高中数学:命题及其关系、充分条件与必要条件练习
- 格式:doc
- 大小:115.00 KB
- 文档页数:4
命题及其关系、充分条件与必要条件专项训练自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2给出下列命题,试分别指出p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z 4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n 1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。
命题及其关系、充分条件与必要条件 提高练习一、选择题1.命题“所有实数的平方都是正数”的否定为( )A .所有实数的平方都不是正数B .有的实数的平方是正数C .至少有一个实数的平方是正数D .至少有一个实数的平方不是正数解析:根据全称命题的否定为特称命题知,把“所有”改为 “至少有一个”,“是”的否定为“不是”.故命题“所有实数的平方都是正数”的否定为:至少有一个实数的平方不是正数.答案:D2.下列命题中,不是真命题的是 ( )A .命题“若am 2<bm 2,则a <b ”的逆命题B .“ab >1”是“a >1且b >1”的必要条件C .命题“若x 2=4,则x =2”的否命题D .“x >1”是“1x<1”的充分不必要条件 解析:命题“若am 2<bm 2,则a <b ”的逆命题为:若a <b ,则am 2<bm 2,当m =0时不成立,故A 是假命题.答案:A3.下列说法中正确的是 ( )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R ,2x >0,则¬p :∃x 0∈R ,2x 0<0C .命题“若a >b >0,则1a <1b”的逆命题是真命题 D .“a >b ”是“a 2>b 2”成立的充分不必要条件解析:A.由“a >1,b >1”可得“ab >1”,所以“a >1,b >1”是“ab >1”成立的充分条件,A 正确;B .命题p :∀x ∈R ,2x >0,则¬p :∃x 0∈R ,2x 0≤0,B 不正确;C .命题“若a >b >0,则1a <1b ”的逆命题为:若1a <1b ,则a >b >0,有-13<12,结论不成立,所以C 不正确; D .2>-3但是22>(-3)2不成立,所以“a >b ”不是“a 2>b 2”的充分条件,D 不正确.答案:A4.设a >0且a ≠1,则“log a b >1”是“b >a ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:当a >1时,log a b >1=log a a ,所以b >a >1;当0<a <1时,log a b >1=log a a ,所以0<b <a <1.所以“log a b >1”是“b >a ”的既不充分也不必要条件,故选D.答案:D5.向量a =(m ,1),b =(1,m ),则“m =1”是“a ∥b ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:两个向量平行,则m 2-1=0,m =±1,所以为充分不必要条件,故选A.答案:A6.在△ABC 中,内角A 和B 所对的边分别为a 和b ,则a >b 是sin A >sin B 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:在△ABC 中,由正弦定理可得,若a >b ,则2R sin A >2R sin B ,即sin A >sin B ;若sin A >sin B ,则a 2R >b 2R,即a >b ,所以a >b 是sin A >sin B 的充要条件,故选C.答案:C7.已知m 为正数,则“m >1”是“1m +lg 1m <1 ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设f (x )=1x +lg 1x =1x -lg x (x >0),则f (x )在(0,+∞)上单调递减.若m >1,则f (m )=1m -lg m <f (1)=1,即1m +lg 1m <1;若1m +lg 1m <1,即f (m )=1m -lg m <f (1)=1,则有m >1.综上可得“m >1”是“1m +lg 1m <1”的充要条件.选C.答案:C8.设p :2x -1≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是()A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)解析:由2x -1≤1,得0≤2x -1≤1,即12≤x ≤1,即p :12≤x ≤1,由(x -a )[x -(a +1)]≤0,得a ≤x ≤a +1,即q :a ≤x ≤a +1,若q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a ≤12,a +1≥1,即⎩⎪⎨⎪⎧a ≤12,a ≥0,则0≤a ≤12,所以实数a 的取值范围是[0,12],故选A.答案:A9.“φ=k π+π2(k ∈Z )”是“函数f (x )=cos(ωx +φ)是奇函数”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若φ=k π+π2(k ∈Z ),则f (x )=cos(ωx +φ)=cos(ωx +k π+π2)=±sin ωx ,函数f (x )为奇函数,所以充分性成立;反之,若函数f (x )=cos(ωx +φ)是奇函数,则ω×0+φ=k π+π2(k ∈Z ),即φ=k π+π2(k ∈Z ),因此必要性也成立,所以“φ=k π+π2(k ∈Z )”是“函数f (x )=cos(ωx +φ)是奇函数”的充要条件,故选C. 