2013年1月通州区初三期末数学试题及答案
- 格式:doc
- 大小:390.00 KB
- 文档页数:12
初三数学期末检测一、选择题:(共8个小题,每小题3分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填涂在答题纸相应位置1.如图:在Rt △ABC中,∠C =90°,AC =8,BC =6,则sin B 的值等于( )A .35 B .45C .34D .342.如图:在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE =∠C , 且AD ∶AC =2∶3,那么DE ∶BC 等于 ( )A .3∶1B .1∶3C .3∶4D .2∶33.如图,点A 、B 、P 是⊙O 上的三点,若∠APB =45°,则∠AOB 的度数为( )A .100°B .90°C .85°D .45°4.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是 ( ) A .21B .31C .51D .101 5.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为 ( ) A .8、-1 B .8、1 C .6、-1 D .6、1 6.反比例函数xky =的图象如图所示,以下结论:①常数0k >;②当0>x 时,函数值0y >;③y 随x 的增大而减小;④若点),(y x P 在此函数图象上,则点),('y x P --也在此函数图象上.其中正确的是( ) A .①②③④ B .①②③ C .①②④ D .②③④A7.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,E 为BC 中点,则sin ∠AEB 的值是( )A .55 B .43C .53D .548.如图,在⊙O 中,直径AB =4,CD =AB ⊥CD 于点E ,点M 为线段EA 上一个动点,连接CM 、DM ,并延长DM 与弦AC 交于点P ,设线段CM 的长为x ,△PMC 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C D二、填空题(共6个小题,每题4分,共24分): 9.已知y x 23=,那么=+yx x. 10.请写出一个图象为开口向下,并且与y 轴交于点)1,0(-的二次函数表达式 . 11.如图,AB 是半圆O 的直径,AB =3,弦AC =323,点P 为半圆O 上一点(不与点A 、 C )重合. 则∠APC 的度数为 .12.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,BC =8,则MN = . 13.如图,∠AOB =90º,将Rt △OAB 绕点O 按逆时针方向旋转至Rt △O A′B′,使点B 恰好落在边A′B′上.已知tan A =12,OB =5,则BB′= .14.如图,已知在扇形OAB 中,∠AOB =90°,半径OA =10,正方形FCDE 的四个顶点分别在AB 和半径OA 、OB 上,则CD 的长为 .三、解答题:(共9个小题,15-20每题5分,21、22每题7分,23题8分,共52分) 15.计算:()()1260sin 245tan 45cos 30sin 02+︒-︒-︒+︒-12题图AD13题图14题图AB16.已知二次函数24(0)y ax x c a =++≠的图象对称轴为2x =,且过点B (-1,0).求此二次函数的表达式.17.如图,在四边形ABCD 中,∠C =60º,∠B =∠D =90º,AD =2AB ,CD =3,求BC 的长.18.一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行复原,因此把残片抽象成了一个弓形,如图所示,经过测量得到弓形高CD =15米,∠CAD =30°,请你帮助文物学家完成下面两项工作:(1)作出此文物轮廓圆心O 的位置(尺规作图,保留作图痕迹,不写作法); (2)求出弓形所在圆的半径.19.甲、乙两名同学玩抽纸牌比大小的游戏,规则是:“甲将同一副牌中正面分别标有数字1,3,6的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;乙将同一副牌中正面分别标有数字2,3,4的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;若甲同学抽得的数字比乙同学抽得的数字大,甲获胜,反之乙获胜,若数字相同,视为平局.”(1)请用画树状图或列表的方法计算出平局的概率; (2)说明这个规则对甲、乙双方是否公平.20.如图,谢明住在一栋住宅楼AC 上,他在家里的窗口点B 处,看楼下一条公路的两侧点F 和点E 处(公路的宽为EF ),测得俯角α、β分别为30°和60°,点F 、E 、C 在同一直线上. (1)请你在图中画出俯角α和β.(2)若谢明家窗口到地面的距离BC =6米,求公路宽EF 是多少米?(结果精确到0.1米;可能用到的数据73.13≈)CA21.已知:如图,一次函数x y 2-=的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为()m ,1.(1)求反比例函数ky x=的表达式;(2)点()1,n C 在反比例函数ky x=的图象上,求△AOC 的面积;(3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.22.已知:如图,在⊙O 中,直径AB ⊥CD 于点E ,连接BC .(1)线段BC 、BE 、AB 应满足的数量关系是 ;(2)若点P 是优弧 CAD 上一点(不与点C 、A 、D 重合),连接BP 与CD 交于点G .请完成下面四个任务:①根据已知画出完整图形,并标出相应字母;②在正确完成①的基础上,猜想线段BC 、BG 、BP 应满足的数量关系是; ③证明你在②中的猜想是正确的;④点P ′恰恰是你选择的点P 关于直径AB 的对称点,那么按照要求画出图形后在②中的猜想仍然正确吗? ;(填正确或者不正确,不需证明)23.如图,在平面直角坐标系xOy 中,以点(1,1)M -x 轴交于A 、B 两点,与y 轴交于C 、D 两点,二次函数2(0)y ax bx c a =++≠的图象经 过点A 、B 、C ,顶点为E . (1)求此二次函数的表达式;(2)设∠DBC =α,∠CBE =β,求sin (α-β)的值;(3)坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似.若存在,请直接写出点P 的坐标;若不存在,请说明理由.初三数学期末学业水平质量检测答案二、填空题:(共6个小题,每小题4分,共24分)9.52; 10.122-+-=x x y (答案不唯一,满足1,0-=<c a 即可);11.60º或120º; 12.6; 13.52;14.102.三、解答题:(共9个小题,15-17每题5分,18-22每题6分,23题7分,共52分)15.解:原式=322321212+⨯-+⎪⎭⎫⎝⎛-………………………3分 =32314+-+ ………………………4分 =35+ ………………………5分16.解: 此二次函数图象的对称轴为2=x∴224=-a解得:1-=a ………………………2分∴此二次函数的表达式为c x x y ++-=42点B (-1,0)在此函数图象上,∴ 041=+--c解得:5=c ………………………4分∴此二次函数的表达式为542++-=x x y ………………………5分17.解:延长DA 、CB 交于点E ………………………1分 在Rt △CDE 中,tan C =23=CD DE , 21c os ==EC CD C ∴33=DE ,6=EC ………………………2分 AD=2AB∴设k AB =,则k AD 2=∠C =60º,∠B =∠D =90º ∴∠E =30º 在Rt △ABE 中,21sin ==AE AB E ,33tan ==EB AB E E∴k AB AE 22==,k AB EB 33== ∴334==k DE解得:433=k ………………………4分 ∴49=EB ∴415496=-=BC ………………………5分18.解:(1)答:点O 即为所求作的点. ………………………2分(2)解:连接AO在Rt △ACD 中,∠CAD =30º∴52=AC ,∠ACD =60ºAO =CO∴ AO =CO =AC =52答:此弓形所在圆的半径为52. ………………………5分19. 由列表可知,可能出现的结果有9个,平局的结果有1个,AB所以P (平局)=91.………………………4分 两方获胜的概率相等,游戏规则对双方是公平的 .………………………5分(说明:树形图法同理给分.)20. (1)………………………2分(2)解: 在点B 处,看点F 和点E 处测得俯角α、β分别为︒30和︒60∴∠BFC =30º,∠BEC =60º ∴∠EBF =30º∴BE =EF ………………………4分在Rt △BEC 中,BEBCBEC =∠sin∴34=BE∴9.673.1434≈⨯≈=EF (米)答:公路宽EF 为6.9米. ………………………5分21.解:(1)BA BE BC ⋅=2………………………1分(2)①………………………2分② BP BG BC ⋅=2………………………3分 ③ 证明: 在⊙O 中,直径CD AB ⊥∴弧BD =弧BC ∴∠BCD =∠P ∠CBG =∠PBC ∴△CBG ∽△PBC∴BCBGBP BC =∴BP BG BC ⋅=2………………………6分F④ 确 ………………………7分22.解:(1) 一次函数x y 2-=的图象过点B ()m ,1∴2-=m∴点B 坐标为()2,1-反比例函数ky x=的图象点B ∴2-=k∴反比例函数表达式为xy 2-=………………………1分 (2)设过点A 、C 的直线表达式为)0(11≠+=k b x k y , 且其图象与y 轴交于点D点()1,n C 在反比例函数xy 2-=的图象上 ∴2-=n∴点C 坐标为()1,2-点B 坐标为()2,1- ∴点A 坐标为()2,1-∴⎩⎨⎧=+-=+-21211b k b k解得:3,11==b k∴过点A 、C 的直线表达式为3+=x y ………………………3分 ∴点D 坐标为)3,0( ,32321=⨯⨯=∆COD S 231321=⨯⨯=∆AOD S∴23=-=∆∆∆AOD COD AOCS S S ………………………4分(3)点P 的坐标可能为()0,0、()1,0、()0,1-………………………7分 23. 解:(1) )1,1(-M 为圆心,半径为5∴1,3,3,1====OD OC OB OA∴)1,0(),3,0(),0,3(),0,1(D C B A -………………………1分设二次函数的表达式为)0)()((21≠--=a x x x x a y 解得:3,1,121=-==x x a∴ 二次函数表达式为)3)(1(-+=x x y整理成一般式为322--=x x y ………………………2分 (2)过点E 作EF ⊥y 轴于点F)3,0(),0,3(C B∴可得23=BC点E 为二次函数322--=x x y 的顶点∴点E 的坐标为()4,1- ∴2=CEEF CF BO CO ==,∴∠OCB =∠ECF =45º ∴∠BCE =90º在Rt △BCE 中与Rt △BOD 中,31tan ==∠OB OD OBD ,31tan ==∠CB CE CBE∴∠CBE =∠OBD =β,………………………4分 ∴ sin (α-β)=sin (∠DBC -∠OBD )=sin ∠OBC =22=BC CO ……………5分 (3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0)过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P 过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0)故在坐标轴上存在三个点P 1(0,0),)31,0(2P ,P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似………………………8分。
