)5152ln =-,12()()f x f x ∴+的最小值为5152ln -.4.已知函数21()2(2f x lnx x ax a =+-为常数).(1)若()f x 是定义域上的单调函数,求a 的取值范围;(2)若()f x 存在两个极值点1x ,2x ,且12||1x x - ,求12|()()|f x f x -的取值范围.【解析】(1)21()2(0)2f x lnx x ax x =+->,222()x ax f x x a x x-+∴'=+-=,设2()2g x x ax =-+,(0,)x ∈+∞,()f x 是定义域上的单调函数,函数()g x 的图象为开口向上的抛物线,()0f x ∴' 在定义域上恒成立,即()0g x 在(0,)+∞上恒成立.又二次函数图象的对称轴为2a x =,且图象过定点(0,2),∴02a 或20280aa ⎧>⎪⎨⎪-⎩,解得:a ∴实数a 的取值范围为(-∞,;(2)由(1)知()f x 的两个极值点1x ,2x 满足220x ax -+=,所以122x x =,12x x a +=,不妨设120x x <<<,则()f x 在1(x ,2)x 上是减函数,12()()f x f x ∴>,12|()()|f x f x ∴-12()()f x f x =-22111222112(2)22lnx x ax lnx x ax =+--+-22112121221()()()22x x x x x x x ln x =--+-+2212121()22x x x ln x =-+222222122222x lnx ln x =--+,令22t x =,则2t >,又12222||1x x x x -=- ,即22220x x --22x < ,2224t x ∴<= .设12()222(24)2h t t lnt ln t t=--+< ,则22(2)()02t h t t-'=>,()h t ∴在(2,4]上单调递增,h (2)0=,h (4)3222ln =-,()(0h t ∴∈,322]2ln -,即12|()()|(0f x f x -∈,322]2ln -,所以12|()()|f x f x -的取值范围为)(0,322]2ln -.5.已知函数2()1(1)f x x aln x =-+-,a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若函数()f x 存在两个极值点1x ,2x ,且12x x <.证明:1221()()f x f x x x >.【解析】(Ⅰ)函数()f x 的定义域为(,1)-∞,求导:222()211a x x af x x x x-+-'=-=--,1x <,令2()22g x x x a =-+-,则△44(2)()48a a =---=-,当480a - 时,即12a ,则2220x x a -+- 恒成立,则()f x 在(,1)-∞上单调减函数,当480a ->时,即12a <,则2220x x a -+-=的两个根为112x =,2x =,当1(,)x x ∈-∞时,()0f x '<,函数()f x 单调递减,当1(x x ∈,1),()0f x '>,函数()f x 单调递增,不符合题意,综上可知:函数()f x 为定义域上的单调函数,则实数a 的取值范围1[2,)+∞;(Ⅱ)证明:由函数有两个极值点,则()0f x '=,在1x <上有两个不等的实根,即2220x x a -+-=,在1x <有两个不等式的实根,1x ,2x ,由102a <<,则121212x x a x x +=⎧⎪⎨=⎪⎩,且11(0,2x ∈,21(2x ∈,1),则211112*********()1(1)(1)(1)2(1)(1)2(1)f x x aln x x x x x ln x x x ln x x x x -+--++-===-++-,同理可得:22221()(1)2(1)f x x x ln x x =-++-,则1221112221()()()2(1)2(1)f x f x x x x ln x x ln x x x -=-+---,22222212(1)2(1)x x lnx x ln x =-+---,令()212(1)2(1)g x x x lnx xln x =-+---,1(2x ∈,1),求导,22()2[(1)]1xg x ln x x x x '=--++-,1(2x ∈,1),由1(2x ∈,1),则2201xx x+>-,则()0g x '>,则()g x 在1(2x ∈,1),上单调递增,则1()()02g x g >=,则1221()()0f x f x x x ->,∴1221()()f x f x x x >成立.6.已知函数()f x lnx =.(1)若曲线()()1ag x f x x=+-在点(2,g (2))处的切线与直线210x y +-=平行,求实数a 的值.(2)若(1)()()1b x h x f x x -=-+在定义域上是增函数,求实数b 的取值范围.(3)设m 、*n R ∈,且m n ≠,求证:||2m n lnm lnn m n --<+.