高二数学期末试卷
- 格式:doc
- 大小:297.00 KB
- 文档页数:6
淮安市2022~2023学年度第二学期高二年级期末调研测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}12M x x =+<,{}1N x a x =<<,若M N ⊆,则实数a 的取值范围是( )A. (],3−∞−B. (),3−∞−C. [)3,1−D. ()3,1−2. 已知直线l 的方向向量()1,1,2e −− ,平面α的法向量1,,12n λ=−,若l α⊥,则λ=( )A. 52−B. 12−C.12D.523. 从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是( ) A.15B.25C.35D.454. 若0x >,0y >,称a =是x ,y 的几何平均数,211b x y=+是x ,y 的调和平均数,则“3a >”是“3b >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有2个阳爻且2个阳爻不相邻的概率是( )A.172B.532C.516D.236. 已知四棱锥P ABCD −的底面为正方形,PA ⊥平面ABCD ,1==PA AB ,点E 是BC 的中点,则点E 到直线PD 的距离是( )A.B.C.D.7. 某中学举行夏季运动会,共有3类比赛9个项目:集体赛2项,田赛3项,径赛4项.要求参赛者每人至多报3项,且集体赛至少报1项,则每人有( )种报名方式 A. 49B. 64C. 66D. 738. 设A ,B 是一个随机试验中两个事件,且()13P B =,()56P B A =,()12P B A =,则( )A. ()13P A =B. ()16P AB =C. ()34P A B +=D. ()14P A B =二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若0a b c <<<,则下列不等式中正确的有( ) A. 0a b +>B.c c a b> C.b b ca a c+>+ D. 11a b b a+<+ 10. 如图是某小卖部5天卖出热茶的杯数(单位:杯)与当天气温(单位:℃)的散点图,若去掉()7,35B 后,下列说法正确的有( )A. 决定系数2R 变大B. 变量x 与y 的相关性变弱C. 相关系数r 的绝对值变大D. 当气温为11℃时,卖出热茶的杯数估计为35杯11. 有甲、乙、丙等5名同学聚会,下列说法正确的有( ) A. 5名同学每两人握手1次,共握手20次 B. 5名同学相互赠送祝福卡片,共需要卡片20张 C. 5名同学围成一圈做游戏,有120种排法D. 5名同学站成一排拍照,甲、乙相邻,且丙不站正中间,有40种排法12. 在正四棱锥P ABCD −中,AB =,PA =,点Q 满足PQ PA x AB y AD =++,其中[]0,1x ∈,[]0,1y ∈,则下列结论正确的有( )的A. PQB. 当1x =时,三棱锥P ADQ −的体积为定值C. 当x y =时,PB 与PQ 所成角可能为π6D. 当1x y +=时,AB 与平面PAQ三、填空题:本题共4小题,每小题5分,共20分.13. 随机变量()25,X N σ∼,()138P X <=,则()37P X ≤<=______. 14. 在三棱柱111ABC A B C 中,点M 在线段1CB 上,且12CM MB =,若以{}1,,AB AC AA为基底表示AM ,则AM =______.15. 已知1x ≠−,且0x ≠,则()()()()2391111x x x x ++++++++ 的展开式中2x 项的系数是______.(用数字作答)16. 已知随机变量ξ的概率分布列如下表所示,当()34E ξ=时,()21D ξ+=______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()2nx y −展开式中仅有第4项的二项式系数最大.(1)求展开式的第2项;(2)求展开式的奇数项系数之和.18. 某乡政府为提高当地农民收入,指导农民种植药材,取得较好的效果.以下是某农户近5年种植药材的平均收入的统计数据: 年份 2018 2019 2020 2021 2022 年份代码x1 2 3 4 5 平均收入y (千元) 5961646873的(1)根据表中数据,现有y a bx =+与2y c dx =+两种模型可以拟合y 与x 之间的关系,请分别求出两种模型的回归方程;(结果保留一位小数)(2)统计学中常通过比较残差的平方和来比较两个模型的拟合效果,请根据残差平方和说明上述两个方程哪一个拟合效果更好,并据此预测2023年该农户种植药材的平均收入.参考数据及公式:()()1217n iii t t y y =−−=∑,()21374nii t t =−=∑,其中2i i t x=.()()()121nii i nii xx y yb xx==−−=−∑∑ ,a y bx =− .19. 淮安西游乐园推出的西游主题毛绒公仔,具有造型逼真可爱、触感柔软等特点,深受学生喜爱.某调查机构在参观西游乐园的游客中随机抽取了200名学生,对是否有购买西游主题毛绒公仔的意愿进行调查,得到以下的22×列联表: 有购买意愿 没有购买意愿 合计 男 40 女 60 合计50(1)完成上述22×列联表,根据以上数据,判断是否有99%的把握认为购买西游主题毛绒公仔与学生的性别有关?(2)某文创商店为了宣传推广西游主题毛绒公仔产品,设计了一个游戏:在三个外观大小都一样袋子中,分别放大小相同的1个红球和3个蓝球,2个红球和2个蓝球,以及3个红球和1个蓝球.游客可以从三个袋子中任选一个,再从中任取2个球,若取出2个红球,则可以获赠一套西游主题毛绒公仔.现有3名同学参加该游戏,ξ表示3名同学中获赠一套毛绒公仔的人数,求随机变量ξ的概率分布及数学期望.附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.的()2P K k ≥00500.010 0.001 k3.8416.63510.82820. 如图,正方体1111ABCD A B C D −的棱长为1,点P 是对角线1BD 上异于B ,1D 的点,记1BPBD λ=.(1)当APC ∠为锐角时,求实数λ的取值范围; (2)当二面角P AC B −−的大小为4π时,求点1B 到平面PAC 的距离.21. 已知函数()22,24,22x mx x f x m x x x −+≤= −+> −,m ∈R . (1)当2x ≤时,求()0f x >的解集;(2)若()f x 的最大值为3,求的值.22. 投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏.晋代在广泛开展投壶活动中,对投壶的壶也有所改进,即在壶口两旁增添两耳,因此在投壶的花式上就多了许多名目,如“贯耳(投入壶耳)”等.现有甲、乙两人进行投壶游戏,规定投入壶口一次得1分,投入壶耳一次得2分,其余情况不得分.已知甲投入壶口的概率为13,投入壶耳的概率为16;乙投入壶口的概率为23,投入壶耳的概率为13.假设甲乙两人每次投壶是否投中相互独立.(1)求甲投壶3次得分为3分的概率; (2)求乙投壶多少次,得分为8分概率最大..的。