通州初三数学期末考试试卷节省工作时间,等于延长寿命两万余份资料任你下载1中小学教学资料库,两万份资料供您选择2浏览到你需要的文档,复制链接,免费为你提供专业团队,为你提供优质资料联系方式:电子邮箱:longzhongban@163。
comQQ:longzhongban@(1278669248)通州初三数学期末考试试卷2011年1月1(本试卷共4页,三道大题,23个小题,满分100分.考试时间为90分钟. (((((((((((((((((((((((((((((((((((((考 2(请在试卷和答题纸上认真填写学校名称、姓名. ((((((((((((((((((((((((生 (3(试题答案一律用黑色钢笔、碳素笔按要求填涂或书写在答题纸划定的区域内,((((((((((((((((((((((((((((((((((((须 (在试卷上作答无效;作图题可以使用黑色铅笔作答。
(((((((((((((((((((((((知(4(考试结束后,请将本试卷和答题纸一并交回。
((((((((((((((((((((((一、选择题:(共8个小题,每小题3分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填涂在答题纸相应位置.41(在Rt?ABC中,?C =90?,sinA=,则cosB的值等于( ) 55343A( B( C( D( 5455C'B'2(如图是一个以点A为对称中心的中心对称图形,若?C =90?,AB = 30?,AC = 1,则BB′的长为( )?A(2 B(4BCC( D(8 第2题图 43CD 3(AB是?O的直径,点C在?O上,OD?AC,交BC于D(若BD=1,则BC的长为( ) A B O A(2 B(323C( D( 2第3题图 3A 4(如图,在?ABC中,DE?BC,DF?AC,则下列比例式E D学习借鉴他人,提高发展自己B F C节省工作时间,等于延长寿命一定成立的是( )AEDEAECF B( A(,,ECBCACBCADBFDEDFC( D(第4题图,,ABBCBCAC5(现有一扇形纸片,圆心角?AOB为120?,半径的长为cm,用它围成一个圆锥R3的侧面(接缝忽略不计),则该圆锥的侧面积为2,,,A( B( C( D( ,312326(二次函数y,ax,bx,c的图象如图所示,则下列各式一定成立的是( )bA( B( ,,0abc,,,02a2C( D(第6题图 a,b,c,0b,4ac,027(二次函数与一次函数在同一直角坐标系中图象大致是 y,ax,bx,cy,ax,c( )A ABC D8(如图,一根电线杆的接线柱部分AB在阳光下的影子CD的长为1米, B 太阳光线与地面的夹角?ACD = 60?,则AB的长为()331A(米 B(米 C(米 D(米 322360?C D第8题图二、填空题(共8个小题,每题3分,共24分):9(一个扇形的圆心角为90?,半径为2,则这个扇形的弧长为。
7.通州区初三数学一模考试参考答案及评分标准2013.5一、选择题:1.C 2.C 3.D 4.B5.A 6.D 7.B 8.A二、填空题:9.; 10. ; 11. ; 12. 1,4;三、解答题:13.解:原式= ,……………… 4分;= ,= . (5)分.14.解:解不等式①,得 ,……………… 1分;解不等式②,, (2)分;, (3)分;,, ……………… 4分;∴这个不等式组的解集是 . ……………… 5分.15. 证明:在△ABE和△AC D中∵……………… 3分;∴△ABE≌△ACD(SAS). ……………… 4分;∴. (5)分.16. 解:原式=,, ……………… 1分;, ……………… 2分;=. ……………… 3分;由,得, .................. 4分; ∴原式=== . (5)分.17. 解:(1) 把,分别代入和中,∴……………… 1分;解得: ………………2分;∴反比例函数的表达式为,一次函数的表达式为;(2)设一次函数的图象与y轴的交点为D,则,……………… 3分;∵,∴,……………… 4分;∴,∴. ……………… 5分.18. 解法一:解:设原计划每天修建公路米, 则实际每天修建公路米, …… 1分;根据题意得:, ……………… 3分;∴,∴.经检验:x=300是原方程的解,且符合实际问题的意义. ……………… 4分;答: 原计划每天修建公路300米. ……………… 5分.解法二:解:设铺设600米用天, 则增加人力和设备后,用天完成任务.……………… 1分;根据题意得:, ……………… 3分;解得:.经检验:是原方程的解,且符合实际问题的意义.……………… 4分;∴,答:原计划每天修建公路300米. ……………… 5分.四、解答题19. (1),. .................. 2分; 补全频数分布直方图正确; (4)分;(2). ……………… 5分.估计全校1000名学生中约有370名获奖..解法一:∵矩形ABCD,△DCE是等边三角形,∴,,在Rt△中,,,∴tan,tan,∴,∴,,……………… 1分;∴,……………… 2分;过点E作,交CB的延长线于点G. ……………… 3分;在Rt△中,,,,∴,cos,cos,∴,∴,由勾股定理得,,∴(舍去负值)……………… 4分;∴△BEF的周长=. ……………… 5分.解法二:∵矩形ABCD,△DCE是等边三角形,∴,,过点E作交CD于点H,交AB于点G. ……………… 1分;∴点H是DC的中点,点G是AB的中点,,,在Rt△中,,,∴sin,sin,∴,∴.在Rt△中,,,∴sin,sin,∴,……………… 2分;∴,∵点G是AB的中点,,∴,∴,……………… 3分;由勾股定理得,,∴(舍去负值)……………… 4分;∴△BEF的周长=. ……………… 5分.解法三:∵矩形ABCD,△DCE是等边三角形,∴,,在Rt△中,,,∴tan,tan,∴,∴,,……………… 1分;∴,……………… 2分;过点B作,交CE于点G. (3)分;在Rt△中,,,,∴,cos,cos,∴,∴,由勾股定理得,,或BG是线段EC的垂直平分线,∴(舍去负值)或BE=BC ,………… 4分;∴△BEF的周长=. ………………5分.21. (1)证明:连接OD.∵,∴,∵AD平分,∴,……………… 1分;∴∥OD,∵,∴,∵点D在⊙O上,∴ED是⊙O的切线; ……………… 2分;(2)解法一:连接CB,过点O作于点G.…………… 3分;∵ AB是⊙O的直径,∴,∵,∴OG∥CB ,∴,∵5AC=3AB ,∴,……………… 4分;设,∵,,∴四边形EGOD是矩形,∴,AE∥OD ,∴,,,∴△AEF∽△DFO,∴,∴,∴. ……………… 5分.解法二:连接CB,过点A作交DO的延长线于点H. (3)分;∴四边形AHDE是矩形,∴,AE∥HD ,AH∥ED ,∴,∵ AB是⊙O的直径,∴,∴,∴△AHO∽△BCA,∴,∵5AC=3AB ,∴,……………… 4分;设,∴,,∵AE∥HD,∴△AEF∽△DFO,∴,∴,∴. ……………… 5分.解法三:连接CB,分别延长AB、ED交于点G. ………… 3分;∵,,∴AE∥OD ,,∴,∵ AB是⊙O的直径,∴,∴,∴△GDO∽△BCA,∵5AC=3AB ,∴,……………… 4分;设,∴,,∵AE∥OD,∴△AEG∽△ODG,△AEF∽△DFO,∴,,∴,∴. (5)分.22.(1)画图正确; 每图各1分,共3分;(2)面积关系是 == ; ……………… 4分;周长关系是 >>. ……………… 5分.五、解答题:23.解:(1)令,则解方程得:或,……………… 1分;由题意得:,,∴,∴. ……………… 2分;(2)令,则,∴,∵,∴,……………… 3分;∴,∴. ……………… 4分;或∵,,∴,把点M的坐标分别代入中,∴,……………… 3分;∴,∴. ……………… 4分;(3),,. (每个答案各1分) ……………… 7分.24.解:(1)过点A作于点G .∵∠ADB=60°,,∴,,∴,∴ tan,∴,,……………… 1分;∵△ABC是等边三角形,∴,,……………… 2分;由勾股定理得:. …… 3分;(2)作,且使,连接ED、EB. ………… 4分;∴△AED是等边三角形,∴,,∵△ABC是等边三角形,∴,,∴,即,∴△EAB≌△DAC. ……………… 5分;∴EB=DC .当点E、D、B在同一直线上时,EB最大,∴,……………… 6分;∴CD 的最大值为6,此时. ……………… 7分.另解:作,且使,连接DF、AF.参照上面解法给分.25.解:(1)由题意得:,,,.∴,∴,∴∵GC是⊙M的切线,∴∴cos,……………… 1分;∴,∴,∴,∴直线GC的表达式为. ……………… 2分;(2)设过点D的直线表达式为,∴∴,或,或, ……………… 3分;∴,∴ 过点D的“蛋圆”的切线的表达式为. ……………… 4分;(3)假设点E在x轴上方的“蛋圆”上,设,则点F的坐标为.EF与x轴交于点H,连接EM.∴,∴,……①………… 5分;∵点F在二次函数的图象上,∴,……②解由①②组成的方程组得:;.(舍去)……………… 6分;由对称性可得:;. ……………… 7分;∴,,,.……………… 8分.。