【解析】(1)()1a g x lnx x=+-,21()a g x xx '=-(2分)g()x 在点(2,g (2))处的切线与直线210x y +-=平行,∴11(2)4242a g a '=-=-⇒=(4分)(2)证:由(1)()1b x h x lnx x -=-+得:2221(1)(1)2(1)1()(1)(1)b x b x x b x h x x x x x +--+-+'=-=++()h x 在定义域上是增函数,()0h x ∴'>在(0,)+∞上恒成立22(1)10x b x ∴+-+>,即2212x x b x++<恒成立(6分)2211112222x x x x x ++=+++= 当且仅当11,222x x x ==时,等号成立2b ∴ ,即b 的取值范围是(-∞,2](8分)(3)证:不妨设0m n >>,则1m n>要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,即2(1)1mm n lnm n n-<+(10分)设2(1)()(1)1x h x lnx x x -=->+由(2)知h()x 在(1,)+∞上递增,h∴()x h>(1)0=故2(1)01m m n ln m n n-->+,∴||2m n lnm lnn m n --<+成立(12分)7.已知函数()x lnx ϕ=.(1)若曲线()()1a g x x xϕ=+-在点(2,g (2))处的切线与直线310x y +-=平行,求a 的值;(2)求证函数2(1)()()1x f x x x ϕ-=-+在(0,)+∞上为单调增函数;(3)设m ,n R +∈,且m n ≠,求证:||2m n lnm lnn m n--<+.【解析】(1)()()11(0)a a g x x lnx x xxφ=+-=+->,21()(0)ag x x x x '=->,曲线()()1a g x x xφ=+-在点(2,g (2))处的切线与直线310x y +-=平行,∴1(2)324ag '=-=-,解得14a =;(2)证明:2(1)2(1)()()(0)11x x f x x lnx x x x φ--=-==->++,∴22212(1)2(1)(1)()0(1)(1)x x x f x x x x x +---'=-=++ ,∴函数2(1)()()1x f x x x φ-=-+在(0,)+∞上为单调增函数;(3)不妨设0m n >>,则1m n>,要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,只需证121m m ln n n m n-<+,即证2(1)1m m n ln m n n->+,只需证2(1)01m m n ln m n n-->+,设2(1)()(1)1x h x lnx x x -=->+,由(2)得,()h x 在(1,)+∞上是单调增函数,1x >,()h x h ∴>(1)0=,即2(1)01m m n ln m n n-->+,即2m n lnm lnn m n--<+.∴不等式||2m n lnm lnnm n --<+成立.8.已知函数2()1ax bf x x +=+在点(1-,(1))f -处的切线方程为30x y ++=.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设()g x lnx =,求证:()()g x f x 在[1x ∈,)+∞上恒成立;(Ⅲ)已知0a b <<,求证:222lnb lna a b a a b ->-+.【解析】(Ⅰ)将1x =-代入切线方程得2y =-∴(1)211b af --==-+,化简得4b a -=-222(1)()2()(1)a x ax b xf x x +-+'=+22()2(1)1442a b a b bf +-'-====-解得:2a =,2b =-.∴222()1x f x x -=+.(Ⅱ)由已知得2221x lnx x -+ 在[1,)+∞上恒成立化简2(1)22x lnx x +- 即2220x lnx lnx x +-+ 在[1,)+∞上恒成立设2()22h x x lnx lnx x =+-+,1()22h x xlnx x x'=++-1x ∴120,2xlnx x x+ ,即()0h x ' ()h x ∴在[1,)+∞上单调递增,()h x h (1)0=()()g x f x ∴ 在[1x ∈,)+∞上恒成立(Ⅲ)0a b<<∴1ba>,由(Ⅱ)知有222()1b b a ln ba a->+整理得222lnb lna a b aa b ->-+∴当0a b <<时,222lnb lna ab a a b ->-+.9.已知函数()(f x lnx mx m =+为常数).(1)讨论函数()f x 的单调区间;(2)当322m -时,设21()()2g x f x x =+的两个极值点1x ,212()x x x <恰为2()2h x lnx ax x =--的零点,求1212()()2x x y x x h +'=-的最小值.【解析】(1)11()mx f x m xx+'=+=,0x >,当0m <时,由10mx +>,解得1x m<-,即当10x m<<-时,()0f x '>,()f x 单调递增;由10mx +<解得1x m>-,即当1x m>-时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m >时,10mx +>,故()0f x '>,即()f x 在(0,)+∞上单调递增.所以当0m <时,()f x 的单调递增区间为1(0,)m-,单调递减区间为1(,)m-+∞;当0m 时,()f x 的单调递增区间为(0,)+∞.