2023-2024学年江苏省扬州市高二(上)期末数学试卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.直线x+y﹣1=0的倾斜角是()A.π4B.π3C.3π4D.2π32.在等比数列{a n}中,a1=2,a3=8,则a5=()A.14B.16C.28D.323.某质点沿直线运动,位移S(单位:m)与时间t(单位:s)之间的关系为S(t)=t2+3,则当t=5s时该质点的瞬时速度为()A.10m/s B.11m/s C.13m/s D.28m/s4.已知双曲线C:x 24−y2m=1的一条渐近线方程为y=34x,则m=()A.3B.6C.32D.945.已知k为实数,则直线l:kx﹣y+k﹣1=0与圆x2+y2=4的位置关系为()A.相交B.相离C.相切D.无法确定6.已知M是椭圆x23+y2=1上一动点,则该点到椭圆短轴端点的距离的最大值为()A.2B.92C.3√22D.√3−√27.已知定义在R上的可导函数f(x),其导函数为f′(x),若2f(x)+f′(x)>0,且f(1)=e,则不等式e2x f(x)﹣e3>0的解集为()A.(1,+∞)B.(e,+∞)C.(﹣∞,1)D.(﹣∞,e)8.在△ABC中,已知D为边BC上一点,CD=λDB,∠BAD=π4.若tan∠ACB的最大值为2,则常数λ的值为()A.√10−34B.√10+34C.√10+14D.√10−14二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要9.已知l1,l2为两条不重合的直线,则下列说法中正确的有()A.若l1,l2斜率相等,则l1,l2平行B.若l1,l2平行,则l1,l2的斜率相等C.若l1,l2的斜率乘积等于﹣1,则l1,l2垂直D .若l 1,l 2垂直,则l 1,l 2的斜率乘积等于﹣1 10.椭圆C 1:y 225+x 29=1与双曲线C 2:x 29+k −y 27−k=1(﹣9<k <7)( )A .有相同的焦点B .有相等的焦距C .有相同的对称中心D .可能存在相同的顶点11.已知函数f(x)=lnxx,下列说法中正确的有( ) A .函数f (x )的极大值为1eB .函数f (x )在点(1,0)处的切线方程为y =x ﹣1C .20232024<20242023D .若曲线y =f (x )与曲线y =x α无交点,则α的取值范围是(1e−1,+∞)12.已知无穷数列{a n },a 1=1.性质s :∀m ,n ∈N *,a m +n >a m +a n ;性质t :∀m ,n ∈N *,2≤m <n ,a m ﹣1+a n +1>a m +a n ,下列说法中正确的有( ) A .若a n =3﹣2n ,则{a n }具有性质s B .若a n =n 2,则{a n }具有性质t C .若{a n }具有性质s ,则a n ≥nD .若等比数列{a n }既满足性质s 又满足性质t ,则其公比的取值范围为(2,+∞) 三、填空题(本大题共4小题,每小题5分,共20分)13.写出过点(1,2)的被圆C :x 2+y 2=4所截的弦长为2√3的直线方程 .(写出一条直线即可) 14.曲率是衡量曲线弯曲程度的重要指标.定义:若f ′(x )是f (x )的导函数,f ″(x )是f ′(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f″(x)|[1+(f′(x))2]32.已知f (x )=2cos (x ﹣1),则曲线y =f (x )在点(1,f (1))处的曲率为 .15.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差会成等差数列.在杨辉之后,对这类高阶等差数列的研究一般称为“垛积术”.现有高阶等差数列,其前5项分别为1,4,10,20,35,则该数列的第6项为 . 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作斜率为√a 2−b 2的直线交椭圆C 于A ,B 两点,以AB 为直径的圆过F 1,则椭圆C 的离心率为 . 四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知{a n }是等差数列,{b n }是等比数列,且a 1=b 1,b 2=2,b 3=4,a 8=b 4.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n﹣b n,求数列{c n}的前n项和.18.(12分)已知函数f(x)=2x3﹣ax2+12x+b在x=2处取得极小值5.(1)求实数a,b的值;(2)当x∈[0,3]时,求函数f(x)的最小值.19.(12分)已知数列{a n}的首项a1=1,前n项和为S n,且S n+1=2S n+n+1(n∈N*).设b n=a n+1.(1)求数列{b n}的通项公式;(2)设c n=14(log2b n)2−1,数列{c n}的前n项和为T n,证明:13≤T n<12.20.(12分)已知点A(4,0),P是圆C:x2+y2=4上的一动点,点Q(x,y)是线段AP的中点.(1)求点Q的轨迹方程;(2)已知M,N是直线l:x﹣y+2=0上两个动点,且MN=6.若∠MQN恒为锐角,求线段MN中点G的横坐标取值范围.21.