答案:C10.己知命题p: “关于x 的方程x 2-4x +a =0有实根”,若非p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是 ( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]解析:方程x 2-4x +a =0有实数根,则Δ=16-4a ≥0,即a ≤4,所以非p :a >4.因为a >3m +1是非p 为真命题的充分不必要条件,所以3m +1>4,即m >1,则m 的取值范围为(1,+∞).所以选A.答案:A11.设p :x 3-4x 2x≤0,q :x 2-(2m +1)x +m 2+m ≤0,若p 是q 的必要不充分条件,则实数m 的取值范围为 ( )A .[-2,1]B .[-3,1]C .[-2,0)∪(0,1]D .[-2,-1)∪(0,1]解析:设p :x 3-4x 2x≤0的解集为A ,所以A ={x |-2≤x <0或0<x ≤2},设q :x 2-(2m +1)x +m 2+m ≤0的解集为B ,所以B ={x |m ≤x ≤m +1},由题知p 是q 的必要不充分条件,即得B 是A 的真子集,所以有⎩⎪⎨⎪⎧m >0,m +1≤2⇒0<m ≤1或⎩⎪⎨⎪⎧m +1<0,m ≥-2⇒-2≤m <-1. 综上得m ∈[-2,-1)∪(0,1],故选D.答案:D12.已知下列命题:①在某项测量中,测量结果X 服从正态分布N (1,σ)(σ>0),若X 在(0,1)内取值的概率为0.4,则X 在(0,2)内取值的概率为0.8;②若a ,b 为实数,则“0<ab <1”是“b <1a”的充分而不必要条件;③已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则¬p :∃x 1,x 2∉R ,(f (x 2)-f (x 1))(x 2-x 1)<0;④△ABC 中,“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cos B ”的充分不必要条件.其中,所有真命题的个数是( )A .0个B .1个C .2个D .3个解析:对于①,根据正态曲线的对称性可得P (1<X <2)=P (0<X <1)=0.4,故P (0<X <2)=0.8,即①正确.对于②,b <1a ⇔1a -b =1-ab a >0⇔⎩⎪⎨⎪⎧a >0,1-ab >0或⎩⎪⎨⎪⎧a <0,1-ab <0,故“0<ab <1”是“b <1a ”的既不充分也不必要条件,故②不正确.对于③,由题意得¬p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故③不正确.对于④,“角A ,B ,C 成等差数列”等价于B =π3,由sin C =(3cos A +sin A )cos B ,得sin A cos B +cos A sin B =(3cos A +sin A )cos B ,即cos A sin B =3cos A cos B ,当cos A =0,即A =π2时等式成立;当cos A ≠0时,可得tan B =3,B =π3,即“sin C =(3cos A +sin A )cos B ”等价于“A =π2或B =π3”,所以“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cos B ”的充分不必要条件,故④正确.综上可得①④正确.选C.答案:C二、填空题13.已知命题p :x >a ,命题q :-2<x ≤3.若p 是q 的必要而不充分条件,则实数a 的取值范围是________.解析:若p 是q 的必要不充分条件,则集合{x |-2<x ≤3}是集合{x |x >a }的子集,据此可得:实数a 的取值范围是a ≤-2.答案:a ≤-214.已知p :函数y =(a -4)x 在R 上单调递减,q :m +1≤a ≤2m ,若p 是q 的必要不充分条件, 则实数m 的取值范围为________.解析:当p 为真时,4<a <5.记集合A ={a |4<a <5},B ={a |m +1≤a ≤2m }.若p 是q 的必要不充分条件,则BA , ①当m +1>2m ,即m <1时,B =∅A ; ②当m ≥1时,B A 等价于⎩⎪⎨⎪⎧m ≥1,m +1>4,2m <5,解得m ∈∅.综上所述,实数m 的取值范围为(-∞,1).答案:(-∞,1)15.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意得,p :2x -1x -1<0,解得12<x <1,所以p :12<x <1,由q :x 2-(2a +1)x +a (a +1)≤0,解得a ≤x ≤a +1,即q :a ≤x ≤a +1,要使得p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a +1≥1,a ≤12,解得0≤a ≤12,所以实数a 的取值范围是[0,12]. 答案:[0,12] 16.下列命题:①“x >2且y >3”是“x +y >5”的充要条件;②“b 2-4ac <0”是“一元二次不等式ax 2+bx +c <0解集为R ”的充要条件;③“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件;④“xy =1”是“lg x +lg y =0”的必要而不充分条件.其中真命题的序号为________.解析:①当x >2且y >3时,x +y >5成立,反之不一定,例如x =1,y =5,则x +y >5,但x <2,故①为假命题.