通州区初三数学期末考试试卷2013年1月考生须知:1.本试卷共有四个大题,24个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.如图,已知P 是射线OB 上的任意一点,PM ⊥OA 于M , 且OM : OP =4 : 5,则cos α的值等于( ) A .34 B .43 C .45 D .352.已知⊙O 的半径为5,A 为线段OP 的中点,若OP =10,则点A 在( ) A .⊙O 内 B .⊙O 上 C .⊙O 外 D .不确定 3. 若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切B .相交C .外切D .外离4.如图,A 、B 、C 是⊙O 上的点,若∠AOB =70°,则∠ACB 的度数为() A . 70° B . 50° C .40°D .35°5.若一个正多边形的一个内角是144°,则这个多边形的边数为( ) A. 12B. 11C.10D. 96.如图,在△OAB 中, CD ∥AB ,若OC : OA =1:2,则下列结论:(1)OD OCOB OA=; (2)AB =2 CD ;(3)2OAB OCD S S ∆∆=. 其中正确的结论是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3) 7. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 8. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .2C .35D .45第4题图CB AO 第1题图O M PBAα第6题图D C B AO9.如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32 B .23 C .12 D .3410. 如图,⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA .动点P 从点A 出发,以π厘米/秒的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为( )秒时,BP 与⊙O 相切.A .1B .5C .0.5或5.5D . 1或5 二、细心填一填:(每题3分,共18分) 11.计算:tan45°= .12. 如图,⊙O 的弦AB =8,OD ⊥AB 于点D ,OD = 3,则⊙O 的半径等于 . 13.如图是二次函数2y ax bx c =++的部分图象,由图象可知方程20ax bx c ++=的解是________ ,___________.14. 如图,在⊙O 中,半径 OA ⊥BC ,∠AOB =50°,则∠ADC 的度数是________.15.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2 .(结果保留π)16.图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m=__________(用含n 的代数式表示).三、认真做一做:(共22分)17. (4分)如图,在△ABD 和△AEC 中,E 为AD 上一点,若∠DAC =∠B ,∠AEC =∠BDA . 求证:AE ACBD BA=. 证明:第17题图ECBA 第9题图60°PD CA第10题图第12题图第14题图第16题图∙∙∙∙m2n n 80358634221第8题图18.(6分)如图,在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A +∠B =90︒. (1)求证:BC 是⊙O 的切线; (2)若OA =6,BC =8,求BD 的长. (1)证明:(2)解:19. (6分)在平面直角坐标系xOy 中,二次函数22y mx nx =+-的图象过A (-1,-2)、B (1,0)两点.(1)求此二次函数的解析式;(2)点(),0P t 是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N .当点M 位于点N 的上方时,直接写出t 的取值范围. 解:(1) (2)20.(6分) 如图是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是3tan 4α=,在与滑沙坡底C 距离20米的D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50). 解:四、解答题:(共30分)21. (6分)如图,AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC .黄皓、李明两位同学的作法分别是:第19题图第20题图黄皓:1. 作OD 的垂直平分线,交⊙O 于B ,C 两点,2. 连结AB ,AC ,△ABC 即为所求的三角形.李明:1. 以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点, 2. 连结AB ,BC ,CA ,△ABC 即为所求的三角形.已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC 是等边三角形.解:我选择___________的作法. 证明:22.(7分)已知:如图,在四边形ABCD 中,BC <DC ,∠BCD =60º,∠ADC =45º, CA 平分∠BCD,AB AD ==ABCD 的面积.23.(8分)将抛物线c 1:y=2x 轴翻折,得到抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E . ①用含m 的代数式表示点A 和点E 的坐标;②在平移过程中,是否存在以点A ,M ,E 为顶点的三角形是直角三角形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.解:(1)抛物线c 2的表达式是__________________;(2)①点A 的坐标是(______,______),点E 的坐标是(______,______).②第21题图第22题图B A24.(9分)在平面直角坐标系xOy中,点B(0,3),点C是x轴正半轴上一点,连结BC,过点C作直线CP∥y轴.(1)若含45°角的直角三角形如图所示放置.其中,一个顶点与点O重合,直角顶点D 在线段BC上,另一个顶点E在CP上.求点C的坐标;(2)若含30°角的直角三角形一个顶点与点O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.解:(1)(2)备用图备用图第24题图通州区初三数学期末考试参考答案及评分标准2013.1 一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.B 9. B 10. D 二、细心填一填:(每题3分,共18分)11. 2; 12. 5; 13. 11x =-,25x =;14. 25o ; 15. 270π; 16. 291n -.三、认真做一做:(共22分)17. 证明:∵∠DAC =∠B ,∠AEC =∠BDA , ……………… 2分;∴△AEC ∽△BDA . ……………… 3分;∴AE ACBD BA=. ……………… 4分. 18.(1)证明:连结OC . ………… 1分;∵»»CDCD =, ∴2COD A ∠=∠,∵290A B ∠+∠=o,∴90COD B ∠+∠=o . ……………… 2分; 在△OCB 中, ∴90OCB ∠=o,∴BC 是⊙O 的切线 . ……………… 3分;(2)解: 在⊙O 中,∴OC =OA =OD =6, ……………… 4分; ∵90OCB ∠=o, ∴222OB OC BC =+.∴10OB =. ……………… 5分; ∴1064BD OB OD =-=-=. ……………… 6分.19.解:(1)把A (-1,-2)、B (1,0)分别代入22y mx nx =+-中,∴2220m n m n --=-⎧⎨+-=⎩,;……………… 2分;解得:11.m n =⎧⎨=⎩ ……………… 3分;∴所求二次函数的解析式为22y x x =+-. ……………… 4分; (2)11t -<<. ……………… 6分.20. 解:由题意可知:20DC =米,ADB ∠=26.6°,90B ∠=o.在Rt △ABC 中,∵3tan 4AB BC α==, ……………… 1分; ∴设3AB x =,4BC x =, ……………… 2分;在Rt △ABD 中,∴tan ABADB DB ∠=, ……………… 3分; ∴3tan 26.60.5420x x ==+o, ……………… 4分; 解得:10x =, ……………… 5分; ∴330AB x ==.答:滑坡的高AB 为30米. ……………… 6分. 四、解答题:(共30分) 21. 解:我选择黄皓的作法.如图画图正确. ……………… 2分; 证明:连结OB 、OC .∵AD 为⊙O 的直径,BC 是半径OD 的垂直平分线,∴»»AB AC =,»»BD CD =, 1122OE OD OC ==, ……………… 3分;∴AB AC =. ……………… 4分;在Rt △OEC 中, ∴ cos 12OE EOC OC ∠==, ∴60EOC ∠=o, ……………… 5分; ∴120BOC ∠=o.第21题图∴60BAC ∠=o.∴△ABC 是等边三角形. ……………… 6分. 我选择李明的作法.如图画图正确. ……………… 2分; 证明:连结DB 、DC .由作图可知: DB =DO =DC , 在⊙O 中, ∴OB =OD =OC ,∴△OBD 和△OCD 都是等边三角形, ……… 3分;∴60ODB ODC ∠=∠=o, ……… 4分;∵»»AB AB =,»»AC AC =, ∴60ODB ACB ∠=∠=o ,60ABC ODC ∠=∠=o , ……………… 5分;∴△ABC 是等边三角形. ……………… 6分.22.解: 在CD 上截取CF =CB ,连结AF . 过点A 作AE ⊥CD 于点E . …… 1分;∵CA 平分∠BCD ,∠BCD =60º, ∴30BCA FCA ∠=∠=o, 在△ABC 和△AFC 中∵ .BC FC ACB ACF CA CA =⎧⎪∠∠⎨⎪=⎩,=,∴△ABC ≌△AFC . ……………… 2分; ∴ AF =AB , ∵AB AD =,∴AF AD =. ……………… 3分; 在Rt △ADE 中,45D ∠=o,AB AD ==, ∴ sin 2AE ADE AD ∠==, ∴AE =ED =2 . ……………… 4分; 在Rt △AEC 中,30ACE ∠=o, ∴ tan AE ACE EC ∠==, 第21题图FE第22题图DCB A∴CE = ……………… 5分; ∵AE ⊥CD , ∴FE =ED =2 .1222ABCD ACE S S CE AE ==⨯⨯⨯V ……… 6分;= 1222⨯⨯=……………… 7分. 注: 另一种解法见下图,请酌情给分.23. 解:(1)抛物线c 2的表达式是2y = ……………… 2分; (2)①点A 的坐标是(1m --,0), ……………… 3分;点E 的坐标是(1m +,0). ……………… 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形.