2015-2016学年高一上学期期末质量检查数学试题6
- 格式:doc
- 大小:854.82 KB
- 文档页数:8
河南省普通高中2015-2016学年上期终结性评价测试高一数学试题一、选择题(共8道小题,每道小题4分,共32分.请将正确答案填涂在答题卡上) 1.已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0A. {}2B. {}3C. {}432,,D. {}43210,,,。
2. 函数()lg(31)f x x =-的定义域为 ( ) A .R B .1(,)3-∞ C .1[,)3+∞ D .1(,)3+∞ 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.函数||2x y =的大致图象是 ( )5.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A.3 B,2 C.1 D.0 6.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下对应值表:那么函数f (x )一定存在零点的区间是 ( ) A. (-∞,1) B. (1,2) C. (2,3) D. (3,+∞) 7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.如果函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取值范围是( ) A .a ≥9 B .a ≤-3 C .a ≥5 D .a ≤-7二、填空题(共6道小题,每道小题4分,共24分。
请将正确答案填写在答题表中)9.已知函数()y f n =,满足(1)2f =,且(1)3()f n f n n ++=∈,N ,则 (3)f 的值为_______________.103log 21lg3100-的值为_________________. 11.若奇函数()f x 在(,0)-∞上是增函数,且(1)0f -=,则使得()0f x >的x 取值范围 是__________________.12.函数23()log (210)f x x x =-+的值域为_______________.13.光线通过一块玻璃板时,其强度要损失原来的10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a ,则通过3块玻璃板后的强度变为________________.14.数学老师给出一个函数()f x ,甲、乙、丙、丁四个同学各说出了这个函数的一条性质 甲:在(,0]-∞上函数单调递减; 乙:在[0,)+∞上函数单调递增;丙:在定义域R 上函数的图象关于直线x =1对称; 丁:(0)f 不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确. 那么,你认为_________说的是错误的.三、解答题(分4道小题,共44分) 15.(本题满分12分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用定义加以证明16.(本题满分12分)有一个自来水厂,蓄水池有水450吨. 水厂每小时可向蓄水池注水80吨,同时蓄水池又向居民小区供水,t 小时内供水量为. 现在开始向池中注水并同时向居民供水. 问多少小时后蓄水池中水量最少?并求出最少水量。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
高一上学期期末考试数学试题一、选择题1.如果集合=A {}0242=+-x mx x 中只有一个元素,则实数m 的值为( )A .0 错误!未找到引用源。
B .1 错误!未找到引用源。
C .错误!未找到引用源。
2D .0或2 【答案】D【解析】试题分析:集合A 只有一个元素,即方程2420mx x -+=只有一个根.0m =时, 方程变形为420x -+=,必有一个根;0m ≠时,要使方程2420mx x -+=只有一个根,则16420m ∆=-⨯⨯=,解得2m =.综上可得0m =或2m =.故D 正确. 【考点】1集合的元素;2方程的根.【易错点睛】本题重点考查方程根的个数问题,属容易题.但在做题时极容易将方程2420mx x -+=误看做一元二次方程,只注意到使其判别式等于0时此方程只有一个根,而忽视二次项系数m 是否为0.当0m =时此方程为一次方程,一次方程必有一个根.注意当二次项系数含参数时一定要讨论其是否为0,否则极易出错.2.已知全集{}4,3,2,1,0,1-=M ,且{}4321,,,=B A ,{}32,=A ,则=)(A C B U ( )A .{}41, B .{}1 C .{}4 D .φ 【答案】A【解析】试题分析:由题意分析可得1,4必在集合B 内,2,3可能在集合B 内.由已知可得{}1,0,1,4U C A =-,所以(){}1,4U B C A = .故A 正确. 【考点】集合的运算.3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为( )A .31B .21C .32D .43【答案】C【解析】试题分析:甲乙同学各自在一个小组时共有6种可能,甲乙同学在同一组时共有3种可能,则这两位同学不在同一个兴趣小组的概率为62633P ==+.故C 正确.试卷第2页,总14页【考点】古典概型概率.4.已知函数1)2)(2+++=mx x m x f (为偶函数,则)(x f 在区间()∞+,1上是( )A .先增后减B .先减后增C .减函数D .增函数 【答案】D【解析】试题分析:因为函数()f x 为偶函数,所以()200022m m m m +≠⎧⎪⇒=⎨-=⎪+⎩.所以()221f x x =+.所以函数()221f x x =+的图像是开口向上以y 轴为对称轴的抛物线,所以函数()f x 在()1,+∞上单调递增.故D 正确.【考点】1偶函数的性质;2二次函数的单调性.【方法点睛】本题主要考查偶函数的性质和二次函数单调性问题,难度一般.偶函数的图像关于y 轴轴对称,在本题中由此可求得m 的值.二次函数的单调性由开口方向和对称轴同时决定.5.若以下程序框图的输出结果为120,则判断框中应填写的判断条件为( )A .?5<iB .?5>iC .?6>iD .?5≥i 【答案】B【解析】试题分析:根据框图的循环结构依次可得: 122,213T i =⨯==+=;236,314T i =⨯==+=;6424,415T i =⨯==+=;246120,516T i =⨯==+=,此时应跳出循环输出120T =.所以判断框中应填入5?i >.故B 正确. 【考点】程序框图.【易错点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件输出“120T =”,否则很容易出现错误.在给出程序框图有输出结果而需要填判断框时只要按照程序框图规定的运算方法逐次计算,直到达到输出条件,此时即可得出判断框中所填内容.6.已知函数⎩⎨⎧<+≥-=4)),2((4,1)(x x f f x x x f ,则=)3(f ( )A .5B .4C .3D .2 【答案】C【解析】试题分析:()()()()()35514413f f f f f ==-==-=.故C 正确. 【考点】分段函数求值.7.若a 是从区间[]2,0中任取的一个实数, b 是从区间[]3,0中任取的一个实数,则概率是( )A .32B .65C .31D .61【答案】A【解析】试题分析:试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为236⨯=.其中满足a b <的结果构成的区域为图中阴影部分,其面积为162242-⨯⨯=.则所求概率为4263P ==.故A 正确. 【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.几何概型的概率为长度比或面积比或体积比.所以应先根据已知条件作出满足初始条件的点所构成的可行域,再在其中标注出其中满足b a <的点构成的可行域.分别计算出其面积.即可求得所求概率.8.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲、乙两名运动员这项测试成绩的平均数,21S ,22S 分别表示甲、乙两名运动员这项测试成绩的方差,则有( )试卷第4页,总14页A .1x >2x ,21S <22S B .1x =2x ,21S >22S C .1x =2x ,21S =22S D .1x =2x ,21S <22S【答案】B【解析】试题分析:181315151722156x +++++==;291415151621156x +++++==;()()()()()()222222211538151315151515151715221563S ⎡⎤=-+-+-+-+-+-=⎣⎦,()()()()()()222222221379151415151515151615211563S ⎡⎤=-+-+-+-+-+-=⎣⎦.