②一元二次不等式ax 2+bx +c <0的解集为R 等价于⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0,故②为假命题. ③由直线ax +2y =0和x +y =1平行的充要条件知⎩⎪⎨⎪⎧a ×1-2×1=0,2×(-1)-0×1≠0,解得a =2,故③为假命题. ④由lg x +lg y =lg(xy )=0(x >0,y >0)可得xy =1,而当x <0,y <0时xy =1仍可成立,由此可知“xy =1”是“lg x +lg y =0”的必要而不充分条件,故④为真命题.答案:④三、解答题17.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)若a =1,且p ∧q 是真命题,求实数x 的取值范围;(2)若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,∵又a >0,所以a <x <3a ,当a =1时,p :1<x <3;由x 2-5x +6≤0得2≤x ≤3,所以q :2≤x ≤3;若p ∧q 为真,则p 真且q 真,∴2≤x <3,故x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},∵p 是q 成立的必要不充分条件,∴BA .∴⎩⎪⎨⎪⎧0<a <2,3a >3,即1<a <2, ∴实数a 的取值范围是(1,2).18.已知命题p :指数函数y =(1-a )x 是R 上的增函数,命题q :不等式ax 2+2x -1>0有解.若命题p 是真命题,命题q 是假命题,求实数a 的取值范围.解:命题p 为真命题时,1-a >1,即a <0,命题q :不等式ax 2+2x -1>0有解,当a >0时,显然有解;当a =0时,2x -1>0有解;当a <0时,∵ax 2+2x -1>0有解,∴Δ=4+4a >0,∴-1<a <0.从而不等式ax 2+2x -1>0有解时a >-1.又命题q 是假命题,∴a ≤-1.∴p 是真命题,q 是假命题时,a 的取值范围是(-∞,-1].19.已知集合A 是函数y =lg(20+8x -x 2)的定义域,集合B 是不等式x 2-2x +1-a 2≥0(a >0)的解集,p :x ∈A ,q :x ∈B .(1)若A ∩B =∅,求a 的取值范围;(2)若¬p 是q 的充分不必要条件,求a 的取值范围.解:(1)A ={x |-2<x <10},B ={x |x ≥1+a 或x ≤1-a }.若A ∩B =∅,则必须满足⎩⎪⎨⎪⎧1+a ≥10,1-a ≤-2,a >0,解得a ≥9,所以a 的取值范围是a ≥9.(2)易得¬p :x ≥10或x ≤-2.∵¬p 是q 的充分不必要条件,∴{x |x ≥10或x ≤-2}是B ={x |x ≥1+a 或x ≤1-a }的真子集,即⎩⎪⎨⎪⎧10≥1+a ,-2≤1-a ,a >0,解得0<a ≤3, ∴a 的取值范围是0<a ≤3.。
考点02 命题及其关系、充分条件与必要条件1.给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若,则”的否命题为“若,则”;③命题“”的否定是“”;④“”是“”的充分必要条件. 其中正确的命题个数是()A. 4 B. 3 C. 2 D. 1【答案】C2.下列说法正确的是A.”的否定是B.命题“设,若,则或是一个假命题C.“m=1”是“函数为幂函数”的充分不必要条件D.向量,则在方向上的投影为5【答案】C【解析】“,”的否定是“,”,A错误;B中的命题的逆否命题为:若,,则为真命题,B错误;为幂函数时,,可判断C正确;在方向上的投影为,D错误,故选C.3.下列说法错误的是()A.若,则;B.若,,则“”为假命题.C.命题“若,则”的否命题是:“若,则”;D.“”是“”的充分不必要条件;【答案】D4.下列四个命题中,正确的命题是( )A.“若为的极值点,则”的逆命题为真命题;B.“平面向量,的夹角是钝角”的充分必要条件是·;C.若命题,则;D.命题“,使得”的否定是:“,均有”.【答案】D5.下列说法错误..的是()A.命题“若,则”的逆否命题为:“若,则”B.“”是“”的充分不必要条件C.若为假命题,则、均为假命题.D.若命题:“,使得”,则:“,均有”【答案】C【解析】A,命题命题“若,则”的逆否命题为:“若,则”,命题正确;B,当时,成立,当时,有或,所以原命题正确;C,当为假命题时,有与至少一个是假命题,所以原命题为假命题;D,命题:“,使得”,则:“,均有”,命题正确;故选C.6.已知p:,q:,且是的充分不必要条件,则a的取值X围是()A. B. C. D.【答案】D7.下列命题中的假命题是( )A.且,都有B.,直线恒过定点C.,函数都不是偶函数D.,使是幂函数,且在上单调递减【答案】C【解析】逐一考查所给命题的真假:当时,,当且仅当时等号成立,则且,都有,题中的命题为真命题;很明显,直线恒过定点,题中的命题为真命题;当时,函数为偶函数,题中的命题为假命题;当时,是幂函数,且在上单调递减,题中的命题为真命题;本题选择C选项.8.在下列四个命题中,其中真命题是( )①“若,则”的逆命题;②“若,则”的否命题;③“若,则方程有实根”的逆否命题;④“等边三角形的三个内角均为”的逆命题.A.①② B.①②③④ C.②③④ D.①③④【答案】B9.下列说法正确的是A.“x+x-2>0”是“x>1”的充分不必要条件B.若“am<bm,则a<b”的逆否命题为直命题C.命题“x∈R,使得2x-1<0”的否定是“x∈R,均有2x-1>0”D.命题“若x=,则tanx=1”的逆命题为真命题【答案】B10.下列有关命题的说法正确的是( )A.命题“若,则”的否命题为:“若,则”B.“” 是“”的必要不充分条件C.命题“若,则”的逆否命题为真命题D.