(2)由21()2g x lnx mx x =++得211()x mx g x m x x x ++'=++=,由已知210x mx ++=有两个互异实根1x ,2x ,由根与系数的关系得12x x m +=-,121x x =,因为1x ,212()x x x <是()h x 的两个零点,故21111()20h x lnx x ax =--=①22222()20h x lnx x ax =--=②由②-①得:222212112()()0x ln x x a x x x ----=,解得2121212()x lnx a x x x x =-+-,因为2()2h x x a x '=--,得1212124()222x x x x h a x x ++'=--+,将2121212()x ln x a x x x x =-+-代入得:21212121122124()2[()]22x lnx x x x x h x x x x x x ++'=---++-22122121221122111221112(1)2()422[][2]1x x lnx x x x x x ln ln x x x x x x x x x x x x x x --=-+=--=---+-+-+,所以21221122111()(2[2]21x x x x x y x x h ln x x x -+'=-=-+,设211x t x =>,因为22221212129()22x x x x x x m +=++= ,所以221252x x + ,所以221212122152x x x x x x x x +=+ ,所以152t t + ,所以2t .构造1()21t F t lnt t -=-+,得22214(1)()0(1)(1)t F t t t t t -'=-=>++,则1()21t F t lnt t -=-+在[2,)+∞上是增函数,所以2()(2)23min F x F ln ==-,即1212()(2x x y x x h +'=-的最小值为4223ln -.10.已知函数()()f x lnx mx m R =-∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)当m 时,设2()2()g x f x x =+的两个极值点1x ,212()x x x <恰为2()h x lnx cx bx =--的零点,求1212()()2x x y x x h +=-'的最小值.【解析】()I 函数()f x lnx mx =-,∴11()mx f x m x x -'=-=,0x >;当0m >时,由10mx ->解得1x m <,即当10x m <<时,()0f x '>,()f x 单调递增;由10mx -<解得1x m >,即当1x m >时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m <时,10mx ->,故()0f x '>,即()f x 在(0,)+∞上单调递增;∴当0m >时,()f x 的单调递增区间为1(0,m ,单调递减区间为1(m,)+∞;当0m 时,()f x 的单调递增区间为(0,)+∞;⋯(5分)22()()2()22II g x f x x lnx mx x =+=-+,则22(1)()x mx g x x-+'=,()g x '∴的两根1x ,2x 即为方程210x mx -+=的两根;又m ,∴△240m =->,12x x m +=,121x x =;⋯(7分)又1x ,2x 为2()h x lnx cx bx =--的零点,21110lnx cx bx ∴--=,22220lnx cx bx --=,两式相减得11212122()()()0x ln c x x x x b x x x --+--=,得121212()x lnx b c x x x x =-+-,而1()2h x cx b x'=--,1212122()[()]y x x c x x b x x ∴=--+-+1212121212122()[()()]x ln x x x c x x c x x x x x x =--+-+++-11212111222212()21x x x x x x ln ln x x x x x x --=-=-++,⋯(10分)令12(01)x t t x =<<,由2212()x x m +=得22212122x x x x m ++=,因为121x x =,两边同时除以12x x ,得212t m t++=,m ,故152t t + ,解得12t 或2t ,102t ∴< ;⋯(12分)设1()21t G t lnt t -=-+,2(1)()0(1)t G t t t --'∴=<+,则()y G t =在(0,1]2上是减函数,12()(223min G t G ln ∴==-+,即1212()(2x x y x x h +'=-的最小值为223ln -+.⋯(14分)。
高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。