(12分)已知抛物线C的顶点为坐标原点,焦点在坐标轴上,且经过点A(1,﹣2).(1)求抛物线C的标准方程;(2)若抛物线C开口向右,准线l上两点P,Q关于x轴对称,直线P A交抛物线C于另一点M,直线QA交抛物线C于另一点N,证明:直线MN过定点.22.(12分)已知函数f(x)=e x﹣alnx﹣be.(e=2.71828…是自然对数的底数)(1)若a=﹣1,b=1,求不等式f(x)>0的解集;(2)若a=b=0,证明:对任意x∈(0,+∞),f(x)>12x2+x+1成立;(3)若b=1,试讨论函数f(x)的零点个数,并说明理由.2023-2024学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.直线x+y﹣1=0的倾斜角是()A.π4B.π3C.3π4D.2π3解:直线x+y﹣1=0的斜率为﹣1,则直线的倾斜角为3π4.故选:C.2.在等比数列{a n}中,a1=2,a3=8,则a5=()A.14B.16C.28D.32解:设等比数列{a n}的公比为q,a1=2,a3=8,则q2=a3a1=82=4,故a5=a3q2=8×4=32.故选:D.3.某质点沿直线运动,位移S(单位:m)与时间t(单位:s)之间的关系为S(t)=t2+3,则当t=5s时该质点的瞬时速度为()A.10m/s B.11m/s C.13m/s D.28m/s解:位移S(单位:m)与时间t(单位:s)之间的关系为S(t)=t2+3,则S'(t)=2t,当t=5时,S'(5)=2×5=10m/s.故选:A.4.已知双曲线C:x 24−y2m=1的一条渐近线方程为y=34x,则m=()A.3B.6C.32D.94解:由已知可得m>0,且双曲线的焦点在x轴上,a=2,b=√m,又双曲线的渐近线为y=±ba=±√m2x,双曲线C:x24−y2m=1的一条渐近线方程为y=34x,即√m2=34,m=94,故选:D.5.已知k为实数,则直线l:kx﹣y+k﹣1=0与圆x2+y2=4的位置关系为()A.相交B.相离C.相切D.无法确定解:由kx﹣y+k﹣1=0,得k(x+1)﹣(y+1)=0,因为k 为实数,所以{x +1=0y +1=0,解得{x =−1y =−1,所以直线l 恒过定点(﹣1,﹣1),因为(﹣1)2+(﹣1)2=2<4,所以定点在圆内,所以直线与圆相交. 故选:A . 6.已知M 是椭圆x 23+y 2=1上一动点,则该点到椭圆短轴端点的距离的最大值为( )A .2B .92C .3√22D .√3−√2解:设M (√3cos θ,sin θ),θ∈[0,2π),设A 为椭圆的上顶点,则A (0,1), 所以|MA |=√(√3cosθ)2+(sinθ−1)2=√4−2(sinθ+12)2+2×14,当sin θ=−12时,|MA |max =3√22.故选:C .7.已知定义在R 上的可导函数f (x ),其导函数为f ′(x ),若2f (x )+f ′(x )>0,且f (1)=e ,则不等式e 2x f (x )﹣e 3>0的解集为( ) A .(1,+∞)B .(e ,+∞)C .(﹣∞,1)D .(﹣∞,e )解:构造函数g (x )=e 2x f (x ),该函数的定义域为R , 则g '(x )=2e 2x f (x )+e 2x f '(x )=e 2x [2f (x )+f '(x )]>0, 所以函数g (x )在R 上为增函数,且g (1)=e 2f (1)=e 3,由e 2x f (x )﹣e 3>0,可得e 2x f (x )>e 3,即g (x )>g (1),解得x >1, 所以不等式e 2x f (x )﹣e 3>0的解集为(1,+∞). 故选:A .8.在△ABC 中,已知D 为边BC 上一点,CD =λDB ,∠BAD =π4.若tan ∠ACB 的最大值为2,则常数λ的值为( ) A .√10−34B .√10+34C .√10+14D .√10−14解:令BD =2,则CD =λDB =2λ且0≤λ≤1, 则△ABD 外接圆半径为r =BD2sin∠BAD =√2,若B (﹣1,0),D (1,0),△ABD 的外接圆方程为(x ﹣m )2+(y ﹣n )2=2,所以{(m +1)2+n 2=2(m −1)2+n 2=2⇒⇒{m =0n =±1,令圆心(m ,n )为(0,1), 即点A 在圆x 2+(y ﹣1)2=2被BD 分割的优弧上运动,如图,要使tan ∠ACB 最大,只需AC 与圆相切,易知C (1+2λ,0), 则|AC|=√(1+2λ)2+1−2=2√λ(λ+1), 而|BC |=2(λ+1),由圆的性质有∠DAC =∠B , 在△ABC 中,|AC|sin∠B=|BC|sin(∠B+π4),∠ACB =π−(2∠B +π4)=3π4−2∠B ,显然 ∠B <3π8,由tan ∠ACB =tan(3π4−2∠B)=2,则1+tan2∠B tan2∠B−1=2⇒tan2∠B =3, 所以2tan∠B 1−tan 2∠B=3⇒3tan 2∠B +2tan∠B −3=0,可得tan ∠B =√10−13(负值舍),故sin ∠B =10−1√20−2√10cos∠B =3√20−2√10,而√λsin∠B =√λ+1sin(∠B+π4),所以√λsin∠B=√2(λ+1)sin∠B+cos∠B ⇒λsin 2∠B =2(λ+1)1+2sin∠Bcos∠B,整理得11−2√10=7+2√10,则λ=104(√10−1)=√10−14.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要 9.已知l 1,l 2为两条不重合的直线,则下列说法中正确的有( ) A .若l 1,l 2斜率相等,则l 1,l 2平行 B .若l 1,l 2平行,则l 1,l 2的斜率相等C .若l 1,l 2的斜率乘积等于﹣1,则l 1,l 2垂直D .若l 1,l 2垂直,则l 1,l 2的斜率乘积等于﹣1 解:l 1,l 2斜率相等,则l 1,l 2平行,故A 正确; l 1,l 2平行,该两条直线斜率可能不存在,故B 错误;l1,l2的斜率乘积等于﹣1,则l1,l2垂直,故C正确;l1,l2垂直,则l1,l2的斜率可能不存在,故D错误.故选:AC.10.椭圆C1:y225+x29=1与双曲线C2:x29+k−y27−k=1(﹣9<k<7)()A.有相同的焦点B.有相等的焦距C.有相同的对称中心D.