命题“使得”的否定是:“均有”【答案】C【解析】命题“若,则”的否命题为:“若,则”,所以该选项错误;“” 是“”的充分不必要条件,所以该选项错误;命题“若,则”的逆否命题为真命题,因为原命题是真命题,所以该选项正确;命题“使得”的否定是:“均有”,所以该选项错误.故答案为:C11.下列说法正确的是( )A.若,则的否命题是若,则B.命题“,”为真命题的一个充分不必要条件是C.,使成立D.若,则【答案】D12.给出下列四个结论:①命题“”的否定是“”;②“若,则”的否命题是“若,则”;③是真命题,是假命题,则命题中一真一假;④若,则是的充分不必要条件,其中正确结论的个数为()A. B. C. D.【答案】C【解析】根据含有一个量词的否定形式可判断①正确;由否命题定义可知②正确;根据复合命题真假判断可知③正确;若,则,而可得,所以p是q的必要不充分条件,所以④错误综上,有3个命题正确所以选C.13.“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B14.若是或的充分不必要条件,则a的取值X围是( ) A. B. C. D.【答案】A【解析】∵“x>a”是“x>1或x<﹣3”的充分不必要条件,如图所示,∴a≥1,故选:A.【点睛】本题考查了充分条件问题,易错点为端点处的等号.15.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A16.已知“”是“”的充分不必要条件,则的取值X围是()A. B. C. D.【答案】D【解析】由题意“”是“”的充分不必要条件,则由可知,要使得成立,则.选.17.已知是等比数列,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】是等比数列,,,,“”能推出“”则,,“”是“”的充要条件故选18.设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.则“m=2”是“l1∥l2”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C19.“”是“”成立的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】当时,,即充分性成立;当时,或,即必要性不成立;综上可得:“”是“”成立的充分不必要条件.本题选择A选项.20.下列说法中正确的是A.“”是“”的充要条件B.函数的图象向右平移个单位得到的函数图象关于轴对称C.命题“在中,若”的逆否命题为真命题D.若数列的前项和为,则数列是等比数列【答案】B21.下列命题中,,为复数,则正确命题的个数是①若,则;②若,,,且,则;③的充要条件是.A. B. C. D.【答案】A【解析】①若,则,是错误的,如;②若,,,且,则,是错误的,因为两个虚数不能比较大小;的充要条件是,是错误的,因为当x+yi=1+i时,x可为I,y可以为-i. 故答案为:A.22.设a,b都是不等于l的正数,则“a>b>l”是“log a3<log b3”的( )条件A.充分必要 B.充分不必要 C.必要不充分 D.既不充分也不必要【答案】B23.已知命题:,.(Ⅰ)若为真命题,某某数的取值X围;(Ⅱ)若有命题:,,当为真命题且为假命题时,某某数的取值X围. 【答案】(Ⅰ).(Ⅱ)或24.已知命题p:,ax2+ax+1>0,命题q:|2a-1|<3.(1)若命题p是真命题,某某数a的取值X围。
考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。
[第2讲 命题及其关系、充分条件与必要条件](时间:35分钟 分值:80分)基础热身1.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题. ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④ D .①②③2.已知命题p :若x >0,y >0,则xy >0,则p 的否命题是( ) A .若x >0,y >0,则xy ≤0 B .若x ≤0,y ≤0,则xy ≤0C .若x ,y 至少有一个不大于0,则xy <0D .若x ,y 至少有一个小于或等于0,则xy ≤03.设命题p :sin αtan α=cos α,命题q :sin α=cos α,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.[2013·唐山模拟] 设a ,b ∈R ,则“a >1且0<b <1”是“a -b >0且a b>1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要的条件能力提升5.[2013·商丘模拟] 直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <16.[2013·山东卷] 设a >0且a ≠1,则“函数f (x )=a x在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知a,b,c都是实数,则命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.4 B.2 C.1 D.08.[2013·石家庄模拟] 已知向量a=(1,2),b=(2,3),则λ<-4是向量m=λa +b与向量n=(3,-1)夹角为钝角的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件9.[2013·东北三省四市联考] 等比数列{a n}的首项为a,公比为q,其前n项和为S n,则数列{S n}为递增数列的充分必要条件是________.10.设p:xx-2<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是________.11.