由题意得只能是90AME ∠=o. 过点M 作MG ⊥x 轴于点G .由平移得:点M 的坐标是(m -,……… 5分; ∴点G 的坐标是(m -,0),∴1GA =,MG = 21EG m =+, 在Rt △AGM 中, ∵tan MG MAG AG ∠==, ∴60MAG ∠=o, ……………… 6分;∵ 90AME ∠=o,∴30MEA ∠=o,FEAB D第22题图第23题图∴tan 3MG MEG EG ∠==, ∴213m =+ ……………… 7分; ∴1m =. ……………… 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形. 24. 解:(1)过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H . ……………… 1分;∴90OGD EHD ∠=∠=o,∵△ODE 是等腰直角三角形,∴OD =DE ,90ODE ∠=o , ∵CP ∥y 轴,∴ 四边形DGCH 是矩形, ……………… 2分;∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o, ∴ODG EDH ∠=∠,∴△ODG ≌△EDH . ……………… 3分; ∴DG =DH . ∴DG =GC ,∴△DGC 是等腰直角三角形,∴45DCG ∠=o, ……………… 4分;∴tan 1OBDCG OC∠==, ∴OC =OB =3.∴点C 的坐标为(3,0)(2) 分两种情况:当60DOE ∠=o时, 过点D 分别作DG ⊥x 轴于G , DH ⊥PC 于H .第24题图∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠== 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o ,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o , ∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 6分;∴DG OD DH DE ==.∴3DG GC =, ∴tan 3DG DCG GC ∠==, ∴30DCG ∠=o ,∴tan 3OB DCG OC ∠==, ∴OC= ……………… 7分;当30DOE ∠=o 时,过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H .∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠== 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o , ∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 8分;∴DG OD DH DE==∴DG GC=∴tan DG DCG GC ∠== ∴30DCG ∠=o ,∴tan OB DCG OC∠==∴OC ……………… 9分.∴点C )、().备注:点E 在x 轴下方,证法一样,不须分类讨论. (以上答案供参考,其它证法或解法酌情给分)。
2013年下学期九年级期末考试试卷数 学(时量:120分钟 满分:120分)一、精心选一选,旗开得胜 (每小题3分,满分24分,请将正确答案的序号填写在下表内) 1. 方程x 2=x 的解是 A. x=0 B. x=1 C. x=±1 D. x=1或 x=02.如果一元二次方程212270x x ++=的两个根是12,x x ,那么12x x +的值为A. -6B. -12C. 12D. 27 3. 下列说法中正确的是A .所有的等腰三角形都相似B .所有的菱形都相似C .所有的矩形都相似D .所有的等腰直角三角形都相似 4.如图1:点O 是等边△ABC 的中心,A ′、B ′、C ′分 别是OA ,OB ,OC 的中点,则△ABC 与△A ′B ′C ′是位 似三角形,此时,△A ′B ′C ′与△ABC 的位似比、位 似中心分别为A .12, 点A ′ B .2,点AC .12,点OD .2,点O5.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是A .c=A a sinB .c=A acos C .c=A a tan ⋅ D .c=Aatan 6. 计算: 0222sin304cos 30tan 45+-的值等于A .4B .C .3D .27. 学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,则剩余学生参加全市优秀学生表彰会的概率是 A.61 B.152 C.295 D.294 C图3AB CDE8.如图,若将四根木条钉成的矩形木框变为平行四边形ABCD ,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 ( ) A.30º B. 45º C.600D.900二、耐心填一填,一锤定音 (每小题3分, 满分24分)9. 把方程x 2-2x-3=0变为(x-a)2=b 的形式为_____________________________________ . 10.若(a -b): (a+b)=3:7, 则a :b=_______________11. 在ABC 中,∠C=900,若a=4,b=3,则sinA=____________. 12. 如果两个相似三角形的相似比为2 :3, 那么这两个 相似三角形的面积比为_______________________ .13.定理“等腰梯形的对角线相等”的逆定理是 ____________________________________ .14. 如图3,△ABC 中,D,E 分别在AB 、AC 上,且DE 与BC 不平行,请填上一个适当的条件: _____________________________,可得△ADE ∽△ACB.15. 菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长是__________cm . 16. 张洁和曾巧两个同学的生日在同一个月的概率是____________ .三、细心想一想,慧眼识金17.解下列方程(8分)(1)2230x x --=;(2)(1)(2)4x x -+=.18.计算:cos450.tan450.tan300-2cos600.sin450(6分)19. 已知关于x的一元二次方程5x2+kx-10=0一个根是-5,求k的值及方程的另一个根.(6分)20.如图4,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,问此路灯有多高?(6分)图421.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数).(1)列举所有可能出现的结果.(2)出现奇数的概率是多少?(6分)四、用心做一做,马到成功 (每小题6分,满分12分)22、如图5,梯形ABCD 中,AD ∥BC,AB=DC,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F,且PA=PD.(1)写出图中三对你认为全等的三角形(不再添加辅助线); (2)选择你在(1)中写出的全等三角形中的任意一对进行证明.图523.如图6,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.(6分)图6ABCDE1 2_ _ B五、综合用一用,再接再厉(每小题8分,满分16分)24.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.如果制作这面镜子共花了195元,求这面镜子的长和宽.25.如图7,直升飞机在资江大桥AB 的上方P 点处,此时飞机离地面的高度PO=450米,且A 、B 、O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的跨度AB .OB A450图7六、探究试一试,超越自我 (第26题12分)25.如图8,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M 、N 分别在边AD 、BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E 、F . (1)求梯形ABCD 的面积;(2)设AE =x,用含x 的代数式表示四边形MEFN 的面积. (3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.图8C D ABEFNM2013年下学期期末考试九年级数学参考答案一、(每小题3分, 满分24分)二、(每小题3分, 满分24分) 9、(x-1)2=4 10、10:4 11、5412、4 :9 13.对角线相等的梯形是等腰梯形 14、∠ ADE =∠ C,或∠ AED=∠ B 或AB AE =AC AD , 任选一种情况均可 15.20 16、121三、(第17题8分,第18题6分)17.(1)121,3x x =-= (2) 122,3x x ==-18.1 19.k=23225x =-20、△CDE ∽△ABE , 则 BEDE AB CD =,即4226.1+=AB ,AB=4.8米 21、(1)所有可能出现的结果: 一位数3个:1、2、3; 两位数6个:12、13、21、23、31、32;三位数6个:123、132、213、231、312、321.(2)出现奇数的概率为32四、(每小题6分, 满分16分)22、(1)△ABE ≌△DCF ,△ABP ≌△DCP ,△PBE ≌△PCF ,△PBF ≌△PCE 任写三种情况均可 (2)证明过程 略 23、先证DE =DB 再求DB =38五、(每小题8分, 满分16分)24、设长方形镜子的宽为x m , 则长为2x m, 则1954563021202=+⨯+⨯x x (4分) 即05682=-+x x 解得5.0),(25.421=-=x x 舍去 答略 (4分)25、 30,45PAO PBO ∠=︒∠=︒,tan 30,tan 45PO POOA OB=︒=︒,(4分) 450tan 30OA ∴==︒, 450450tan 45OB ==︒, 1)()AB OA OB m ∴=-= 答略 (4分)六、 (12分)26、(1)分别过D 、C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .易证四边形DGHC 为矩形,∴GH =DC =1.又可证△AGD ≌△BHC . ∴ AG =BH =3. 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.∴16247)(1=⨯+=ABCD S 梯形. (4分) (2)易证四边形MEFN 为矩形, △MEA ≌△NFB , △MEA ∽△DGA ∴ AE =BF . 设AE =x ,则EF =7-2x .∴DG ME AG AE =. ME =x 34. ∴ x x x x EF ME S MEFN 32838)2(7342+-=-=⋅=矩形. (4分) (3)能.四边形MEFN 为正方形,则ME =EF . 由(2)知,AE =x ,EF =7-2x ,ME =x 34.∴ =34x7-2x .解得1021=x .∴ EF =51427=-x <4.(< DG ) ∴251965142=⎪⎭⎫⎝⎛=MEFN S 正方形. (4分)ABE FG H。