故B 正确.【考点】平均数,方差.9.函数54ln )(2++-=x x x x f 的零点个数为( ) A .0 B .1 C .2 D .3 【答案】C【解析】试题分析:函数()2ln 45f x x x x =-++的零点个数等价于函数ln y x =图像与函数245y x x =--图像的交点个数问题.由数形结合可知函数ln y x =图像与函数245y x x =--图像有2个交点.所以函数()f x 有2个零点.故C 正确.【考点】1函数零点;2转化思想.10.向顶角为0120的等腰三角形ABC (其中BC AC =)内任意投一点M ,则AM 小于AC 的概率为( ) A .33π B .93πC .21D .3π【答案】B【解析】试题分析:令1AC BC ==,则111sin1202ABC S ∆=⨯⨯⨯= .满足AC AM <的点M 所在区域的面积为230136012ππ⨯⨯=.所以所求概率为9Pπ==.【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.因为几何概率的值为比值所以边长的取值对结果没有影响,为计算方便不妨令等腰三角形两腰长为1,从而可得此三角形的面积.AM小于AC时点M所在区域为以A为圆心以AC为半径的圆且在三角形内部的扇形部分,可得此扇形面积.扇形面积与三角形面积的比值即为所求.11.如果奇函数)0)((≠=xxfy在()0,∞-∈x时,1)(+=xxf,那么使0)2(<-xf成立的x的取值范围是()A.()()∞+∞-31,B.()1,-∞-()1,0C.()()3,00,∞-D.()1,∞-()32,【答案】D【解析】试题分析:因为()y f x=为奇函数,所以()()f x f x-=-,即()()f x f x=--.x>时0x-<,()()()11f x f x x x=--=--+=-.()()()1,01,0x xf xx x+<⎧⎪∴=⎨->⎪⎩.()2020210xf xx-<⎧∴-<⇔⎨-+<⎩或20210xx->⎧⎨--<⎩1x⇒<或23x<<.故D正确.【考点】1奇函数;2不等式.12.若函数)2(log)(2xxxfa-=)且1,0(≠>aa在区间⎪⎭⎫⎝⎛1,21内恒有0)(>xf,则函数)(xf的单调递增区间是()A.()0,∞- B.⎪⎭⎫⎝⎛∞-41, C.⎪⎭⎫⎝⎛+∞,21D.⎪⎭⎫⎝⎛∞+,41【答案】A【解析】试题分析:2200x x x->⇒<或12x>.函数()f x的定义域为试卷第6页,总14页()1,0,2⎛⎫-∞+∞ ⎪⎝⎭.要使区间⎪⎭⎫⎝⎛1,21内恒有0)(>x f ,只需()min 0f x >当1a >时,此时存在33log log 1048a a f ⎛⎫=<= ⎪⎝⎭.故舍.当01a <<时,又函数22y x x =-在区间1,12⎛⎫⎪⎝⎭上单调递增,所以函数()f x 在1,12⎛⎫⎪⎝⎭上单调递减. 此时()()1log 10a f x f >==恒成立,符合题意. 综上可得01a <<.因为函数22y x x =-在(),0-∞上单调递减;在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,又01a <<所以函数)(x f 的单调递增区间(),0-∞.故A 正确. 【考点】对数函数单调性;二次函数单调性;复合函数单调性.二、填空题13.若六进制数)6(510k (k 为正整数)化为十进制数为239,则=k . 【答案】3 【解析】试题分析:()321061051606656216652216239k k k k =⨯+⨯+⨯+⨯=++=+=, 解得3k =.【考点】进位制.14.幂函数1222)33)(+-+-=m mx m m x f (在区间()+∞,0上是增函数,则=m .【答案】2【解析】试题分析:由题意可知2331m m -+=,即2320m m -+=,解得1m =或2m =.当1m =时,()0f x x =,在区间()0,+∞上为常数1,不具有单调性,故舍; 当2m =时,()f x x =,在区间()0,+∞上单调递增,符合题意. 综上可得2m =.【考点】1幂函数的概念;2函数的单调性.【思路点睛】本题主要考查幂函数的概念和函数的单调性,难度一般.根据幂函数的定义: a y x =叫做幂函数,可知2331m m -+=,从而可得m 的值.将其分别代入()f x 验证是否满足()f x 在区间()0,+∞上单调递增.15.函数)(x g 是函数)2(log )(-=x x f a )1,0(≠>a a 且的反函数,则函数)(x g 的图象过定点 . 【答案】()3,0【解析】试题分析:()3log 10a f == ,∴函数()()log 2a f x x =-的图像过定点()3,0.所以函数()g x 的图像过定点()0,3.【考点】互为反函数的性质.【思路点睛】本题重点考查对数函数过定点和互为反函数的性质问题,属容易题.根据对数公式log 10a =可求得()f x 所过的定点.因为互为反函数的两个函数图像关于y 轴对称,所以函数()f x 图像过的定点()00,x y 关于y 轴的对称点()00,y x 即为函数()g x 的图像过的定点.16.0x 是x 的方程x a a x log =)10(≠>a a ,且的解,则0,1,x a 这三个数的大小关系是 . 【答案】10<<x a【解析】试题分析:当1a >时,由数形结合可知函数x y a =的图像与函数log a y x =的图像无交点,所以此时方程log x a a x =无解,不合题意故舍; 当01a <<时,由数形结合可知函数x y a =的图像与函数log a y x =的图像只有一个交点,即此时方程log x a a x =只有一个解0x .由数形结合分析可知00001,0log 1x x a x a <<<=<,又01a <<,0000log 1log 1log log 1x a a a a x a x a ∴<<⇔<<⇒>>. 综上可得10<<x a .【考点】1指数函数,对数函数图像;2对数不等式;3数形结合思想.三、解答题17.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时试卷第8页,总14页生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:(1)如果y 对x 有线性相关关系,求回归方程;(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?参考公式:x b y aˆˆ-=,∑∑==---=ni ini i ix xy y x xb 121)())((ˆ∑∑==--=ni ini ii x n xyx n yx 1221【答案】(1)52107ˆ-=x y;(2)机器的运转速度应控制在7614转/秒内. 【解析】试题分析:(1)根据已给公式求,x y ,再求ˆb,ˆa 从而可求得回归方程.(2)根据题意解不等式ˆ10y≤即可求得所求. 试题解析:解:(1)设所求回归方程为a x b yˆˆˆ+=,则由上表可得 12=x ,8=y ,107ˆ=b, 52107128ˆˆ-=⨯-=-=x b y a ∴回归方程为52107ˆ-=x y .(2)由y ≤10得1052107ˆ≤-=x y,解得7614≤x , 所以机器的运转速度应控制在7614转/秒内.【考点】线性回归方程.18.(1)计算20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π(2)计算3log 28log 318log 3log 4913662742log --+⋅-【答案】(1)0;(2)3. 【解析】试题分析:(1)根据指数的性质及运算法则即可求得其值; (2)根据对数的性质及运算法则即可求得其值.试题解析:解:(1)20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π232)34(2)2764(21681÷-⨯-=- 22)43(2)43(249⨯-⨯-=0=(2)3log 28log 318log 3log 4913662742log --+⋅-3log 2log 23664log 3++-=6log 246+-=12+=3=【考点】1指数的性质及运算法则;2对数的性质及运算法则.19.已知集合A 是函数][))(2(log )(a x a x x g a ---=)1,0(≠>a a 且的定义域,集合B 和集合C 分别是函数x x f 39)(-=的定义域和值域。