若“∀x∈R,ax2+2ax+1>0”为真命题,则实数a的取值范围是________.12.(13分)已知关于x的方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.难点突破13.(12分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实数根,求实数a的取值范围.课时作业(二)【基础热身】 1.D [解析] ①的逆命题为:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题为:“面积不相等的三角形不是全等三角形”是真命题;命题③是真命题,所以它的逆否命题也是真命题.命题④是假命题,所以它的逆否命题也是假命题.2.D [解析] 否命题应在否定条件的同时否定结论,而原命题中的条件是“且”的关系,所以条件的否定形式是“x ≤0或y ≤0”.3.B [解析] 命题p 成立时sin 2α=cos 2α,得sin α=±cos α,由此可得p 是q 的必要不充分条件.4.A [解析] 显然a >b >0,故a >1且0<b <1⇒a -b >0且a b >1;反之,a -b >0且a b>1⇒a >b 且a -b b >0⇒a >b 且b >0,推不出a >1且0<b <1.故“a >1且0<b <1”是“a -b >0且ab>1”的充分不必要条件. 【能力提升】5.C [解析] 圆心坐标为(1,0),半径为2,直线x -y +m =0与圆有两个不同交点的充要条件是|1+m |2<2,即-3<m <1,充分不必要条件的m 的范围是这个范围的真子集,故只能是选项C 中的范围.6.A [解析] 因为函数f (x )=a x 在R 上是减函数,所以0<a <1,由函数g (x )=(2-a )x 3在R 上是增函数可得2-a >0,即a <2.所以若0<a <1,则a <2,而若a <2推不出0<a <1.所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.7.B [解析] 原命题是一个假命题,因为当c =0时,不等式的两边同乘上一个0得到的是一个等式;原命题的逆命题是一个真命题,因为当ac 2>bc 2时,一定有c 2≠0,所以必有c 2>0,两端同除一个正数,不等式方向不变,即若ac 2>bc 2,则a >b 成立.根据命题的等价关系,四个命题中有2个真命题.8.A [解析] m =(λ+2,2λ+3),m ,n 的夹角为钝角的充要条件是m ·n <0且m ≠μn (μ<0).m ·n <0,即3(λ+2)-(2λ+3)<0,即λ<-3;若m =μn ,则λ+2=3μ,2λ+3=-μ,解得μ=17,故m =μn (μ<0)不可能,所以,m ,n 的夹角为钝角的充要条件是λ<-3,λ<-4是m ,n 的夹角为钝角的充分不必要条件.9.a >0且q >0 [解析] 由S n +1>S n 得,当q =1时,S n +1-S n =a >0;当q ≠1时,S n +1-S n =aq n>0,即a >0,1≠q >0.综合可得数列{S n }为递增数列的充分必要条件是a >0且q >0.10.(2,+∞) [解析] 命题p 成立时,0<x <2,命题p 是q 成立的充分不必要条件,说明(0,2)是(0,m )的真子集,故m >2,即m 的取值范围是(2,+∞).11.[0,1) [解析] 问题等价于对任意实数x ,不等式ax 2+2ax +1>0恒成立.当a =0时,显然成立;当a ≠0时,只能是a >0且Δ=4a 2-4a <0,即0<a <1.故a 的取值范围是[0,1).12.解:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2.所以使方程x 2+(2k -1)x +k 2=0有两个大于1的实数根的充要条件为k <-2.【难点突破】13.解:假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2-4(-2a )<0,即⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,得-32<a <-1,∴根据题意知a ≤-32或a ≥-1.。
课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件1、解析:由|x-1|≤1,得0≤x≤2,∵0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“|x-1|≤1”的必要而不充分条件,故选B.2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数2、解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案:C3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题3、解析:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤05、解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件6、解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.37、解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、解析:向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、解析:a1>0,a2n-1+a2n=a1q2n-2(1+q)<0⇒1+q<0⇒q<-1⇒q<0,而a1>0,q<0,取q=-1,此时a2n-1+a2n=a1q2n-2(1+q)>0.