可能存在相同的顶点解:椭圆C1:y225+x29=1的焦点为(0,±4),焦距为8,对称中心为坐标原点,左右顶点为(±3,0),上下顶点为(0,±5),双曲线C2:x29+k −y27−k=1(﹣9<k<7)的焦点在x轴上,焦距为8,对称中心为坐标原点,当k=0时,双曲线C2的顶点为(±3,0),综上,椭圆C1与双曲线C2的焦点不同,焦距相同,对称中心相同,顶点可能相同.故选:BCD.11.已知函数f(x)=lnxx,下列说法中正确的有()A.函数f(x)的极大值为1 eB.函数f(x)在点(1,0)处的切线方程为y=x﹣1C.20232024<20242023D.若曲线y=f(x)与曲线y=xα无交点,则α的取值范围是(1e−1,+∞)解:易知函数f(x)=lnxx的定义域为(0,+∞),则f′(x)=1−lnxx2,令f′(x)=0可得x=e,当x∈(0,e)时,f′(x)>0,可得f(x)在(0,e)上单调递增,当x∈(e,+∞)时,f′(x)<0,可得f(x)在(e,+∞)上单调递减,对于A,由单调性可得f(x)在x=处取得极大值f(e)=1e,即A正确;对于B,易知切线斜率为k=f′(1)=1−ln112=1,所以切线方程为y=x﹣1,即B正确;对于C,利用f(x)=lnxx的单调性可得f(2023)>f(2024),即ln20232023>ln20242024,也即2024ln2023>2023ln2024,可得ln20232024>ln20242023,所以20232024>20242023,即C错误;对于D,若曲线y=f(x)与曲线y=xα无交点,即方程lnxx=xα没有实数根,也即xα+1﹣lnx=0无解,令g(x)=xα+1﹣lnx,则g′(x)=(α+1)xα−1x=(α+1)xα+1−1x,若α+1≤0,g′(x)<0在(0,+∞)上恒成立,即g(x)在(0,+∞)上单调递减,不妨取α=﹣2,则g(x)=x﹣1﹣lnx,易知g(1)=1﹣ln1>0,g(e2)=e﹣2﹣lne2=e﹣2﹣2<0,此时g(x)在(1,e2)上有解,不合题意,若α+1>0,令g′(x)=0,解得x=(1α+1)1α+1,所以当0<x<(1α+1)1α+1时,g′(x)<0,此时g(x)在0<x<(1α+1)1α+1时单调递减,当x>(1α+1)1α+1时,g′(x)>0,此时g(x)在x>(1α+1)1α+1时单调递增,此时g(x)在x=(1α+1)1α+1处取得极小值,也是最小值,即g(x)min=g((1α+1)1α+1)=1α+1−1α+1ln(1α+1)=1α+1(1−ln(1α+1))=1α+1(1+ln(α+1)),依题意可得g(x)min=1α+1(1+ln(α+1))>0,所以1+ln(α+1)>0即可,解得α>1e−1,即α的取值范围是(1e−1,+∞),所以D正确.故选:ABD.12.已知无穷数列{a n},a1=1.性质s:∀m,n∈N*,a m+n>a m+a n;性质t:∀m,n∈N*,2≤m<n,a m﹣1+a n+1>a m+a n,下列说法中正确的有()A.若a n=3﹣2n,则{a n}具有性质sB.若a n=n2,则{a n}具有性质tC.若{a n}具有性质s,则a n≥nD.若等比数列{a n}既满足性质s又满足性质t,则其公比的取值范围为(2,+∞)解:由a n=3﹣2n,可得a m+n﹣a m﹣a n=3﹣2(m+n)﹣3+2m﹣3+2n=﹣3<0,即有a m+n<a m+a n,故A错误;由a n=n2,可得∀m,n∈N*,2≤m<n,a m﹣1+a n+1﹣a m﹣a n=(m﹣1)2+(n+1)2﹣m2﹣n2=2n﹣2m+2>0,即a m﹣1+a n+1>a m+a n,故B正确;若{a n}具有性质s,可得a1+n>a1+a n=1+a n,则a n=a1+(a2﹣a1)+(a3﹣a2)+...+(a n﹣a n﹣1)≥1+1+...+1=n,故C正确;若等比数列{a n}既满足性质s又满足性质t,设公比为q,则q m+n﹣1>q m﹣1+q n﹣1,令m=n=1,可得q>2, 又1q m+1qn<12m+12n≤12+12=1恒成立,又q >2时,∀m ,n ∈N *,2≤m <n ,可得q m ﹣2+q n ﹣q m ﹣1﹣q n ﹣1=(q ﹣1)(q n ﹣1﹣q m ﹣2)>0恒成立, 即有a m ﹣1+a n +1>a m +a n ,故其公比的取值范围是(2,+∞),故D 正确. 故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分)13.写出过点(1,2)的被圆C :x 2+y 2=4所截的弦长为2√3的直线方程 x =1(或3x ﹣4y +5=0) .(写出一条直线即可)解:设圆心到直线的距离为d ,由圆的弦长公式得:2√4−d 2=2√3,所以d =1,当直线的斜率不存在时,直线方程为:x =1,此时圆心到直线的距离为1,符合题意; 当直线的斜率存在时,设直线的方程为:y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, 则d =|−k+2|√k +1=1,解得k =34,所以直线l 的方程为:34x −y −34+2=0,即3x ﹣4y +5=0,所以直线l 的方程为x =1或3x ﹣4y +5=0. 故答案为:x =1(或3x ﹣4y +5=0).14.曲率是衡量曲线弯曲程度的重要指标.定义:若f ′(x )是f (x )的导函数,f ″(x )是f ′(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f″(x)|[1+(f′(x))2]32.已知f (x )=2cos (x ﹣1),则曲线y =f (x )在点(1,f (1))处的曲率为 2 . 解:f (x )=2cos (x ﹣1),则f '(x )=﹣2sin (x ﹣1),f ''(x )=﹣2cos (x ﹣1), 故f '(1)=﹣2sin0=0,f ''(1)=﹣2, 故K =|f″(1)|[1+(f′(1))2]32=2.故答案为:2.15.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差会成等差数列.在杨辉之后,对这类高阶等差数列的研究一般称为“垛积术”.现有高阶等差数列,其前5项分别为1,4,10,20,35,则该数列的第6项为 56 .