初三数学期末考试试卷2016年1月考生须知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名.3.试题答案一律书写在答题卡上各题指定区域内的相应位置上. 4.请用蓝色或黑色钢笔、圆珠笔答卷. 5.考试结束,请将本试卷和答题卡一并交回. 1. 已知点(-2,2)在二次函数2y ax =的图象上,那么a 的值是( ).A .1B .2C .12 D .12- 2.在Rt △ABC 中,90C ∠=o,2AB BC =,那么sin A 的值为( ).A .21B .22C .23D .13.右图是某几何体的三视图,那么这个几何体是( ).A .三菱锥B .圆柱C .球D .圆锥4. 如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,垂足为C , 如果OC = 3,那么弦AB 的长为( ). A. 4 B. 6 C. 8 D. 10BA OC 祝5.如图是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是( ).A .考B .试C .顺D .利6. 如果点M (-2,1y ),N (-1,2y )在二次函数22y x x =-+的图象上,那么下列结论正确的是( ).A .1y <2yB .1y >2yC .1y ≤2yD .1y ≥2y7. 如图,为了测量某棵树的高度,小刚用长为2m 的竹竿 做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好 落在地面的同一点. 此时,竹竿与这一点距离相距6m , 与树相距15m ,那么这棵树的高度为( ).A. 5mB. 7mC. 7.5mD. 21m8. 如果弧长为6π的弧所对的圆心角为60°,那么这条弧所在的圆的半径是 ( ). A. 18 B. 12 C. 36 D. 69. 如图,AB 是⊙O 的切线,B 为切点,AO 的延长线交⊙O 于C 点,连接BC ,如果30A ∠=o,23AB =,那么AC 的长等于( ) . A. 4 B. 6 C. 43 D. 6310.如图1,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发沿图中某一个扇形顺.时针..匀速运动,设∠APB =y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P 的运动路线可能为( ).y90AOC45CAOA .O →B →A →OB .O →A →C →OC .O →C →D →O D .O →B →D →O二、填空题(本题共18分,每小题3分)11.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的表达式是:__________. 12. 把二次函数的表达式246y x x =-+化为()2y a x h k =-+的形式,那么h k +=_____.13.如图,边长为a 的正方形发生形变后成为边长为a 的菱形,如果设这个菱形的一组对边之间的距离为h ,记ak h=,我们把k 叫做这个菱形 的“形变度”.如果变形后的菱形有一个角是60o, 那么形变度k = .14. 学习相似三角形和解直角三角形的相关内容后,张老师请同学们 交流这样的一个问题:“如图,在正方形网格上有△111A B C 和△222A B C ,这两个三角形是否相似?”,那么你认为△111A B C和△222A B C _______,(填相似或不相似);理由是________________________________.15. 小明四等分»AB ,他的作法如下 : (1)连接AB (如图) ;形变haa aM P NTABC E G A2B2C2C 1B 1A 1(2)作AB 的垂直平分线CD 交»AB 于点M ,交AB 于点T ; (3)分别作AT ,TB 的垂直平分线EF ,GH ,交»AB 于N ,P 两点. 则N ,M ,P 三点把»AB 四等分. 你认为小明的作法是否正确:_________,理由是______________________.16.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数是____________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 如图,已知 ∠1 = ∠2,∠AED = ∠C ,求证:△ABC ∽△ADE .18. 已知二次函数2y x bx c =++的图象经过(2,-1)和(4 ,3)两点.求二次函数2y x bx c =++的表达式.21DCABOA19.已知:如图,A 、B 、C 为⊙O 上的三个点,⊙O 的直径为4cm ,∠ACB =45°,求AB 的长.20.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”. 如图,在△ABC 中,∠C =90°,较短的一条直角边BC =1,且△ABC 是“有趣三角形”,求△ABC 的“有趣中线”的长.BOACAB21.如图,以□ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC,AD于E,F两点,交BA的延长线于G,判断»EF和»FG是否相等,并说明理由.22.如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF∶S△ABF = 4∶25,求DE∶EC的值.FC EDGFEA DB C23. 如左图是春运期间的一个回家场景. 一种拉杆式旅行箱的示意图如右图所示,箱体长AB =50cm ,拉杆最大伸长距离BC =30cm ,点A 到地面的距离AD =8cm ,如果旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离(精确到1cm ).(参考数据:3 1.73 )60°CFDABE24.(1)抛物线C 1:2y x bx c =-++中,函数y 与自变量x 之间的部分对应值如表:x … ﹣2 ﹣1 1 2 4 5 … y…﹣543﹣5﹣12…设抛物线C 1与y 轴的交点为C ,那么点C 的坐标为__________,抛物线C 1 的表达式为_____________________________.(2)在(1)的条件下,将抛物线C 1沿水平方向平移,得到抛物线C 2.设抛物线C 1与x轴交于A ,B 两点(点A 在点B 的左侧),抛物线C 2与x 轴交于M ,N 两点(点M 在点N 的左侧).过点C 作平行于x 轴的直线,交抛物线C 2于点K .问:是否存在以A ,C ,K ,M 为顶点的四边形是菱形的情形?如果存在,请求出点K 的坐标;如果不存在,请说明理由.25. 如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.NAB MO yx26.阅读下面解题过程,解答相关问题.求一元二次不等式224x x -->0的解集的过程. ① 构造函数,画出图象:根据不等式特征构造二次函数x x y 422--=;并在坐标系中画出二次函数x x y 422--=的图象(如图1).② 求得界点,标示所需:当y =0时,求得方程0422=--x x 的解为12x =-,20x =;并用锯齿线标示出函数x x y 422--=图象中y >0的部分(如图2). ③借助图象,写出解集:由所标示图象,可得不等式224x x -->0的解集为20x -<<.请你利用上面求一元二次不等式解集的过程,求不等式221x x -+≥4的解集.y43227.如图,在Rt △ABC 中,90C ∠=o,BAC ∠的角平分线AD 交BC 于D .(1)动手操作:利用尺规作⊙O ,使⊙O 经过点A 、D ,且圆心O 在AB 上;并标出⊙O与AB 的另一个交点E ,与AC 的另一个交点F .(保留作图痕迹, 不写作法); (2)综合应用:在你所作的图中,① 判断直线BC 与⊙O 的位置关系,并说明理由;② 如果60BAC ∠=o,3CD =,求线段BD 、BE 与劣弧»DE所围成的图形面积(结果保留根号和π).D A28.王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题:如图1,在△ABC 中,P 是边AB 上的一点,连接CP .要使△ACP ∽△ABC ,还需要补充的一个条件是____________,或_____________. 请回答:(1)王华补充的条件是____________________,或____________________________. (2)请你参考上面的图形和结论,探究、解答下面的问题:如图2,在△ABC 中,∠A =30°,22AC AB AB BC =+⋅. 求∠C 的度数.29.定义:P ,Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线段b 的距离. 已知O (0,0),A (4,0),B (m ,n ),C (m +4,n )是平面直角坐标系中的四点.图2图1CPA(1)根据上述定义,当m =2,n =2时,如图1,线段BC 与线段OA 的距离是_____; 当m =5,n =2时,如图2,线段BC 与线段OA 的距离是______ .(2)如图3,如果点B 落在圆心为A ,半径为2的圆上,写出线段BC 与线段OA 的距离d .(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,如果线段BC 的中点为M ,直接写出点M 随线段BC 运动所形成的图形的周长是 .图2图1yxxyCB -33-11-26-25A321OCB-33-11-26-25A321O-12-12图3yxC-33-11-26-25A321O-12B初三数学期末检测参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案CADCDABABC二、填空题(本题共18分,每小题3分)11. 21y ax =-(0a >即可); 12. 