2015-2016学年度上学期(期末)考试高一数学试题【新课标】考试时间:120分钟 总分:150分第Ⅰ卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能...是( ) A .0 B .1 C .2 D .3 2.sin45°cos15°+cos225°sin15°的值为( )A .-32B .-12 C.12 D.323.点P (sin2014°,tan2014°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <1 5.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )6.已知映射B A f →:,其中法则()():,,2,,35f x y z x y y z z →+-+.若(){}8,1,4=B ,则集合A 可以为( )A .(){}1,2,1B .(){}1,2,1或(){}2,0,1-C .(){}2,0,1-D .(){}1,2,1或(){}2,0,1-或()(){}1,0,2,1,2,1-7.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( )A .3a -bB .3a +bC .-a +3bD .a +3b8.若sin2θ=1,则tan θ+cos θsin θ的值是( )A .2B .-2C .±2 D.129.向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ满足( )A .λ<-53B .λ>-53C .λ>-53且λ≠0D .λ<-53且λ≠-510.函数()sin y x x x R =+∈的图像向左平移()0m m >个单位长度后,所得到的图像关于y轴对称,则m 的最小值是( )A .12πB .6πC .3πD .56π11.设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( )A .-2 B.2-2 C .-1 D .1- 212.已知函数f (x )=-x 2+2e x -x -e2x+m (x >0),若f (x )=0有两个相异实根,则实数m 的取值范围是 ( )A .(-e 2+2e ,0)B .(-e 2+2e ,+∞)C .(0,e 2-2e)D .(-∞,-e 2+2e)第Ⅱ卷 (非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =3sin(ωx +π6)(ω≠0)的最小正周期是π,则ω=________。
2015-2016学年度第一学期期末考试高一数学试题一、选择题(该大题共12小题,每小题5分,共计60分) 1.下列图形中,表示⊆M N 的是 ( ▲ )2.120cos ︒= ( ▲ ) A.12-B.12C.32-D.223.下列命题正确的是 ( ▲ )A .向量AB 与BA 是两平行向量;B .若,a b 都是单位向量,则a b =;C .若AB =DC ,则A B CD 、、、四点构成平行四边形; D .两向量相等的充要条件是它们的始点、终点相同. 4.45154515cos cos sin sin ︒︒-︒︒= ( ▲ )A.22 B.32C.12D.12-5.如图,在ABC ∆中,D 是AC 的中点,向量AB a =,AC b =,那么向量BD 可表示为 ( ▲ ) A.b a 1122- B.a b 12-C.b a 12-D.a b 12-6.函数2212()()=+-+f x x a x 在区间(],4-∞上是递减的,则实数a 的取值范 ( ▲ ) A.3≤-a B.3≥-a C.5≤a D.5≥a 7.已知指数函数()xf x a =和函数2()g x ax =+,下列图象正确的是 ( ▲ )A. B. C. D.8.已知平面向量,a b ,8a =||,4||=b ,且,a b 的夹角是150︒,则a 在b 方向上的射影是 ( ▲ )A.4-B.43-C.4D.439.要得到函数2sin 2=y x 的图像,只需将2sin(2)6π=-y x 的图像 ( ▲ )A.向右平移6π个单位 B.向右平移12π个单位 C.向左平移6π个单位D.向左平移12π个单位10.若平面向量(3,4)b =与向量(4,3)a =,则向量,a b 夹角余弦值为 ( ▲ )A.1225 B. 1225- C. 2425- D.2425 11.设()338x f x x =+-,用二分法求方程(),338012xx x +-=∈在内近似解的过程中得()()(),.,.,101501250f f f <><则方程的根落在区间 ( ▲ )A .(,.)1125B .(.,.)12515C .(.,)152D .不能确定12.若函数tan ,0(2)lg(),0x x f x x x ≥⎧+=⎨-<⎩,则(2)(98)4f f π+⋅-= ( ▲ )A.12B.12- C.2 D.2-二、填空题(共4小题,每小题5分,共计20分) 13.函数212()log ()=-f x x 的定义域是 ▲ .14.有一半径为4的扇形,其圆心角是3π弧度,则该扇形的面积是 ▲ . 15.已知平面向量(4,3)a =-和单位向量b ,且b a ⊥,那么向量b 为 ▲ . 16.关于函数sin (()42)3f x x =+π,(R)x ∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为cos (6)42y x =-π; ③()y f x =的图象关于(0)6-,π对称; ④()y f x =的图象关于直线6x =-π对称; 其中正确的序号为 ▲ .M N D.N M C. M N B. MN A. o 2 1 y x2 1 oy x2 1 oyx2 1 oy xD C AB 第5小题三、解答题(共6小题,共计70分) 17.化简或求值:(1)log lg lg 223212732548--⨯++ (2)已知3sin ,054x x =<<π,求cos 2cos()4xx +π. 18.已知全集U R =,集合{}A x x =<<17,集合{}B x a x a 125=+<<+,若满足A B B =,求 (1)集合U C A ;(2)实数a 的取值范围.19.若平面向量(1,2)a =,(3,2)b =-, k 为何值时: (1)()(3)ka b a b +⊥-;(2)//()(3)ka b a b +-?20.设函数()2sin(2)(0)f x x =+<<ϕϕπ,()y f x =图象的一个对称中心是(,0)3π.(1)求ϕ;(2)在给定的平面直角坐标系中作出该函数在(0,)2x ∈π的图象;(3)求函数()1()f x x R ≥∈的解集21.已知函数2()3sin 22cos f x x x =+.(1)求函数()f x 的最小正周期和单调递增区间;(2)将()f x 的图象向右平移12π个单位长度,再将周期扩大一倍,得到函数()g x 的图象,求()g x 的解析式.22.已知定义域为R 的函数2()21x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.2015-2016学年度第一学期期末考试高一数学试题参考答案一、选择题(该大题共12小题,每小题5分,共计60分)CAACC ADBDD BC二、填空题(共4小题,每小题5分,共计20分) 13. 2{|>x x ,且3}≠x 或者填(2,3)(3,)+∞ .14.83π. 15.34(,)55和 34(,)55--.16. ② ③ .三、解答题(共6小题,共计70分) 17.(本小题满分8分) 解:(1)原式=()lg lg 2193549-⨯-++=()lg 1931009-⨯-+=()19329-⨯-+=1113(2)3sin ,054x x π=<<2cos 1sin xx ∴=-=45227cos 2cos sin cos sin 72552222cos()cos sin 42222x x x x x x x x π-+∴====+-18.(本小题满分10分)解;(1)(,][,)U C A =-∞+∞17(2)A B B =B A ∴⊆(i )当B φ=时,由a a 251+≤+得a 4≤-(ii )当B φ≠时,由a a a a 11257125+≥⎧⎪+≤⎨⎪+<+⎩解得a 01≤≤a ∴的取值范围是(,][,]401-∞-.19.(本小题满分12分) 解:(1)a b (1,2),(3,2)==- ka b k k (3,22)∴+=-+ a b 3(10,4)-=-()(3)ka b a b +⊥-(k 3)10(2k 2)(4)0∴-⨯++⨯-=解得 k 19=(2)由(1)及//()(3)ka b a b +-得(k 3)(4)(2k 2)100-⨯--+⨯=解得 1k 3=-20.