解:设该数列的第6项为x ,对前6项作差可得,3,6,10,15,x ﹣35,对该算式继续作差可得,3,4,5,x ﹣50, 则x ﹣50=6,解得x =56. 故答案为:56. 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作斜率为√a 2−b 2的直线交椭圆C 于A ,B 两点,以AB 为直径的圆过F 1,则椭圆C 的离心率为 √55. 解:由椭圆的方程可得F 1(﹣c ,0),F 2(c ,0), 因为√a 2−b 2=bc ,由题意可设直线AB 过椭圆的下顶点A (0,﹣b ), 由题意可设直线AB 的方程为y =bc(x ﹣c ),设A (x 1,y 1),B (x 2,y 2),联立{y =bc (x −c)x 2a 2+y 2b2=1,整理可得(a 2+c 2)x 2﹣2a 2cx =0,解得x B =2a 2c a 2+c 2,y B =b 3a 2+c 2,即B (2a 2c a 2+c 2,b 3a 2+c2),因为以AB 为直径的圆过F 1,所以F 1A →•F 1B →=0, 即(c ,﹣b )•(2a 2c a 2+c 2+c ,b 3a 2+c 2)=0,整理可得2a 2c 2a 2+c2+c 2=b4a 2+c 2,而b 2=a 2﹣c 2,所以2a 2c 2+a 2c 2+c 4=a 4﹣2a 2c 2+c 4,即a 2=5c 2, 所以椭圆的离心率e =c a =1√5=√55. 故答案为:√55. 四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知{a n }是等差数列,{b n }是等比数列,且a 1=b 1,b 2=2,b 3=4,a 8=b 4. (1)求数列{a n }和{b n }的通项公式; (2)设c n =a n ﹣b n ,求数列{c n }的前n 项和. 解:(1)设等比数列{b n }的公比为q , 由b 2=2,b 3=4 可得q =b 3b 2=2,b n =b 2q n−2=2⋅2n−2=2n−1, 设等差数列{a n }的公差为d , 由a 1=b 1=1,a 8=b 4=8.所以d =a 8−a 18−1=8−18−1=1,所以a n=a1+(n﹣1)d=1+(n﹣1)×1=n,所以a n=n,b n=2n−1.(2)c n=a n−b n=n−2n−1,所以数列{c n} 的前n项和为:c1+c2+…+c n=(1﹣1)+(2﹣2)+…+(n﹣2n)=(1+2+3+…+n)﹣(1+2+22+…+2n)=n(n+1)2−1−2n1−2=n2+n2−2n+1.18.(12分)已知函数f(x)=2x3﹣ax2+12x+b在x=2处取得极小值5.(1)求实数a,b的值;(2)当x∈[0,3]时,求函数f(x)的最小值.解:(1)由f(x)=2x3﹣ax2+12x+b,得f'(x)=6x2﹣2ax+12,因为f(x)在x=2处取极小值5,所以f(2)=24﹣4a+12=0,解得a=9,此时f'(x)=6x2﹣18x+12x=6(x﹣1)(x﹣2),所以f(x)在(1,2)上单调递减,在(2,+∞)上单调递增,所以f(x)在x=2时取极小值,符合题意,所以a=9,f(x)=2x3﹣9x2+12x+b.又f(2)=4+b=5,所以b=1,所以a=9,b=1.(2)f(x)=2x3﹣9x2+12x+1,所以f'(x)=6(x﹣1)(x﹣2),f(x)和f'(x)随着x的变化情况如下表所示.所以x∈[0,3]时,f(x)min=f(0)=1.19.(12分)已知数列{a n}的首项a1=1,前n项和为S n,且S n+1=2S n+n+1(n∈N*).设b n=a n+1.(1)求数列{b n}的通项公式;(2)设c n=14(log2b n)2−1,数列{c n}的前n项和为T n,证明:13≤T n<12.解:(1)∵S n+1=2S n+n+1(n∈N∗)①,∴S n=2S n﹣1+n(n≥2)②,由①﹣②得:a n+1=2a n+1(n≥2),∴a n +1+1=2(a n +1)(n ≥2),即b n +1=2b n (n ≥2), 在①中令n =1,得S 2=2S 1+2,即a 1+a 2=2a 1+2, 而a 1=1,故a 2=3,则a 2+1=2(a 1+1),即b 2=2b 1, 又∵b 1=2≠0,∴b n+1b n=2(n ∈N ∗),∴数列{b n }是以2为首项,2为公比的等比数列, ∴b n =2n ;(2)证明:∵b n =2n , ∴c n =14(log 2b n )2−1=14n 2−1=1(2n−1)(2n+1)=12(12n−1−12n+1), ∴T n =12[(11−13)+(13−15)+⋯+(12n−1−12n+1)]=12(1−12n+1)<12,又∵c n =14n 2−1>0,∴T n ≥c 1=13,∴13≤T n <12. 20.(12分)已知点A (4,0),P 是圆C :x 2+y 2=4上的一动点,点Q (x ,y )是线段AP 的中点. (1)求点Q 的轨迹方程;(2)已知M ,N 是直线l :x ﹣y +2=0上两个动点,且MN =6.若∠MQN 恒为锐角,求线段MN 中点G 的横坐标取值范围. 解:(1)设P (x ′,y ′),则由题意得{x =x′+42y =y′2,即{x ′=2x −4y′=2y , 因为点P 在圆C :x 2+y 2=4上,所以x ′2+y ′2=4,即(2x ﹣4)2+(2y )2=4, 所以点Q 的轨迹方程为(x ﹣2)2+y 2=1. (2)设G (a ,b ),则b =a +2,当P 在圆C 上运动时,∠MQN 恒为锐角,等价于以MN 中点G 为圆心,3为半径的圆与圆:(x ﹣2)2+y 2=1外离. 所以√(a −2)2+b 2>3+1,解得a <﹣2或a >2,所以线段MN 中点G 的横坐标取值范围为(﹣∞,﹣2)∪(2,+∞).21.(12分)已知抛物线C 的顶点为坐标原点,焦点在坐标轴上,且经过点A (1,﹣2).(1)求抛物线C的标准方程;(2)若抛物线C开口向右,准线l上两点P,Q关于x轴对称,直线P A交抛物线C于另一点M,直线QA交抛物线C于另一点N,证明:直线MN过定点.(1)解:设抛物线C的标准方程为y2=2px(p>0)或x2=﹣2py(p>0),将A坐标代入y2=2px,得p=2,所以y2=4x;将A坐标代入x2=﹣2py,得p=14,所以x2=−12y,所以抛物线C的标准方程为y2=4x或x2=−12 y.