4; 13.323; 14.相似,两角分别相等,两三角形相似(12A A ∠=∠,12C C ∠=∠)或两边对应成比例且夹角相等,两三角形相似(12A A ∠=∠,111122222A B A CA B A C ==)或三边对应成比例,两三角形相似(1111112222222A B A C B CA B A C B C ===); 15. 不正确,AT 、TB 不是弦;16. 30︒、150︒;三、解答题(本题共72分,)17. 如图,已知 ∠1 = ∠2,∠AED = ∠C ,求证:△ABC ∽△ADE .证明:∵∠1 = ∠2,∴12BAE BAE ∠+∠=∠+∠即DAE BAC ∠=∠ ………………… 2分; 在△ADE 和△ABC 中∵ .AED C DAE BAC ∠=∠⎧⎨∠=∠⎩,∴△ABC ∽△ADE . ………………… 5分.18. 解:(2,-1)和(4 ,3)代入2y x bx c =++ 中,4211643b c b c ++=-⎧⎨++=⎩; ………………… 2分; 解得:43b c =-⎧⎨=⎩; ………………… 4分;二次函数的表达式为243y x x =-+. ………………… 5分. 19. 已知:如图,A 、B 、C 为⊙O 上的三个点,⊙O 的直径为4cm ,∠ACB =45°,求AB 的长. 解:连接OA 、OB .BOAC21DA∴OA OB =, ………………… 1分;∵»»AB AB =,45ACB ∠=o , ∴290AOB ACB ∠=∠=o, ………………… 3分; ∴△AOB 是等腰直角三角形,∴45ABO ∠=o,或22222228AB OA OB =+=+=……………… 4分; ∴sin OAABO AB∠=, ∴222AB=, ∴22AB = ………………… 5分, 答:AB 的长为22另解:过点B 作直径BD ,连接AD . ………………… 1分;∴DB 是⊙O 的直径, ∴90DAB ∠=o,∵»»AB AB =,45ACB ∠=o , ∴45D ACB ∠=∠=o,………………… 3分; ∴sin ABD DB=, ………………… 4分; ∴224AB =, DBOAC∴22AB =, ………………… 5分. 答:AB 的长为2220. 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”. 如图,在△ABC 中,∠C =90°,较短的一条直角边BC =1,且△ABC 是“有趣三角形”,求△ABC 的“有趣中线”的长. 解:根据题意画出△ABC 的“有趣中线”BE . ………………… 2分; ∴2BE AC EC ==,设EC x =,则2EB x =,在Rt △BCE 中,∠C =90°, ∴222EC BC BE +=∴()22212x x +=, ………………… 4分;解得:33x =(舍去负值) ∴232EB x ==………………… 5分. 答:△ABC 的“有趣中线”BE 的长为233. 另解:根据题意画出△ABC 的“有趣中线”BE . ………………… 2分; ∴2BE AC EC ==, 设EC x =,则2EB x =,AB在Rt △BCE 中,∠C =90°, ∴1sin 22EC x EBC EB x ∠===, ∴30EBC ∠=o,………………… 4分; ∵cos BCEBC EB∠=, ∴13cos30EB ==o, ∴23EB =………………… 5分. 答:△ABC 的“有趣中线”BE 23. 21.如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断»EF和»FG 是否相等,并说明理由. 结论:»»EFFG =. ………………… 1分; 证法一:连接AE . ∴AB AE =,∴B AEB ∠=∠,………………… 2分; ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,G FE ADBC∴B GAF ∠=∠,FAE AEB ∠=∠,………………… 3分; ∴GAF FAE ∠=∠, ………………… 4分;在⊙A 中,∴»»EFFG =. ………………… 5分. 结论:»»EFFG =. ………………… 1分; 证法二:连接GE . ∵BG 是⊙A 的直径,∴90BEG ∠=o. ………………… 2分;∴GE BE ⊥.∵四边形ABCD 是平行四边形,∴AD ∥BC , ………………… 3分; ∴AD GE ⊥ ………………… 4分;∴»»EFFG =. ………………… 5分. 证法三:参考上面给分22.如图,在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF = 4∶25,求DE ∶EC 的值. 解:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,………………… 1分; ∴DEF FAB ∠=∠,EDF FBA ∠=∠,GF E ADBCFCEDG FE ACB∴△DEF ∽△BAF . ………………… 2分; ∵S △DEF ∶S △ABF = 4∶25, ∴24()25DE AB =. ………………… 3分; ∴25DE AB =. ………………… 4分; ∴25DE DC =. ∴23DE EC =. ………………… 5分.23. 如左图是春运期间的一个回家场景. 一种拉杆式旅行箱的示意图如右图所示,箱体长AB =50cm ,拉杆最大伸长距离BC =30cm ,点A 到地面的距离AD =8cm ,旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离(精确到1cm ).3 1.73≈) 解:过点C 作CG ⊥AE 于点G . …………… 1分; 根据题意知∠CAE =60°, AC =AB +BC =80cm.在Rt △CGA 中,∠CGA =90°,∴sin CGCAG AC∠=, ………………… 2分; ∴3sin 6080CG ==o, ∴3CG = ………………… 4分;60°GCFDAB E∴403877.277CG AD +=+=≈………………… 5分. 答:拉杆把手处C 到地面的距离为77cm.24. (1)点C 的坐标为 (0,3) .抛物线C 1的表达式为223y x x =-++………………… 2分;(2)存在.当0y =时,2230x x -++=,解得11x =-,23x =,则A (-1,0),B (0,3), ∴222221310AC OA OC =+=+=,∴10AC ………………… 3分; ∵抛物线C 1沿水平方向平移,得到抛物线C 2, ∴CK ∥AM ,CK =AM ,∴四边形AMKC 为平行四边形,当CA =CK 时,四边形AMKC 为菱形,∴10CK = 或假设存在以A ,C ,K ,M 为顶点的四边形是菱形, ∴CA =CK当抛物线C 110K 103);当抛物线C 110K (103).…… 5分. 25.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .………………… 1分;∵⊙A 与y 轴相切于点B (0,32), y∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴, ∴四边形BOCA 为矩形.∴AC =OB =32,OC =BA .……… 2分; ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . …………………………… 3分∵M (12,0), ∴OM =12. 在 Rt △AMC 中,设AM =x .根据勾股定理得:222MC AC AM +=.即22213()()22x x -+=,求得x=52. ………………… 4分;∴⊙A 的半径为52. 即AM =CO =AB =52. ∴MC =CN=2 .∴N(92,0) . ………………………………………5分.解法二:连接BM、BN,作直径BC,连接MC.证△BOM∽△NOB.26.解:①构造函数,画出图象:根据不等式特征构造二次函数221y x x=-+或223y x x=--;并在坐标系中画出二次函数221y x x=-+或223y x x=--;的图象(如图). …………………2分;②求得界点,标示所需:当y=4时,求得方程2214x x-+=的解为11x=-,23x=;并用锯齿线标示出函数221y x x=-+图象CNABMOyx中y ≥4的部分(如图).或当y =0时,求得方程2230x x --=的解为11x =-,23x =;并用锯齿线标示出函数223y x x =--图象中y ≥0的部分(如图). ………………… 4分;③借助图象,写出解集:∴不等式221x x -+≥4的解集为x ≤-1或x ≥3. ………………… 5分; 27.如图,在Rt △ABC 中,90C ∠=o,BAC ∠的角平分线AD 交BC 于D .(1)动手操作:利用尺规作⊙O ,使⊙O 经过点A 、D ,且圆心O 在AB 上;并标出⊙O与AB 的另一个交点E ,⊙O 与AC 的另一个交点F .(保留作图痕迹, 不写作法); (2)综合应用:在你所作的图中,① 判断直线BC 与⊙O 的位置关系,并说明理由;② 如果60BAC ∠=o,3CD =,求线段BD 、BE 与劣弧»DE所围成的图形面积(结果保留根号和π).(1)如图:………………… 2分;F EODABC(2)综合应用:① 直线BC 与⊙O 相切; 证明:连接OD . ∵OA OD =, ∴OAD ODA ∠=∠, ∵AD 平分BAC ∠, ∴OAD CAD ∠=∠, ∴ODA CAD ∠=∠,∴OD ∥AC. ………………… 3 ∵90C ∠=o,∴90ODB C ∠=∠=o,…………… 4分; ∴直线BC 与⊙O 相切; ②解:过点O 作OG ⊥AF 于点G . ∵90C ∠=o,90ODC ∠=o, ∴四边形OGCD 是矩形.∴3OG CD == ………………… 5分; 在Rt △AGO 中,60BAC ∠=o,F EODACGF EODA C∵sin OG BAC OA ∠=,∴33sin 602OA ==o ,∴2OA =. ………………… 6分; ∵OD ∥AC ,∴60BOD BAC ∠=∠=o,在Rt △BOD 中,60BOD ∠=o,2OD OA ==,∴tan BD BOD OD ∠=,∴tan 6032BD==o∴23BD =∴21160π22=22323π223603EOD OD BD S ⨯⨯⋅⋅-⨯⨯=o o扇形.… 7分. 28.(1)∠APC =∠ACB ,∠ACP =∠B ,或AP ACAC AB=…………2分; (2)如图,延长AB 到点D ,使BD =BC ,连接CD . ………3分∵22AC AB AB BC =+⋅,∴2()()AC AB AB BC AB AB BD AB AD =+=+=⋅,∴AC ADAB AC=B∵∠A=∠A,∴△ACB∽△ADC.………………5分;∴∠ACB=∠D,………………6分;∵BC=BD,∴∠BCD=∠D,在△ACD中,∵∠ACB+∠BCD+∠D +∠A=180°,∴3∠ACB +30°=180°,∴∠ACB=50°. ………………7分.解法二:作∠ABD=∠C交AC于点D.ADB29.解:(1)当m=2,n=2时,线段BC与线段OA的距离是2;………………1分;当m=5,n=2时,线段BC与线段OA5. ………………2分;(2)当2≤m <4时, ()22224812d n m m m ==--=-+-(-2≤n ≤2). ………………4分;当4≤m ≤6时,2d =. ………………6分;(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,如果线段BC 的中点为M ,直接写出点M 随线段BC 运动所形成的图形的周长是164π+.………………8分.xy-33-11-26-25A321O-12。