(本小题满分14分) 解: (1)(,)π03是函数()y f x = 的图像的对称中心sin()πϕ∴⨯+=2203()k k Z πϕπ∴+=∈23()k k Z πϕπ∴=-∈23(,)πϕπϕ∈∴=03()sin()f x x π∴=+223(2)列表:(3)()f x ≥1即sin()x π+≥2213sin()x π+≥1232解得,k x k k Z πππππ+≤+≤+∈5222636亦即,k x k k Z ππππ-+≤≤+∈124所以,()f x ≥1的解集是[,],k k k Z ππππ-++∈12421.(本小题满分12分)解:(1)依题意,得f x x x =++()3sin 2cos 21x x =++312(sin 2cos 2)122x π=++2sin(2)16将()y f x =的图像向右平移12π个单位长度,得到函数f x x x ππ=-++=+1()2sin[2()]12sin 21126的图像,该函数的周期为π,若将其周期变为π2,则得g x x =+()2sin 1 (2)函数f x ()的最小正周期为T π=,(3)当,k x k k Z πππππ-≤+≤-∈222262时,函数单调递增,解得,k x k k Zππππ-≤≤+∈36∴函数的单调递增区间为 [,],k k k Z ππππ-+∈36. 22.(本小题满分14分) 解:(1)由题设,需(),,()xxa f a f x +-==∴=∴=+112001212经验证,()f x 为奇函数,a ∴=1xπ12π3 π712 π56πx π+23 π3π2 ππ32π2π73 ()f x32-23(2)减函数.证明:任意,,,x x R x x x x ∈<∴->1212210由(1)得()()()()()x x x x x x x x f x f x --⨯--=-=++++2112212121121222212121212 ,x x x x x x <∴<<∴-<121212022220,()()x x ++>2112120()()f x f x ∴-<210所以,该函数在定义域R 上是减函数(3)由22(2)(2)0f t t f t k -+-<得f t t f t k -<--22(2)(2)()f x 是奇函数∴f t t f k t -<-22(2)(2),由(2),()f x 是减函数. ∴原问题转化为t t k t ->-2222,即t t k -->2320对任意t R ∈恒成立.∴k ∆=+<4120,解得k <-13即为所求.。
2015-2016学年第一学期高一年级期末考试数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1.已知全集U R =, {|21}xA y y ==+, {|ln 0}B x x =≥,则AB =( )A .{|1}x x ≥B .{|1}x x >C .{|01}x x <<D .∅ 2.定义在R 的奇函数)(x f ,当0<x 时,x x x f +-=2)(,则(2)f 等于( ) A .4 B .6 C .4- D .6- 3.已知向量()()1,2,23,2a a b =+=,则( )A .()1,2b =-B .()1,2b =C .()5,6b =D .()2,0b = 4.已知函数()f x 是定义在[)0,+∞上的增函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是( )A .⎪⎭⎫ ⎝⎛∞-32,B .⎪⎭⎫⎢⎣⎡32,31C .⎪⎭⎫⎝⎛+∞,21 D .⎪⎭⎫⎢⎣⎡32,21 5.下列函数中,既在定义域上是增函数且图象又关于原点对称的是( )A .2y x =-B .2lg 11y x ⎛⎫=-⎪+⎝⎭C .x y 2=D .22x x y -=+ 6.函数5()3f x x x =+-零点所在的区间是( )A .[]1,0B .[]2,1C .[]3,2D .[]4,37.若βα,都是锐角,且552sin =α,1010)sin(=-βα,则=βcos ( )第11题A .22 B .102 C .22或102- D .22或1028.将函数()sin(2)(||)2f x x πϕϕ=+<的图象向左平移6π个单位后的图象关于原点对称,则ϕ的值为( ) A .3π-B .3πC .6πD .6π- 9.函数)82ln(2+--=x x y 的单调递减区间是( )A .)1,(--∞B .)2,1(-C .)1,4(--D .),1(+∞-10.已知))1(2(a m b m ==-,,,,若()2a b b -⊥,则a =( )A .2B .3C .4D .5 11.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><一个周期的图象如图所示,则ϕ的值为( ) A.6π B.4π C.3π D.83π12.已知函数()⎪⎩⎪⎨⎧≥-<-=,2,13,2,12x x x x f x 若函数()()[]2-=x f f x g 的零点个数为( )A .3B .4C .5D .6第Ⅱ卷(非选择题,共90分)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.已知三个数3.0222,3.0log ,3.0===c b a ,则,,a b c 的大小关系为 .14.化简002sin15sin 75的值为___________.15.若αtan ,βtan 是方程23340x x -+=的两个根,则()=+βαtan .16.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=_______.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)已知C B A ,,三点的坐标分别是)0,3(A ,)3,0(B ,)sin ,(cos ααC ,其中232παπ<<. (1)若||||BC AC =,求角α的值;(2)若1-=⋅BC AC ,求α2sin 的值.18.(本小题满分12分) (sin ,sin()),(sin ,3sin )2a x xb x x πωωωω=+=已知()0>ω,记()f x a b =⋅.且()f x 的最小正周期为π.(1)求()x f 的最大值及取得最大值时x 的集合; (2)求()x f 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.19.(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点(10,80)A ,过点(12,78)B ;当[]12,40x ∈时,图象是线段BC ,其中(40,50)C ,根据专家研究,当注意力指数大于62时,学习效果最佳. (1)试求()y f x =的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.20.(本小题满分12分)设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意⎥⎦⎤⎢⎣⎡∈21,0,21x x 都有)()()(2121x f x f x x f ⋅=+,且0)1(>=a f .(1)求⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛41,21f f ;(2)求证:)(x f 是周期函数.21.(本小题满分12分) 已知函数1()log ,(0,1)1ax f x a a x +=>≠-且. (1)判断()f x 的奇偶性并证明;(2)若对于[2,4]x ∈,恒有()log (1)(7)a mf x x x >-⋅-成立,求m 的取值范围.22.(本小题满分12分)函数()⎥⎦⎤⎢⎣⎡∈-+=2,0,2cos sin 2πθθθθm m g . (1)当3=m 时,求()θg 的单调递增区间; (2)若()01<+θg 恒成立,求m 的取值范围.2015-2016高一期末考试数学试卷答案一、选择题1-5.B B A D C 6-10 B A A B B 11-12 C B 二、填空题13. c a b >>14. 1 15. 三、填空题 17.解析:(1)54πα=………………………………………………….4分 (2)cos (cos 3)sin (sin 3)AC BC αααα=-+-13(sin cos )1αα=-+=-2sin cos 9αα∴+=……………………………………………6分 252sin cos (sin cos )19αααα∴=+-=- ……………………8分原式=2sin (sin cos )52sin cos cos sin 9cos αααααααα+==-+ ……………………….10分18.解析:(Ⅰ)2π()sin sin 2f x x x x ωωω⎛⎫=++⎪⎝⎭1cos 2()22x f x x ωω-=112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. 