故“q<0”是“对任2意的正整数n,a2n-1+a2n<0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B. 答案:B11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11、解析:因为a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2,所以由a2+b2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a=2,b=0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a2+b2=1,即由a sin θ+b cos θ≤1推不出a2+b2=1,故a2+b2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、解析:若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件. 答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.13、解析:由正弦定理,得a sin A =bsin B ,故a ≤b ⇔sin A ≤sin B . 答案:充要 14.“x >1”是“”的__________条件.14、解析:由,得x +2>1,解得x >-1,所以“x >1”是“”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________. 15、答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________. 16、解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1. 答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1、解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2、解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x+7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C. 答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件3、解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A. 答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、、解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A.答案:A5.若a,b为正实数,且a≠1,b≠1,则“a>b>1”是“log a 2<log b 2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、解析:当a>b>1时,log a 2-log b 2=ln 2ln a-ln 2ln b=ln 2(ln b-ln a)ln a·ln b<0,所以log a2<log b 2.反之,取a=12,b=2,log a 2<log b 2成立,但是a>b>1不成立.故“a>b>1”是“log a 2<log b 2”的充分不必要条件,选A.答案:A6.已知数列{a n}的前n项和为S n,则“a3>0”是“数列{S n}为递增数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、解析:当a1=1,a2=-1,a3=1,a4=-1,…时,{S n}不是递增数列,反之,若{S n}是递增数列,则S n+1>S n,即a n+1>0,所以a3>0,所以“a3>0”是“{S n}是递增数列”的必要不充分条件,故选B.答案:B7.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、解析:结合图象可知函数f(x)=|x-a|在[a,+∞)上单调递增,易知当a≤-2时,函数f(x)=|x-a|在[-1,+∞)上单调递增,但反之不一定成立,故选A.答案:A8.设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案:D9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9、解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,选A. 答案:A10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、解析:作出y=e x与y=ax+1的图象,如图.当a=1时,e x≥x+1恒成立,故当a≤1时,e x-ax<1不恒成立;当a>1时,可知存在x∈(0,x0),使得e x -ax<1成立,故p成立,即p:a>1,由函数f(x)=-(a-1)x是减函数,可得a -1>1,得a>2,即q:a>2,故p推不出q,q可以推出p,p是q的必要不充分条件,选B.答案:B11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11、解析:若k=1,则直线l:y=x+1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S△OAB=12×1×1=12,所以“k=1”⇒“△OAB的面积为12”;若△OAB的面积为12,则k=±1,所以“△OAB的面积为12”⇒/ “k=1”,所以“k=1”是“△OAB的面积为12”的充分而不必要条件,故选A.