通州区2023-2024学年第一学期九年级期末质量检测数学试卷参考答案及评分标准2024年1月一、 选择题(本题共8个小题,每小题2分,共16分)二、 填空题(本题共8个小题,每小题2分,共16分) 9. 23π 10. 1211. 4 12. 2 13. R ≥1 14. 50° 15. 6 16. (1)4545, (2)90三、解答题(本题共68分,第17-22题每题5分;第23-26题每题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式=2121422⎛⎫⨯−+⨯ ⎪ ⎪⎝⎭…………………3分 =52…………………5分 18. 解:在Rt △ABC 中,BC =6,tan A =34 ∴AC=8 …………………2分∴AB=10 …………………3分∴cos B = 35BC AB = …………………5分 19. 解:(1)∵二次函数图象经过点(-1,0)和(3,0)∴该二次函数图象的对称轴为直线x =1 …………………2分(2)由题意可知:二次函数图象的顶点坐标为(1,-4) …………………3分∴设该二次函数表达式为:()()2140y a x a =−−≠将(3,0)点代入得:440a −=∴1a = …………………4分∴223y x x =−−…………………5分20. 解:在Rt △ADC 中,CD =2,AC=,∴tan ∠CAD=3CD CA == …………………1分 ∴∠CAD =30° …………………2分∵AD 平分∠CAB∴∠CAB =2∠CAD =60° …………………3分在Rt △ABC 中,∠B =30°∴AB =2AC= …………………5分21. 解:过点A 作AD ⊥BC 于点D …………………1分∴∠B =45°,∠C =30°在Rt △ABD 中,AD =BD=200 …………………2分在Rt △ACD 中,CD…………………3分∴CB =200+ …………………4分答:小山两端B ,C之间的距离为(200+米. ………5分22. (1)…………………3分(2)证明:连接AD ,∵点A ,B ,C ,D 在⊙O 上,AD =BC ,∴ AD =BC . …………………4分∴ ∠DBA =∠CAB ( 等弧所对的圆周角相等)(填推理的依据).…………………5分 ∴ BD ∥AC .23. (1)证明:连结CD …………………1分∵BC 为半圆的直径∴∠BDC =90° …………………2分D∴BD ⊥CD∵CA CB =∴点D 为AB 的中点 .………………3分(2)方法一:证明:∵CA CB = ∴∠B =∠A∵四边形BCED 为圆内接四边形∴∠AED =∠B …………………………………4分∴∠AED =∠A …………………………………5分∴AD DE =. …………………………………6分方法二:证明:连结DO ,EO ,∵CA CB =,AD=BD ,∴∠ACD =∠BCD ……………………4分 ∵ 2DOE ACD ∠=∠,2DOB BCD ∠=∠,∴ ∠DOE =∠DOB .∴∴ BD=DE .……………………5分 ∵ AD=BD ,∴AD DE =.……………………6分24. 解:(1)∵直线2y kx =+与双曲线6y x =的一个交点是(,3)A m ∴把点(,3)A m 代入6y x=中,得36m =,2m = ……………………1分 ∴把点(2,3)A 代入2y kx =+,得223k +=,12k =. ……………………2分 (2)点(6,1)P 或(6,1)−−. ……………………6分25.(1)证明:连结OD∵AB 为⊙O 的直径∴∠ACB=90°∵CD 平分∠ACBEDC O A ED A F D O∴∠ACD=45° ……………………1分∴∠AOD=2∠ACD =90° ……………………2分∵DF ∥AB∴∠AOD+∠ODF =180°∴∠ODF =90°∴直线DF 是⊙O 的切线. ……………………3分(2)解:在Rt △ABC 中,∠A =30°,AC =∴4BC =,8AB = ……………………4分∴4OD =∵∠COB =60°又∵DF ∥AB∴∠F =60° ……………………5分在Rt △ODF 中,3==. ……………………6分26. 解:(1)∵()222211y x mx m x m =−+−=−− …………………………1分 ∴抛物线顶点坐标为(m ,-1). …………………………2分(2)y 1 < y 2. …………………………3分(3)∵抛物线对称轴为直线x =m ,∴点(4,y 2)关于对称轴的对称点为(2m -4,y 2),…………………………4分 ∵抛物线开口向上,y 1≤y 2,∴2m -4≤x 1<4,∴2m -4≤-1,解得m ≤32.………………………………………………………………………6分 27. (1)如图 …………………………1分 (2)BE = 2CF ,BE ⊥CF 证明:取AC 中点M ,连结FM ∵F 为AD 中点 ∴FM ∥CD ,12FM CD =数学试卷答案第5页(共5页)∵线段CD 绕点C 顺时针旋转90°得到线段CE ∴12FM CE = ∵AC = BC ∴1122CM AC CB == ∴CM FMBC EC=…………………………2分 ∵FM ∥CD∴∠FMC +∠DCA =180°∴∠FMC =180°-∠DCA =90°-∠ECA ∵∠BCE =90°-∠ECA∴∠FMC =∠BCE …………………………3分∴△FMC ∽△ECB …………………………4分 ∴BE = 2CF ,∠BEC =∠CFM …………………………5分 ∵DC ⊥CE ∴FM ⊥CE∴∠FCE +∠CFM =90°∴∠FCE +∠BEC =90° …………………………6分 ∴BE ⊥CF . …………………………7分 注:方法不唯一,酌情给分 28. 解:(1)P 1N 1,P 2N 2.(2)由题意,可得PN =2MN . ∵MN ≤2,∴PN ≤4.如图,当OP =3且点P 在直线x =2上时, ∵OH =2,∴'PH P H ==结合图形,点P 的纵坐标取值范围为P y (3)11≤≤b −.…………………………………2分…………………………………5分 …………………………………7分。
通州区初三数学期末考试试卷2013年1月考生须知:1.本试卷共有四个大题,24个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.如图,已知P 是射线OB 上的任意一点,PM ⊥OA 于M , 且OM : OP =4 : 5,则cos α的值等于( ) A .34 B .43 C .45 D .352.已知⊙O 的半径为5,A 为线段OP 的中点,若OP =10,则点A 在( ) A .⊙O 内 B .⊙O 上 C .⊙O 外 D .不确定 3. 若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切B .相交C .外切D .外离4.如图,A 、B 、C 是⊙O 上的点,若∠AOB =70°,则∠ACB 的度数为() A . 70° B . 50° C .40°D .35°5.若一个正多边形的一个内角是144°,则这个多边形的边数为( ) A. 12B. 11C.10D. 96.如图,在△OAB 中, CD ∥AB ,若OC : OA =1:2,则下列结论:(1)OD OCOB OA=; (2)AB =2 CD ;(3)2OAB OCD S S ∆∆=. 其中正确的结论是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3) 7. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 8. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .2 C .35D .45第4题图CB AO 第1题图O M PBAα第6题图D C B AO9.如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32 B .23 C .12 D .3410. 如图,⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA .动点P 从点A 出发,以π厘米/秒的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为( )秒时,BP 与⊙O 相切.A .1B .5C .0.5或5.5D . 1或5 二、细心填一填:(每题3分,共18分) 11.计算:tan45°cos45°= .12. 如图,⊙O 的弦AB =8,OD ⊥AB 于点D ,OD = 3,则⊙O 的半径等于 .13.如图是二次函数2y ax bx c =++的部分图象,由图象可知方程20ax bx c ++=的解是________ ,___________.14. 如图,在⊙O 中,半径 OA ⊥BC ,∠AOB =50°,则∠ADC 的度数是________.15.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2 .(结果保留π)16.图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m=__________(用含n 的代数式表示).三、认真做一做:(共22分)17. (4分)如图,在△ABD 和△AEC 中,E 为AD 上一点,若∠DAC =∠B ,∠AEC =∠BDA . 求证:AE ACBD BA=. 证明:第17题图ECBA 第9题图60°PD CA第10题图第12题图第14题图第16题图∙∙∙∙m2n n 80358634221第8题图18.(6分)如图,在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A +∠B =90︒. (1)求证:BC 是⊙O 的切线; (2)若OA =6,BC =8,求BD 的长. (1)证明:(2)解:19. (6分)在平面直角坐标系xOy 中,二次函数22y mx nx =+-的图象过A (-1,-2)、B (1,0)两点.