6分 (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 12分 19.解析:(1)当(]0,12x ∈时,设()()21080f x a x =-+ 因为这时图像过点(12,78),代入得12a =- 所以()()2110802f x x =--+ 当[]12,40x ∈时,设y kx b =+,过点(12,78)(40,50)B C 、得190k b =-⎧⎨=⎩,即90y x =-+ 6分故所求函数的关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩………7分(2)由题意得()201211080622x x <≤⎧⎪⎨--+>⎪⎩或12409062x x <≤⎧⎨-+>⎩ ……………9分 得412x <≤或1228x <<,即428x <<则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳 …… 12分.20.解析:(1)设⎥⎦⎤⎢⎣⎡∈21,0x ,则⎥⎦⎤⎢⎣⎡∈21,02x,于是()02222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛==⎪⎭⎫⎝⎛+=x f x xf x f , ∵()22121211⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=f f f ,且0)1(>=a f ,∴a f =⎪⎭⎫ ⎝⎛21,同理,因为24121⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f ,所以441a f =⎪⎭⎫ ⎝⎛; ……………………6分(2)∵)(x f 是偶函数,∴ ()()x f x f =-,)(x f 图象关于直线1=x 对称, ∴ ()()x f x f -=+11,∴对任意实数x ,都有()()[]()[]()()x f x f x f x f x f =-=+-=++=+11112,∴)(x f 是周期为2的周期函数…………12分 21.解析:(1)因为101x x +>-解得11x x <->或所以函数()f x 的定义域为 (,1)(1,)-∞-+∞函数()f x 为奇函数,证明如下:由(I )知函数()f x 的定义域关于原点对称,又因为11()log log ()11aa x x f x f x x x -+--===---+所以函数()f x 为奇函数…………4分 (2)若对于[2,4]x ∈,()log (1)(7)amf x x x >-⋅-恒成立即1log log 1(1)(7)aa x mx x x +>--⋅-对[2,4]x ∈恒成立 111(1)(7)x ma x x x +>>--⋅-当时即对[2,4]x ∈成立. 1(7)mx x +>-, 即(1)(7)x x m +⋅->成立,所以015m <<同理111(1)(7)x ma x x x +<<--⋅-当0<时,解得16m > 综上所述:1a >当时0<m<15 ,1a <当0<时m>16 ………………………….12分22.解析:(1)令θcos =t []1,0∈,473223132322+-⎪⎪⎭⎫ ⎝⎛--=+-+-=t t t y 记4732)23()(2+---=t t g ,)(t g 在⎥⎦⎤⎢⎣⎡23,0上单调递增,在⎥⎦⎤⎢⎣⎡1,23上单调递减. 又θcos =t 在⎥⎦⎤⎢⎣⎡2,0π上单调递减.令123≤≤t ,解得60πθ≤≤ 故函数)(x f 的单调递增区间为⎥⎦⎤⎢⎣⎡6,0π……………………………………6分 (2)由)(θg <-1得θθ2cos 2)cos 2(->-m即]cos 22)cos 2[(4cos 2cos 22θθθθ-+--=-->m]2,1[cos 2]2,0[∈-∴∈θπθ22cos 22)cos 2(≥-+-∴θθ,等号成立时.22cos -=θ故4-θθcos 22)cos 2[(-+-]的最大值是.224- 从而224->m .…………………12分。
2015-2016学年江苏省泰州市高一(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为.2.若幂函数y=x a的图象过点(2,),则a=.3.因式分解:x3﹣2x2+x﹣2=.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=.6.化简:+=.7.||=1,||=2,,且,则与的夹角为.8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.2015-2016学年江苏省泰州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为4.【考点】并集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的并集,找出并集中元素个数即可.【解答】解:∵A={0,1,2},B={1,2,3},∴A∪B={0,1,2,3},则集合A∪B中元素个数为4,故答案为:4.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.若幂函数y=x a的图象过点(2,),则a=﹣1.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据题意,将点(2,)的坐标代入y=x a中,可得=2a,解可得a的值,即可得答案.【解答】解:根据题意,点(2,)在幂函数y=x a的图象上,则有=2a,解可得a=﹣1;故答案为:﹣1.【点评】本题考查幂函数解析式的计算,注意幂函数与指数函数的区别.3.因式分解:x3﹣2x2+x﹣2=(x﹣2)(x2+1).【考点】因式分解定理.【专题】计算题;转化思想;函数的性质及应用.【分析】分组提取公因式即可得出.【解答】解:原式=x2(x﹣2)+(x﹣2)=(x﹣2)(x2+1).故答案为:(x﹣2)(x2+1).【点评】本题考查了分组提取公因式法,考查了推理能力与计算能力,属于基础题.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想.【分析】由函数图象的平移法则,“左加右减,上加下减”,我们可得函数f(x)的图象向右平移a个单位得到函数f(x﹣a)的图象,再根据原函数的解析式为y=sinx,向右平移量为个单位,易得平移后的图象对应的函数解析式.【解答】解:根据函数图象的平移变换的法则故函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣)故答案为:y=sin(x﹣)【点评】本题考查的知识点函数y=Asin(ωx+φ)的图象变换,其中熟练掌握函数图象的平移法则,“左加右减,上加下减”,是解答本题的关键.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=0.【考点】二分法求方程的近似解.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】利用根的存在性确定函数零点所在的区间,然后确定k的值.【解答】解;∵f(x)=x3+2x﹣1,∴f′(x)=3x2+2>0,∴f(x)在R上单调递增,∵f(0)=﹣1<0,f(1)=1+2﹣1>0,∴f(0)f(1)<0,∴函数零点所在的区间为(0,1),∴k=0.故答案为:0.【点评】本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.6.化简:+=2.【考点】有理数指数幂的化简求值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式求解.【解答】解:+=+=2.故答案为:2.【点评】本题考查有理数指数幂化简求值,是基础题,解题时要注意根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式的合理运用.7.||=1,||=2,,且,则与的夹角为120°.【考点】数量积表示两个向量的夹角.【专题】计算题.【分析】根据,且可得进而求出=﹣1然后再代入向量的夹角公式cos<>=再结合<>∈[0,π]即可求出<>.【解答】解:∵,且∴∵||=1∴=﹣1∵||=2∴cos<>==﹣∵<>∈[0,π]∴<>=120°故答案为120°【点评】本题主要考查了利用数量积求向量的夹角,属常考题,较易.解题的关键是熟记向量的夹角公式cos<>=同时要注意<>∈[0,π]这一隐含条件!8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=﹣1.【考点】函数的图象.