(2)证明:由抛物线C开口向右得标准方程为y2=4x,准线l:x=﹣1,设P(﹣1,m),Q(﹣1,﹣m),(m≠±2),则l AP:y+2=m+2−2(x−1),即x=−2m+2y+m−2m+2,由{y+2=m+2−2(x−1)y2=4x,得y2+8m+2y−4(m−2)m+2=0,所以y M⋅y A=−4(m−2)m+2,所以y M=2(m−2)m+2,x M=−2m+2y M+m−2m+2=(m−2m+2)2,所以M(m−2m+2)2,2(m−2)m+2),用﹣m代m,得N(m+2m−2)2,2(m+2)m−2),则k MN=m2−4 m2+4,所以l MN:y−2(m−2)m+2=m2−4m2+4[x−(m−2m+2)2],化简得l MN:y=m2−4m2+4(x+1),所以直线MN过定点(﹣1,0).22.(12分)已知函数f(x)=e x﹣alnx﹣be.(e=2.71828…是自然对数的底数)(1)若a=﹣1,b=1,求不等式f(x)>0的解集;(2)若a=b=0,证明:对任意x∈(0,+∞),f(x)>12x2+x+1成立;(3)若b=1,试讨论函数f(x)的零点个数,并说明理由.解:(1)当a=﹣1,b=1时,f(x)=e x+lnx﹣e(x>0),则f′(x)=e x+1x>0对x>0恒成立,∴f(x)在(0,+∞)上单调递增,又f(1)=0,∴f(x)>0的解集为(1,+∞).(2)证明:当a=b=0时,令m(x)=f(x)−12x2−x−1=e x−12x2−x−1(x>0),则m'(x)=e x﹣x﹣1,令n(x)=m(x),则n'(x)=e x﹣1>0对任意x∈(0,+∞)恒成立,∴n(x)在(0,+∞)上单调递增,又n(0)=0,∴n(x)>n(0)=0,即m'(x)>0,∴m(x)在(0,+∞)上单调递增,又m(0)=0,∴m(x)>m(0)=0,∴对任意x∈(0,+∞),f(x)>12x2+x+1成立.(3)当b=1时,f(x)=e x﹣alnx﹣e(x>0),则f′(x)=e x−ax=xe x−ax,①当a≤0时,f(x)>0对x>0恒成立,∴f(x)在(0,+∞)上单调递增,又f(1)=0,∴f(x)仅有1个零点;②当a>0时,令g(x)=f(x),g′(x)=e x+ax2>0,∴f(x)在(0,+∞)上单调递增,令h(x)=xe x﹣a,(x>0),则h(0)=﹣a<0,h(a)=a(e a﹣1)>0,又∵h(x)=xe x﹣a在(0,+∞)上单调递增,∴存在唯一x0∈(0,a),使得h(x0)=0,即f'(x0)=0,当x∈(0,x0)时,f'(x0)<0,∴f(x)在(0,x0)上单调递减;当x∈(x0,+∞)时,f'(x0)>0,∴f(x)在(x0,+∞)上单调递增,∴f(x)极小值=f(x0),若x0=1,则f(x)极小值=f(1)=0,∴f(x)仅有1个零点,此时a=x0e x0=e,若0<x0<1,则f(x)在(x0,+∞)上递增且f(1)=0,∴f(x)在(x0,+∞)上仅有1个零点,且f(x0)<f(1)=0.当x∈(0,x0)时,f(x)=e x﹣alnx﹣e>﹣alnx﹣e,∴f(e−ea)>0,∵a>0,∴0<e−ea<1,又x∈[x0,1)时,f(x)<0,e−ea∈(0,x0),∴f(x)在(0,x0)上仅有一个零点,∴f(x)在(0,+∞)上共有两个零点,此时a=x0e x0∈(0,e),若x0>1,则f(x)在(0,x0)上递减且f(1)=0,∴f(x)在(0,x0)上仅有1个零点,且f(x0)<f(1)=0,当x∈(x0,+∞)时,由(2)可知,e x>12x2+x+1>x,两边取对数得x>lnx,又e x>12x2+x+1>12x2,∴f(x)=e x−alnx−e>12x2−ax−e,不妨取x1=max{2x0,a+√a2+2e},则x1∈(x0,+∞)且f(x1)>0,又∵f(x0)<0,∴f(x)在(x0,+∞)上仅有1个零点.∴f(x)在(0,+∞)上共有两个零点,此时a=x0e x0∈(e,+∞).综上,当a≤0或a=e时,函数f(x)有1个零点;当a>0且a≠e时,函数f(x)有2个零点.。
北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。
19道题,共100分。
考试时长90分钟。
试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
2023-2024学年北京市丰台区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知直线l 经过A (﹣1,0),B(0,√3)两点,则直线l 的倾斜角为( ) A .30°B .60°C .120°D .150°2.已知数列{a n }的前n 项和为S n ,且a n +1=﹣3a n ,S 3=7,则a 1=( ) A .﹣3B .﹣1C .1D .33.已知抛物线C :y 2=4x 的焦点为F ,点P (m ,n )在抛物线C 上.若|PF |=3,则m =( ) A .2B .3C .4D .54.已知椭圆x 2m−3+y 27−m =1的焦点在x 轴上,则m 的取值范围是( )A .3<m <7B .3<m <5C .5<m <7D .m >35.如图,在四面体OABC 中,OA →=a →,OB →=b →,OC →=c →.点M 在OC 上,且OM =12MC ,N 为AB 的中点,则MN →=( )A .−12a →−12b →+13c →B .−12a →−12b →−13c →C .12a →+12b →+13c →D .12a →+12b →−13c →6.已知椭圆C :x 29+y 24=1的左、右焦点分别为F 1,F 2,点P 在椭圆C 上.若∠F 1PF 2=90°,则△F 1PF 2的面积为( ) A .2B .4C .8D .97.月相是指天文学中对于地球上看到的月球被太阳照亮部分的称呼.1854年,爱尔兰学者在大英博物馆所藏的一块巴比伦泥板上发现了一个记录连续15天月相变化的数列,记为{a n },其将满月等分成240份,a i (1≤i ≤15且i ∈N *)表示第i 天月球被太阳照亮部分所占满月的份数.例如,第1天月球被太阳照亮部分占满月的5240,即a 1=5;第15天为满月,即a 15=240.