函数与导数【考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.5.了解指数函数模型的实际背景;理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型.6.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用;理解对数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型;了解指数函数(0x y a a =>且1)a ≠与对数函数log (0a y x a =>且1)a ≠互为反函数.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y x x=====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题.【考点预测】1.对于函数的定义域、值域、图象,一直是高考的热点和重点之一,大题、小题都会考查,渗透面广.特别是分段函数的定义域、值域、解析式的求法是近几年高考的热点.3.由指数函数、对数函数的图象入手,推知单调性,进行相关运算,同时与导数结合在一起的题目是每年必考的内容之一,要在审题、识图上多下功夫,学会分析数与形的结合,把常见的基本题型的解法技巧理解好、掌握好.4.函数的单调性、最值是高考考查的重点,其考查的形式是全方位、多角度,与导数的有机结合体现了高考命题的趋势.5.函数的奇偶性、周期性是高考考查的内容之一,其考查形式比较单一,但出题形式比较灵活,它主要出现在选择题、填空题部分,属基础类题目,复习时要立足课本,切实吃透其含义并能准确进行知识的应用.6.应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题.【要点梳理】1.求定义域、值域的方法有:配方法、不等式法、换元法、分离常数法等;求函数解析式的方法有:定义法、换元法、待定系数法、方程组法等;解决实际应用题的一般步骤是:分析实际问题,找出自变量,写出解析式,确定定义域,计算.2.几种常见函数的数学模型:平均增长率问题;储蓄中的得利问题;通过观察与实验建立的函数关系;根据几何与物理概念建立的函数关系.3.指数与对数函数模型是函数应用的基本模型,经常与导数在一起进行考查,应引起我们的高度重视.4.二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,应熟练掌握.函数的零点、二分法、函数模型的应用是高考的常考点和热点,应认真研究、熟练掌握.5.理解函数的单调性、奇偶性、最值及其几何意义,会运用函数图象理解和研究函数的单调性、最值,常与导数结合在一起考查,是高考的常考点.6.对于幂指对函数的性质,只需立足课本,抓好基础,掌握其单调性、奇偶性,通过图象进行判断和应用,常与导数结合在一起考查.7.导数的概念及运算是导数的基本内容,每年必考,一般不单独考查,它主要结合导数的应用进行考查.8.导数的几何意义是高考考查的重点内容之一,经常与解析几何结合在一起考查.9.利用导数研究函数的单调性、极值、最值及解决生活中的优化问题是近几年高考必考的内容之一.10.求可导函数单调区间的一般步骤和方法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.11.求可导函数极值的一般步骤和方法:(1)求导数;(2)判断函数单调性;(3)确定极值点;(4)求出极值.12.求可导函数最值的一般步骤和方法:(1)求函数极值;(2)计算区间端点函数值;(3)比较极值与端点函数值,最大者为最大值,最小者为最小值.【考点在线】考点一 函数的定义域函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=( )(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 【答案】C【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,故选A. 考点二 函数的性质(单调性、奇偶性和周期性)函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例2.(2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y =B 1+=x yC 12+-=x yD xy -=2【答案】B【解析】由偶函数可排除A ,再由增函数排除C,D,故选B ;【名师点睛】此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定.【备考提示】:熟练函数的单调性、奇偶性方法是解答好本题的关键.练习2: (2011年高考江苏卷2)函数)12(log )(5+=x x f 的单调增区间是__________ 【答案】1(,)2-+∞ 【解析】本题考察函数性质,属容易题.因为210x +>,所以定义域为1(,)2-+∞,由复合函数的单调性知:函数)12(log )(5+=x x f 的单调增区间是1(,)2-+∞. 例3.(2009年高考山东卷文科12)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 【答案】D【解析】因为(8)(4)[()]()f x f x f x f x +=-+=--=,所以8是该函数的周期;又因为(4)()()f x f x f x -=-=-,所以2x =-是该函数的对称轴,又因为此函数为奇函数,定义域为R,所以(0)0f =,且函数的图象关于2x =对称, 因为函数()f x 在区间[0,2]上是增函数,所以在[0,2]上的函数值非负,故(1)0f >,所以(25)(25)(1)0f f f -=-=-<,(80)(0)0f f ==,(11)(3)0f f =>,所以(25)(80)(11)f f f -<<,故选D.