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】联立方程组得,化简得到x2﹣2x﹣2=0,根据韦达定理得到x1+x2=2,x1x2=﹣2,即可求出答案.【解答】解:联立方程组得,∴x2﹣x﹣1=x+1,∴x2﹣2x﹣2=0,∴x1+x2=2,x1x2=﹣2,∴+===﹣1,故答案为:﹣1.【点评】本题考查了函数图象的交点问题,以及韦达定理的应用,属于基础题.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为(﹣4,﹣3).【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】设C的坐标为(x,y),向量的坐标运算和向量共线垂直的条件得到关于x,y的方程组,解得即可.【解答】解:设C的坐标为(x,y),O为坐标原点,A(1,2),B(﹣2,1),∴=(x+2,y﹣1),=(x,y),=(1,2),=(﹣2,1),+2=(﹣3,4),∵与共线,且⊥(+2),解得x=﹣4,y=﹣3,∴点C的坐标为(﹣4,﹣3),故答案为:(﹣4,﹣3)【点评】本题考查了向量的坐标运算和向量共线垂直的条件,属于基础题.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为[,π].【考点】余弦函数的图象.【专题】综合题;转化思想;综合法;三角函数的图像与性质.【分析】由条件利用余弦函数的单调性,求得函数y=3cos(x+φ),x∈[0,π]的单调减区间.【解答】解:∵点P(1,﹣1)在角φ(﹣π<φ<0)终边上,∴φ=﹣,函数y=3cos(x+φ)=3cos(x﹣),令2kπ≤x﹣≤2kπ+π,求得2kπ+≤x﹣≤2kπ+.可得函数的减区间为[2kπ+,2kπ+],k∈Z.再结合x∈[0,π],可得函数y=3cos(x+φ)的单调减区间为[,π],故答案为:[,π].【点评】本题主要考查余弦函数的单调性,属于基础题.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是5﹣.【考点】指、对数不等式的解法;函数的最值及其几何意义.【专题】函数思想;转化法;函数的性质及应用.【分析】化简集合{x|(log2x)2﹣log2x﹣2≤0},求出x的取值范围,再求函数y的最小值即可.【解答】解:因为{x|(log2x)2﹣log2x﹣2≤0}={x|(log2x+1)(log2x﹣2)≤0}={x|﹣1≤log2x≤2}={x|≤x≤4},且函数y=4x﹣2x+3=22x﹣2x+3=+,所以,当x=时,函数y取得最小值是+=5﹣.故答案为:5﹣.【点评】本题考查了指数与对数不等式的解法与应用问题,解题的关键是转化为等价的不等式,是基础题目.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由f(x)的图象关于x=1对称可以得出f(x)=f(x﹣4),从而可以得到f(﹣log224)=﹣f(log224﹣4)=﹣f(log23﹣1),可判断log23﹣1∈(0,1),从而可以求出,这样根据指数式和对数式的互化及指数的运算即可求得答案.【解答】解:f(x)的图象关于x=1对称;∴f(x)=f(2﹣x)=﹣f(x﹣2)=f(x﹣4);即f(x)=f(x﹣4);∴f(﹣log224)=﹣f(log224)=﹣f(log224﹣4)=﹣f(log23﹣1);∵log23﹣1∈(0,1);∴==;∴.故答案为:.【点评】考查奇函数的定义,f(x)关于x=a对称时有f(x)=f(2a﹣x),以及对数的运算,指数的运算,对数式和指数式的互化.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为﹣1.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】令h(x)=f(x)﹣g(x),问题转化为满足h(x)在[0,2]上是增函数即可,结合二次函数的性质通过讨论对称轴的位置,解出即可.【解答】解:当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),即x1<x2时都有f(x1)﹣g(x1)<f(x2)﹣g(x2),令h(x)=f(x)﹣g(x)=x2+bx﹣|x﹣1|,故需满足h(x)在[0,2]上是增函数即可,①当0≤x<1时,h(x)=x2+(b+1)x﹣1,对称轴x=﹣≤0,解得:b≥﹣1,②当1≤x≤2时,h(x)=x2+(b﹣1)x+1,对称轴x=﹣≤1,解得:b≥﹣1,综上:b≥﹣1,故答案为:﹣1.【点评】本题考察了二次函数的性质、考察转化思想,是一道中档题.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是(﹣,).【考点】正弦函数的图象;函数零点的判定定理.【专题】分类讨论;综合法;三角函数的图像与性质.【分析】由f(x)没有零点求得x的范围,再根据f(asinx+1)没有零点可得asinx+1的范围,根据正弦【解答】解:若函数f(x)=sin(πx﹣)=sinπ(x﹣)没有零点,故0<(x﹣)π<π,或﹣π<(x﹣)π<0,即0<(x﹣)<1,或﹣1<(x﹣)<0,即<x<或﹣<x<.由于函数y=f(asinx+1),x∈R没有零点,则<asinx+1<,或﹣<asinx+1<,当a>0时,∵1﹣a≤asinx+1≤1+a,或,解得0<a<.当a<0时,1+a≤asinx+1≤1﹣a,∴或,求得﹣<a<0.当a=0时,函数y=f(asinx+1)=f(1)=sin=≠0,满足条件.综上可得,a的范围为(﹣,).故答案为:(﹣,).【点评】本题主要考查正弦函数的图象特征,函数的零点的定义,属于中档题.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤) 15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.【考点】交、并、补集的混合运算;集合的表示法.【专题】转化思想;定义法;集合.【分析】(1)根据指数函数的图象与性质,求出集合A,再解一元二次不等式求出集合B;(2)根据补集与交集的定义,求出(∁U A)∩B.【解答】解:(1)∵2x>8=23,且函数y=2x在R上是单调递增,∴x>3,∴A=(3,+∞);又x2﹣3x﹣4<0可化为(x﹣4)(x+1)<0,解得﹣1<x<4,∴B=(﹣1,4);(2)∵全集U=R,A=(3,+∞),A=∞3∴(∁U A)∩B=(﹣1,3].【点评】本题考查了不等式的解法与应用问题,也考查了集合的化简与运算问题,是基础题目.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.【考点】对数函数的图象与性质;函数的图象.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)令f(x)=1解出A点坐标,利用AB=2得出B点坐标,把B点坐标代入g(x)解出a;(2)利用对数的运算性质去掉对数符号列出方程解出x,结合函数的定义域得出x的值.【解答】解:(1)解log2(x+2)=1得x=0,∴A(0,1),∵AB=2,∴B(2,1).把B(2,1)代入g(x)得log a2=1,∴a=2.(2)∵f(x)+g(x)=3,∴log2(x+2)+log2x=log2[x(x+2)]=3,∴x(x+2)=8,解得x=﹣4或x=2.由函数有意义得,解得x>0.∴方程f(x)+g(x)=3的解为x=2.【点评】本题考查了对数函数的图象与性质,对数方程的解法,属于基础题.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值;正弦函数的图象.【专题】转化思想;综合法;三角函数的求值.【分析】(1)根据函数的图象经过点(0,1),求得φ的值,再根据周期性求得ω,可得函数f(x)的解析式.(2)由条件求得sinα+cosα=,平方可得sinαcosα的值,从而求得sinα﹣cosα的值,再利用诱导公式化简要求的式子,可得结果.【解答】解:(1)根据函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),可得sinφ=1,∴φ=,.∵其相邻两对称轴之间的距离为π,∴=π,求得ω=1,∴f(x)=sin(x+)=cosx.(2)∵sinα+f(α)=,α∈(0,π),即sinα+cosα=,平方可得sinαcosα═﹣,∴α为钝角,sinα﹣cosα==,∴====﹣.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,三角函数的化简求值,属于基础题.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?【考点】分段函数的应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x);(3)分段求最大值,即可得出结论.