(1)求此二次函数的解析式;(2)点(),0P t 是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N .当点M 位于点N 的上方时,直接写出t 的取值范围. 解:(1) (2)20.(6分) 如图是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是3tan 4α=,在与滑沙坡底C 距离20米的D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50). 解:四、解答题:(共30分)21. (6分)如图,AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC .黄皓、李明两位同学的作法分别是:第19题图第20题图黄皓:1. 作OD 的垂直平分线,交⊙O 于B ,C 两点,2. 连结AB ,AC ,△ABC 即为所求的三角形.李明:1. 以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点, 2. 连结AB ,BC ,CA ,△ABC 即为所求的三角形.已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC 是等边三角形.解:我选择___________的作法. 证明:22.(7分)已知:如图,在四边形ABCD 中,BC <DC ,∠BCD =60º,∠ADC =45º, CA 平分∠BCD,AB AD ==ABCD 的面积.23.(8分)将抛物线c 1:y=2x 轴翻折,得到抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E . ①用含m 的代数式表示点A 和点E 的坐标;②在平移过程中,是否存在以点A ,M ,E 为顶点的三角形是直角三角形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.解:(1)抛物线c 2的表达式是__________________;(2)①点A 的坐标是(______,______),点E 的坐标是(______,______).②第21题图第22题图B A24.(9分)在平面直角坐标系xOy中,点B(0,3),点C是x轴正半轴上一点,连结BC,过点C作直线CP∥y轴.(1)若含45°角的直角三角形如图所示放置.其中,一个顶点与点O重合,直角顶点D 在线段BC上,另一个顶点E在CP上.求点C的坐标;(2)若含30°角的直角三角形一个顶点与点O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.解:(1)(2)备用图备用图第24题图通州区初三数学期末考试参考答案及评分标准2013.1 一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.B 9. B 10. D 二、细心填一填:(每题3分,共18分)11. 2; 12. 5; 13. 11x =-,25x =; 14. 25o; 15. 270π; 16. 291n -. 三、认真做一做:(共22分)17. 证明:∵∠DAC =∠B ,∠AEC =∠BDA , ……………… 2分;∴△AEC ∽△BDA . ……………… 3分;∴AE ACBD BA=. ……………… 4分. 18.(1)证明:连结OC . ………… 1分;∵»»CDCD =, ∴2COD A ∠=∠,∵290A B ∠+∠=o,∴90COD B ∠+∠=o . ……………… 2分; 在△OCB 中, ∴90OCB ∠=o,∴BC 是⊙O 的切线 . ……………… 3分;(2)解: 在⊙O 中,∴OC =OA =OD =6, ……………… 4分; ∵90OCB ∠=o, ∴222OB OC BC =+.∴10OB =. ……………… 5分; ∴1064BD OB OD =-=-=. ……………… 6分.19.解:(1)把A (-1,-2)、B (1,0)分别代入22y mx nx =+-中,∴2220m n m n --=-⎧⎨+-=⎩,;……………… 2分;解得:11.m n =⎧⎨=⎩ ……………… 3分;∴所求二次函数的解析式为22y x x =+-. ……………… 4分; (2)11t -<<. ……………… 6分. 20. 解:由题意可知:20DC =米,ADB ∠=26.6°,90B ∠=o.在Rt △ABC 中,∵3tan 4AB BC α==, ……………… 1分; ∴设3AB x =,4BC x =, ……………… 2分;在Rt △ABD 中,∴tan ABADB DB ∠=, ……………… 3分; ∴3tan 26.60.5420x x ==+o, ……………… 4分;解得:10x =, ……………… 5分; ∴330AB x ==.答:滑坡的高AB 为30米. ……………… 6分. 四、解答题:(共30分) 21. 解:我选择黄皓的作法.如图画图正确. ……………… 2分; 证明:连结OB 、OC .∵AD 为⊙O 的直径,BC 是半径OD 的垂直平分线,∴»»AB AC =,»»BD CD =, 1122OE OD OC ==, ……………… 3分; ∴AB AC =. ……………… 4分;在Rt △OEC 中, ∴ cos 12OE EOC OC ∠==, ∴60EOC ∠=o, ……………… 5分; ∴120BOC ∠=o.第21题图∴60BAC ∠=o.∴△ABC 是等边三角形. ……………… 6分. 我选择李明的作法.如图画图正确. ……………… 2分; 证明:连结DB 、DC .由作图可知: DB =DO =DC , 在⊙O 中, ∴OB =OD =OC ,∴△OBD 和△OCD 都是等边三角形, ……… 3分;∴60ODB ODC ∠=∠=o, ……… 4分;∵»»AB AB =,»»AC AC =, ∴60ODB ACB ∠=∠=o,60ABC ODC ∠=∠=o , ……………… 5分;∴△ABC 是等边三角形. ……………… 6分.22.解: 在CD 上截取CF =CB ,连结AF . 过点A 作AE ⊥CD 于点E . …… 1分;∵CA 平分∠BCD ,∠BCD =60º, ∴30BCA FCA ∠=∠=o, 在△ABC 和△AFC 中∵ .BC FC ACB ACF CA CA =⎧⎪∠∠⎨⎪=⎩,=,∴△ABC ≌△AFC . ……………… 2分; ∴ AF =AB , ∵AB AD =,∴AF AD =. ……………… 3分;在Rt △ADE 中,45D ∠=o,AB AD ==∴ sin AE ADE AD ∠==, ∴AE =ED =2 . ……………… 4分; 在Rt △AEC 中,30ACE ∠=o, ∴ tan 3AE ACE EC ∠==, 第21题图FE第22题图DCB A∴CE = ……………… 5分; ∵AE ⊥CD , ∴FE =ED =2 .1222ABCD ACE S S CE AE ==⨯⨯⨯V ……… 6分;= 1222⨯⨯=……………… 7分. 注: 另一种解法见下图,请酌情给分.23. 解:(1)抛物线c 2的表达式是2y = ……………… 2分;(2)①点A 的坐标是(1m --,0), ……………… 3分;点E 的坐标是(1m +,0). ……………… 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形.由题意得只能是90AME ∠=o. 过点M 作MG ⊥x 轴于点G .由平移得:点M 的坐标是(m -),……… 5分; ∴点G 的坐标是(m -,0),∴1GA =,MG = 21EG m =+, 在Rt △AGM 中, ∵tan MG MAG AG ∠==, ∴60MAG ∠=o, ……………… 6分;∵ 90AME ∠=o,∴30MEA ∠=o,FEAB D第22题图第23题图∴tan MG MEG EG ∠==, ∴213m =+, ……………… 7分;∴1m =. ……………… 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形. 24. 解:(1)过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H . ……………… 1分;∴90OGD EHD ∠=∠=o,∵△ODE 是等腰直角三角形,∴OD =DE ,90ODE ∠=o , ∵CP ∥y 轴,∴ 四边形DGCH 是矩形, ……………… 2分;∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o, ∴ODG EDH ∠=∠,∴△ODG ≌△EDH . ……………… 3分; ∴DG =DH . ∴DG =GC ,∴△DGC 是等腰直角三角形,∴45DCG ∠=o, ……………… 4分;∴tan 1OBDCG OC∠==, ∴OC =OB =3.∴点C 的坐标为(3,0)(2) 分两种情况:当60DOE ∠=o时, 过点D 分别作DG ⊥x 轴于G , DH ⊥PC 于H .第24题图∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠==, 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o ,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o , ∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 6分;∴DG OD DH DE ==∴DG GC = ∴tan DG DCG GC ∠== ∴30DCG ∠=o ,∴tan OB DCG OC ∠==, ∴OC= ……………… 7分;当30DOE ∠=o 时,过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H .∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠== 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o , ∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 8分;∴DG OD DH DE==∴DG GC=∴tan DG DCG GC ∠==, ∴30DCG ∠=o ,∴tan OB DCG OC∠==,∴OC ……………… 9分.∴点C )、().备注:点E 在x 轴下方,证法一样,不须分类讨论. (以上答案供参考,其它证法或解法酌情给分)。