已知{a n }的第1项到第5项是公比为q 的等比数列,第5项到第15项是公差为d 的等差数列,且q ,d 均为正整数,则a 5=( ) A .40B .80C .96D .1128.已知点P 在由直线y =x +3,y =5和x =﹣1所围成的区域内(含边界)运动,点Q 在x 轴上运动.设点T (4,1),则|QP |+|QT |的最小值为( ) A .√30B .4√2C .√34D .2√109.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱A 1D 1的中点,F 为棱AA 1上一动点.给出下列四个结论:①存在点F ,使得EF ∥平面ABC 1; ②直线EF 与BC 1所成角的最大值为π2;③点A 1到平面ABC 1的距离为√2; ④点A 1到直线AC 1的距离为2√63. 其中所有正确结论的个数为( )A .1B .2C .3D .410.过双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点F 引圆x 2+y 2=a 2的切线,切点为P ,延长FP 交双曲线C 的左支于点Q .若QP →=2PF →,则双曲线C 的离心率为( ) A .√415B .√133 C .53D .√132二、填空题共5小题,每小题5分,共25分。
成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。
2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。
2022-2023学年北京市西城区高二(下)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.等差数列﹣2,1,4,…的第10项为( ) A .22B .23C .24D .252.设函数f (x )=sin x ,则f '(π)=( ) A .1B .﹣1C .0D .π3.某一批种子的发芽率为23.从中随机选择3颗种子进行播种,那么恰有2颗种子发芽的概率为( ) A .29B .827C .49D .234.记函数f(x)=1x 的导函数为g (x ),则g (x )( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数5.在等差数列{a n }中,若a 1=9,a 8=﹣5,则当{a n }的前n 项和最大时,n 的值为( ) A .5B .6C .7D .86.某钢厂的年产量由2010年的40万吨增加到2020年的60万吨,假设该钢厂的年产量从2010年起年平均增长率相同,那么该钢厂2030年的年产量将达( ) A .80万吨B .90万吨C .100万吨D .120万吨7.如果函数f (x )=xlnx ﹣ax 在区间(1,e )上单调递增,那么实数a 的取值范围为( ) A .[1,2]B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]8.在等比数列{a n }中,a 1=2,公比q =23,记其前n 项的和为S n ,则对于n ∈N *,使得S n <m 都成立的最小整数m 等于( ) A .6B .3C .4D .29.设随机变量ξ的分布列如下:则下列说法中不正确的是( ) A .P (ξ≤2)=1﹣P (ξ≥3)B .当a n =12n (n =1,2,3,4)时,a 5=124 C .若{a n }为等差数列,则a 3=15D .{a n }的通项公式可能为a n =1n(n+1)10.若函数f(x)={xe x +a ,x <1,a −x ,x ≥1有且仅有两个零点,则实数a 的取值范围为( )A .(0,e )B .(﹣∞,e )C .(0,1e )D .(−∞,1e )二、填空题共5小题,每小题5分,共25分。
石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。
答案一律写在答题卡上。
注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4 保持卡面清洁,不折叠,不破损。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。
高二数学期终试卷一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.若直线的斜率k = -5,则倾斜角α= ( )A .arctan(-5)B . π-arctan(-5)C .arctan5D . π-arctan52.直线)0(0≠=++mn p ny mx 在两坐标轴上的截距相等,则p n m ,,满足条件是( )A .n m =B .||||n m =C .n m =且0=pD .0=p 或0≠p 且n m =3. (1+x)2+ (1+x)3 +…….+(1+x)10的展开式中,含x 2项的系数为┄┄( )A.29B.210C.C 310D. C 3114. 在下面四个椭圆中,最接近与圆的是 ( )A.9x 2+y 2=36B.2211612x y +=C.221610x y += D.2x 2+y 2=8 5.甲、乙射击的命中率分别为0.6、0.9,两个独立各射击一次,只有一人命中的概率( )A.0.38B.0.42C.0.54D.0.966.若6人随意排成一排,其中甲、乙、丙恰好相邻的概率为 ┄┄┄( ) A.51 B. 201 C. 301 D. 1201 7.若过点P(-2,1)作圆(x-3)2+(y+1)2=r 2的切线有且仅有一条,则圆的半径r 为 ( )A.29B.29C.小于 29D.大于298.若椭圆13422=+y x 上一点P 到右焦点距离为3,则P 到左准线的距离为 ( ) A .429 B .213 C .2 D .4 9.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A 、95B 、94C 、2111D 、2110 10.点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A.3B.13C.2D.1211.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点. 今有一个水平放置的椭圆形台球盘,点A 、B 是它的两个焦点,其中焦距为2c ,长轴长为2a ,当放在点A 处的小球被击出发,经椭圆壁反弹后再回到点A 时,小球经过的路程是 ( )A. 4aB. 2()a c -C. 2()a c +D.以上答案均有可能12. 将语、数、外、理、化、生六本课外辅导书赠送给希望工程学校的四名学生阅读,每人至少一本,至多两本,恰好有一人同时获得理、化两本书的概率是 ( )A 、152B 、151C 、154D 、301 二、填空题:本大题共6小题,每小题4分,共24分.13. 5人排成一排,其中甲、乙之间至少有一人的排法概率为______ 。