【解答】解:(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x)=;(3)x>50,W=﹣24(x+100)(x﹣1050)=﹣24(x﹣475)2+7935000,∴x=475时,W max=7935000;0≤x≤50,W═24(x+100)(x+950)单调递增,∴x=50时,W max=3600000;综上所述,要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为475元.【点评】本题主要考查了二次函数的应用,二次函数的性质,考查利用数学知识解决实际问题,属于中档题.19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)由已知结合共线向量基本定理得答案;(2)由已知结合向量加法、减法的运算法则求解;(3)由向量加法、减法及向量的数量积运算得答案.【解答】解:(1)∵E,F分别为BD,DC的中点,∴,则;(2)=;(3)=,∵=10﹣6cos∠AEF.∴当∠AEF=π时,取得最大值16.∴的最大值为.【点评】本题考查平面向量的数量积运算,考查了向量加法与减法的三角形法则,是中档题.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.【考点】函数恒成立问题;函数的值.【专题】新定义;转化思想;函数的性质及应用.【分析】(1)①当k=2时,f(x)=2x+1,结合二阶不动点和二阶周期点的定义,可得答案;②由二阶周期点的定义,结合f(x)=kx+1,可求出满足条件的k值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,则函数g(x)=x2+bx+c=x恒有两个不等的实数根,解得答案.【解答】解:(1)①当k=2时,f(x)=2x+1,f(f(x))=2(2x+1)+1=4x+3,解4x+3=x得:x=﹣1,即﹣1为函数f(x)的二阶不动点,时f(﹣1)=﹣1,即﹣1不是函数f(x)的二阶周期点;②∵f(x)=kx+1,∴f(f(x))=k2x+k+1,令f(f(x))=x,则x==,(k≠±1),或x=0,k=﹣1,令f(x)=x,则x=,若函数f(x)存在二阶周期点,则k=﹣1,(2)若x0为函数f(x)的二阶周期点.则f(f(x0))=x0,且f(x0)≠x0,若x1为函数f(x)的二阶不动点,则f(f(x1))=x1,且f(x1)=x1,则f(x0)=f(x1),则x0≠x1,且f(x0)+f(x1)=﹣b,即函数g(x)=x2+bx+c=x恒有两个不等的实数根,故△=(b﹣1)2﹣4c>0恒成立,解得:c<0.【点评】本题以二阶不动点和二阶周期点为载体,考查了二次函数的基本性质,正确理解二阶不动点和二阶周期点的概念是解答的关键.。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2015-2016学年四川省成都市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={﹣1,0,1,2},B={x|x<2},则A∩B=()A.{﹣1,0,1} B.{﹣1,0,2} C.{﹣1,0} D.{0,1}2.sin150°的值等于()A.B. C.D.3.下列函数中,f(x)与g(x)相等的是()A.f(x)=x,g(x)=B.f(x)=x2,g(x)=()4C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x04.幂函数y=x a(α是常数)的图象()A.一定经过点(0,0)B.一定经过点(1,1)C.一定经过点(﹣1,1) D.一定经过点(1,﹣1)5.下列函数中,图象关于点(,0)对称的是()A.y=sin(x+)B.y=cos(x﹣)C.y=sin(x+)D.y=tan(x+)6.已知a=log32,b=(log32)2,c=log4,则()A.a<c<b B.c<b<a C.a<b<c D.b<a<c7.若角α=2rad(rad为弧度制单位),则下列说法错误的是()A.角α为第二象限角B.α=()°C.sinα>0 D.sinα<cosα8.下列函数中,是奇函数且在(0,1]上单调递减的函数是()A.y=﹣x2+2x B.y=x+C.y=2x﹣2﹣x D.y=1﹣9.已知关于x的方程x2﹣kx+k+3=0,的两个不相等的实数根都大于2,则实数k的取值范围是()A.k>6 B.4<k<7 C.6<k<7 D.k>6或k>﹣210.已知函数f(x)=2log22x﹣4λlog2x﹣1在x∈[1,2]上的最小值是﹣,则实数λ的值为()A.λ=﹣1 B.λ=C.λ=D.λ=11.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[﹣3,3]上的零点个数为()A.1个B.2个C.4个D.6个12.已知函数f(x)=,其中[x]表示不超过x的最大整数,如,[﹣3•5]=﹣4,[1•2]=1,设n∈N*,定义函数f n(x)为:f1(x)=f(x),且f n(x)=f[f n﹣1(x)](n≥2),有以下说法:①函数y=的定义域为{x|≤x≤2};②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③f2015()+f2016()=;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.其中说法正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题5分,共20分。
2015 学年第一学期质检考试高一数学试卷一、选择题(共10 小题,每题 5 分,共 50 分)1.以下表述正确的选项是()A.{0} B.{0} C.{0} D.{0}2.以下各图中,不行能表示函数y= f(x) 的图像的是 ()x- 13.函数 f(x)=x-2的定义域为 ()A. (1 ,+∞) B .[1 ,+∞ )C. [1,2)D. [1,2) ∪ (2 ,+∞) 4若会合A{ x | 2≤ x ≤ 3}, B{ x | x1或x4},则会合 A B 等于()A.x | 1x ≤ 3B.x | 2 ≤ x1C.x |3 ≤ x 4D.x | x≤ 3或 x45.以下各组函数表示同一函数的是()A.f ( x)x2 , g( x) ( x)2B.f ( x) 1, g( x)x0C.f ( x) 3 x2, g( x)( 3 x)2D.f ( x) x 1 , g (x)x21 x16.在下边的四个选项中,函数f(x)=x2-1不是减函数的是() A.( -∞,- 2) B .( -2,- 1) C.(-∞,0)D. ( - 1,1)7. 在图中, U 表示全集,用 A 、B 表出暗影部分,此中表示正确的选项是()UA . A ∪BB . A ∩BC . C U (A ∩ B)D . ( C U A) ∩ BAB8. 假如会合 A={ x | ax 2 + 2 x + 1=0} 中只有一个元素,则 a 的值是( )A .0B.1C.0 或 1D .不可以确立a 2x , xR) ,若 f [ f ( 1)] 1, 则 a ()9. 已知函数 f (x) (a2 x , x 0A.1B.1C.1D .24 22510.若函数 f(x) = x 2-3x - 4 的定义域为 [0 ,m],值域为 [ - ,- 4] ,则 m 的取值范围 ()4333A . (0,4]B .[2,4]C .[ 2,3]D . [2,+∞)二、填空题:本大题共7 小题,每题4 分,共 28 分。