【名师点睛】本小题考查函数的奇偶性、单调性、周期性,利用函数性质比较函数值的大小. 【备考提示】:函数的奇偶性、单调性、周期性,是高考的重点和热点,年年必考,必须熟练掌握.练习3:(2011年高考全国卷文科10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( )A.-12B.1 4-C.14D.12【答案】A【解析】先利用周期性,再利用奇偶性得:5111()()().2222f f f -=-=-=-考点三 函数的图象函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例4.(2011年高考山东卷理科9文科10)函数2sin 2xy x =-的图象大致是( )【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.【名师点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力. 【备考提示】:函数的图象,高考年年必考,熟练其图象的解决办法(特值排除法、函数性质判断法等)是答好这类问题的关键.练习4:(2010年高考山东卷文科11)函数22x y x =-的图像大致是( )【解析】因为当x=2或4时,2x-2x =0,所以排除B 、C ;当x=-2时,2x -2x =14<04-,故排除D ,所以选A.考点四 导数的概念、运算及几何意义了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例5.(2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15 【答案】C【解析】因为'23y x =,切点为P (1,12),所以切线的斜率为3,故切线方程为3x-y+9=0,令x=0,得y=9,故选C.【名师点睛】本题考查导数的运算及其几何意义.【备考提示】:导数的运算及几何意义是高考的热点,年年必考,熟练导数的运算法则及导数的几何意义是解答好本类题目的关键.练习5:(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e【答案】A【解析】1,0,0'===e x e y x .考点五 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题: 1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值); 5.构造函数证明不等式.例6.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. 【解析】(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.【名师点睛】利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.【备考提示】:导数的应用是导数的主要内容,是高考的重点和热点,年年必考,必须熟练掌握. 练习6: 设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间. 【解析】由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1ax f x a x -=≥-+(1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减, (2)当0a >时,由'()0,f x =解得1.x a='、随x 的变化情况如下表从上表可知当1(1,)x a∈-时,'()0,f x <函数()f x 在1(1,)a-上单调递减.当1(,)x a∈+∞时,'()0,f x >函数()f x 在1(,)a+∞上单调递增.综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.当0a >时,函数()f x 在1(1,)a-上单调递减,函数()f x 在1(,)a+∞上单调递增.考点六 函数的应用建立函数模型,利用数学知识解决实际问题. 例7. (2011年高考山东卷文科21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .【解析】(I )设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又 故322248044203()333V r l r r r r r ππ-==-=-由于2l r ≥ 因此0 2.r <≤所以建造费用2224202342()34,3y rl r c r r r c rππππ=⨯+=⨯-⨯+ 因此21604(2),0 2.y c r r rππ=-+<≤ (II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<- 由于3,20,c c >->所以当3200,2r r c -==-时,m =则0m > 所以2228(2)'()().c y r m r rm m r π-=-++ (1)当9022m c <<>即时,∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。