14. 若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为 。
15. 已知x , y 满足约束条件12,212y x x x y x ≤≤⎧⎨-≤≤⎩则的最小值为。
16.若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。
17. 对于椭圆19y 16x 22=+和双曲线19y 7x 22=-有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;③双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 .18.我们知道若AB 是椭圆22221x y a b+=的不平行于对称轴且不过原点的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.在双曲线中是否也有类似的命题?若有,请写出在双曲线中的一个类似的正确命题: 。
三、解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤.19、若某一等差数列的首项为112225113n n n n C A ----,,公差是5(2m x 的常数项,其中m 是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值。
20、平面上两个质点A 、B 分别位于(0,0),(2,2),在某一时刻同时开始,每隔1秒钟向上下左右任一方向移动1个单位,已知质点A 向左右移动的概率都是,41向上下移动的概率分别是31和,61质点B 向各个方向移动的概率是,41求:(1)4秒钟后A 到达C (1,1)的概率;(2)三秒钟后,A ,B 同时到达D (1,2)的概率.21.(12分)已知以坐标原点为中心的椭圆,满足条件(1)焦点F 1的坐标为 ( 3, 0 );(2)长半轴长为5.则可求得此椭圆方程为 1162522=+y x (※)问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由。
22.(14分)已知椭圆的一个焦点F 1(0,-),对应的准线方程为y=且一个顶点的坐标为(0,3)。
(1)求椭圆方程。
(2)是否存在直线l ,使l 与椭圆交于不同的两点M 、N ,且线段MN 恰被直线x =12-平分;若存在求出l 的倾斜角的范围,若不存在,请说明理由。
23.(14分)已知定点1(F ,)0动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0=•PF PM ,||||PM PN =。
①求动点N 的轨迹方程;②直线l 与动点N 的轨迹交于B A 、两点,若-4OB OA =•,且304|AB |64≤≤,求直线l 的斜率的取值范围。
高二数学期末测试答案一、选择题DDDBB,ABCCA,DA二、填空题 13.32345535A A A =15.1,16.2219y x -=,17.①②,18.22OM AB b k k a = 三、解答题19、解:由112522113n n n n-≤⎧⎨-≤-⎩111375n ⇔≤≤ 所以n=2 故a 1=112225113n n n n C A ----,=100 又7777-15=(76+1)77-15=76M-14=19(4M-1)+5故 m=5,55(2x的常数项为323455()(4,2T C x ==- 所以 公差d=-4 21(1)21022n n Sn na d n n -=+=-+ 当n=25或n=26时 Sn 有最大值1300。
20、(1)4秒时,A 到达C 处,A 在4秒内的运动可以是一次向上且一次向左且两次向右或者一次向右且一次向下且两次向上概率为P=P 1+P 2=1122112243243211111117()()344363144C C C C C C += (2)3秒时 A 到达D 的概率为21.① 短半轴长为4;② 离心率 e = 53; ③ 右准线方程为 x =325; ④ 点P ( 3, 516) 在椭圆上; ⑤ 椭圆上两点间的最大距离为10;……(答案是开放的,还可写出多种替换条件.)22.(1)2,433ac ccac a⎧⎧-==⎪⎪⎨⎨=⎪⎩⎪+=+⎩即可得椭圆的方程:2219yx+=(2)令l:y=kx+m,代入椭圆方程得:(k2+9)x2+2kmx+m2-9=0()()1222222219,44990kmx xkk m k m⎧-=+=-⎪+∴⎨⎪∆=-+->⎩解得∴倾斜角2,,3223ππππθ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭。
23、解 (1)设动点N的的坐标为(,)N x y,则(,0),(0,),(0)2yM x P x->,(,),(1,)22y yPM x PF=--=-,由0PM PF⋅=得,24yx-+=,因此,动点N的轨迹C的方程为24(0)y x x=>. …………5分(2)设直线l的方程为y kx b=+,l与抛物线交于点1122(,),(,)A x yB x y,则由4OA OB⋅=-,得12124x x y y+=-,又2211224,4y x y x==,故128y y=-.又224440(0)y xky y b ky kx b⎧=⇒-+=≠⎨=+⎩,∴216(12)048kbk⎧∆=+>⎪⎨=-⎪⎩,2222116||(32)kABk k+∴=+,∴||AB≤≤22211696(32)480kk k+≤+≤解得直线l的斜率k的取值范围是11[1,][,1]22--. ……………………12分。