高一上学期期末质量检查数学试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|410,|37P x x Q x x =<<=<<,则P Q 等于( )A .{}|37x x <<B .{}|310x x <<C .{}|34x x <<D .{}|47x x <<2.若直线220x y -+=与直线1y kx =+平行,则实数k 的值为( )A . -2B .12-C .2D .123.已知函数()21,11,12x x x f x x -⎧->⎪=⎨≤⎪⎩,则()()2f f等于( )A .-3B .18C .3D . 8 4.若0.52,lg 0.6,lg 0.4a b c ===, 则( )A .a c b <<B .a b c << C. c b a << D .b c a <<5.下列命题中,正确的命题是( )A .平行于同一直线的两个平面平行B .共点的三条直线只能确定一个平面C.若一个平面中有无数条直线与另一个平面平行,则这两个平面平行D .存在两条异面直线同时平行于同一个平面6.已知直线320x y -=与圆()221x m y -+=相交,则正整数m 的值为( )A .1B .2 C. 3 D .47.函数()()lg 2f x x x =+-的零点所在区间为 ( )A .()2,2.0001B .()2.0001,,2.001 C. ()2.001,2.01 D .()2.01,38.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图的右边为一个半圆,则此几何体的体积为 ( )A .164π+B .162π+ C. 484π+ D .482π+9.若圆()()22:514C x y -++=上有n 个点到直线4320x y +-=的距离为1,则n 等于 ( )A .1B .2 C. 3 D .410. 已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(),0-∞B .()4,+∞ C. (),2-∞ D .()2,+∞11.点A B 、分别为圆()22:31M x y +-=与圆()()22:384N x y -+-=上的动点,点C 在直线0x y +=上运动,则AC BC +的最小值为 ( ) A . 7 B .8 C. 9 D .1012.设函数()()()12421,lg 41x x f x g x ax x +=-+-=-+,若对任意1x R ∈,都存在2x R ∈,使()()12f x g x =,则实数a 的取值范围为( )A .(],4-∞B .(]0,4 C. (]4,0- D .[)4,+∞第Ⅱ卷二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.在空间直角坐标系中,设()(),2,3,1,1,1A m B -,且13AB =,则m = .14.已知()f x 为R 上的偶函数,当0x >时,()4log f x x =,则()()49f f -+= .15.过点()4,1A -且在x 轴和y 轴上的截距相等的直线方程是 .16.在正三棱锥P ABC -中,点,,,P A B C 都在球O 的球面上,,,PA PB PC 两两互相垂直,且球心O 到底面ABC 的距离为33,则球O 的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)已知两平行直线4270,210x y x y -+=-+=之间的距离等于坐标原点O 到直线():200l x y m m -+=>的距离的一半.(1)求m 的值;(2)判断直线l 与圆()221:25C x y +-=的位置关系.18. (本小题满分12分)如图,四棱锥P ABCD -的底面ABCD 是正方形,E F 、、G 分别为PD AB CD 、、的中点,PD ⊥平面ABCD .(1)证明:AC PB ⊥;(2)证明:平面//PBC 平面EFG .19. (本小题满分12分)已知函数()y f x =满足()13f x x a +=+,且()3f a =.(1)求函数()f x 的解析式;(2)若()()()1g x x f x f x λ=++ 在()0,2上具有单调性,0λ<,求()g λ的取值范围.20. (本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面1,2,5,3,,ABC AB AA AC BC M N ====分别为111,AA B C 、的中点.(1)求证:AB ⊥平面11AAC C ;(2)判断MN 与平面1ABC 的位置关系,并求四面体1ABC M 的体积.21. (本小题满分12分)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:0C )满足函数关系kx b y e +=( 2.718e = 为自然对数的底数,,k b 为常数).已知该食品在00C 的保鲜时间是192小时,在330C 的保鲜时间是24小时.(1)求k 的值;(2)求该食品在110C 和220C 的保鲜时间.22. (本小题满分12分)已知圆心在x 轴上的圆C 与直线:4360l x y +-=切于点36,55M ⎛⎫ ⎪⎝⎭. (1)求直线12510x y --=被圆C 截得的弦长;(2)已知()2,1N ,经过原点,且斜率为正数的直线L 与圆C 交于()()1122,,,P x y Q x y 两点. ①求证:1211x x +为定值; 22试卷答案一、选择题1-5: BCDCD 6-10: ACBAA 11、12:AA二、填空题13. 1 14. 2 15. 40x y +=或30x y +-= 16. 12π三、解答题17.解:(1)210x y -+=可化为4220x y -+=,则两平行直线4270,210x y x y -+=-+=之间的距离为22725242-=+, 则O 到直线():200l x y m m -+=>的距离为55m =,∵0m >, ∴5m =. (2)圆()221:25C x y +-=的圆心()0,2C ,半径55r =, ∵C 到直线l 的距离为45555r -+==, ∴l 与圆C 相切.18.证明:(1)连接BD .∵PD ⊥平面ABCD ,∴PD AC ⊥,∵底面ABCD 是正方形,∴BD AC ⊥,又PD BD D = ,∴AC ⊥平面PBD ,∵PB ⊂平面PBD ,∴AC PB ⊥.(2)∵G E 、分别为CD PD 、的中点, ∴//GE PC ,又GE ⊄平面,PBC PC ⊂平面PBC , ∴//GE 平面PBC .面PBC ,∴//GF 平面PBC .∵GF GE G = ,∴平面//PBC 平面EFG .19.解:(1)令1t x =+,则1x t =-,∴()31f t t a =+-, ∴()31f x x a =+-, ∵()413f a a =-=, ∴1a =, ∴()2f x x =+(2)由题意得()()2221g x x x λλ=++++在()0,2上单调, ∵函数()g x 的对称轴是22x λ+=-, ∴202λ+-≤或222λ+-≥, 即6λ≤-或2λ≥-,又0λ<, ∴6λ≤-或20λ-≤<. ∵()()2211g λλ=+-,∴()[][)1,149,g λ∈-+∞ . 20.(1)证明:∵222AB AC BC +=, ∴AB AC ⊥,又1AA ⊥平面ABC , ∴1AA AB ⊥,又1AC AA A = , ∴AB ⊥平面11AAC C .(2)解:取1BB 中点D , ∵M 为11B C 中点, ∴1//MD BC , 又N 为1AA 中点,四边形11ABB A 为平行四边形, ∴//DN AB ,又MD DN D = , ∴平面//MND 平面1ABC .∵MN ⊂平面MND ,∴//MN 平面1ABC .∴N 到平面1ABC 的距离即为M 到平面1ABC 的距离.过N 作1NH AC ⊥于H ,∵平面1ABC 平面11AAC C ,∴NH ⊥平面1ABC , ∴1111112552233AA AC NH AC ⨯⨯=⨯=⨯=. ∴M 到平面1ABC 的距离为53,∴111155233233M ABC ABC M V V -==⨯⨯⨯⨯=四面体. 21.解:(1)∵ 0192k b e ⨯+= ①,3324k b e ⨯+= ②,∴②÷①得:33111182k k e e =⇒=. ∴1ln 211ln ln 2211k k ==-⇒=-. (2)由(1)知,当11x =时,11k b e x += ③, ∴③÷①得:111962192k x e x ==⇒=, 故该食品在011C 的保鲜时间为96小时.当22x =时,22k b e y += ④,∴④÷①得:221484192k y e y ==⇒=. 故该食品在022C 的保鲜时间为48小时.22.解:(1)设圆心C 的坐标为(),0a ,则6535CM k a =-,又43l k =-, 由题意可知,1CM l k k =- ,则1a =-,故()1,0C -, ∴2CM =,即半径2r =. 故圆C 的标准方程为()2214x y ++=,∵()1,0-到直线12510x y --=的距离为1, ∴所求弦长为224123-=.(2)设直线L 的方程为()0y kx k =>,()2214x y ⎧++=⎪()所以12122223,11x x x x k k +=-=-++, ①1212121123x x x x x x ++==为定值; ②()()()()22222211222121PN QN x y x y +=-+-+-+-()()()()()()()()()222211112222222121222212121224421442114210121421012411624112x x y y x x y y k x x k x x k x x k x x k x x k k k k =-++-++-++-+=++-+++=++-+-++++=+=⇒==-+或 故直线L 的方程为y x =或12y x =-.。