答案:A12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.12、解析:①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a>b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.答案:②④13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.13、解析:若函数y=2x+m-1有零点,则m<1;若函数y=log m x在(0,+∞)上为减函数,则0<m<1.答案:必要不充分14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题14、解析:选项①、②中的命题显然正确;选项④中命题的否命题为:若am2≥bm2,则a≥b,显然当m=0时,命题是假命题,所以选项④正确;对于选项③中的命题,当c=0时,命题是假命题,故填③.答案:③15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.15、解析:对于①,由x 2+x -2>0,解得x <-2或x >1,故“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误;对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误;对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.答案:1。
课时提升练(二)命题及其关系、充分条件与必要条件一、选择题1.(2023·东北四市联考)以下命题中真命题是( )A.“a>b”是“a2>b2”的充分条件B.“a>b”是“a2>b2”的必要条件C.“a>b”是“ac2>bc2”的必要条件D.“a>b”是“|a|>|b|”的充要条件【解析】C中,当c2=0时,由a>b ac2>bc2;反过来,由ac2>bc2⇒a>b,故“a>b”是“ac2>bc2”的必要条件.【答案】 C2.命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题是( )A.“假设a,b,c成等比数列,那么b2≠ac”B.“假设a,b,c不成等比数列,那么b2≠ac”C.“假设b2=ac,那么a,b,c成等比数列”D.“假设b2≠ac,那么a,b,c不成等比数列”【解析】根据原命题与其逆否命题的关系知,命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题为“假设b2≠ac,那么a,b,c不成等比数列”.【答案】 D3.(2023·长沙模拟)设A,B为两个互不相同的集合,命题p:x∈A∩B,命题q:x∈A 或x∈B,那么┑q是┑p的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【解析】由题意p⇒q,故┑q⇒┑p;而q p,故┑p┑q,所以┑q是┑p的充分不必要条件.【答案】 B4.有以下四个命题:①“假设x+y=0,那么x,y互为相反数”的逆否命题;②“全等三角形的面积相等”的否命题;③“假设q≤1,那么x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中的真命题为( )A.①②B.②③C.①③D.③④【解析】“假设x+y=0,那么x,y互为相反数”为真命题,那么逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,该否命题为假命题;假设q≤1⇒4-4q≥0,即Δ=4-4q≥0,那么x2+2x+q=0有实根,所以原命题为真命题,故其逆否命题也为真;“不等边三角形的三个内角相等”的逆命题为“三个内角相等的三角形是不等边三角形”,该逆命题为假命题.应选C.【答案】 C5.(2023·重庆模拟)假设p是q的必要条件,s是q的充分条件,那么以下推理一定正确的选项是( )A.┑p⇔┑s B.p⇔sC.┑p⇒┑s D.┑s⇒┑p【解析】由题意得q⇒p,且s⇒q,故s⇒p,所以┑p⇒┑s.【答案】 C6.(2023·深圳高级中学高三月考)命题:①假设“p且q”为假命题,那么p,q均为假命题;②命题“假设x≥2且y≥3,那么x+y≥5”的否命题为“假设x<2且y<3,那么x+y<5”;③在△ABC中,“A>45°”是“sin A>22”的充要条件;④命题“∃x0∈R,使得e x0≤0”是真命题.其中正确命题的个数是( )A.3 B.2C.1 D.0【解析】假设“p且q”为假命题,那么p,q至少有一个为假命题,①错;②中命题的否命题为:“假设x<2或y<3,那么x+y<5”,②错;③中当A=150°时,sin A<22,③错;由指数函数的性质,可知∀x∈R,e x>0,故④错.【答案】 D7.(2023·天津高考)设a,b∈R,那么“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,应选C.【答案】 C8.(2023·甘肃诊断)以下选项中,p是q的必要不充分条件的是( ) A.p:x=1,q:x2=xB.p:A∩B=A,q:∁U B⊆∁U AC.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d【解析】A中,x=1⇒x2=x,x2=x⇒x=0或x=1 x=1,故p是q的充分不必要条件;B中,由A∩B=A得A⊆B,所以∁U B⊆∁U A.反之,假设∁U B⊆∁U A,那么A⊆B,那么A∩B =A,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2得x>2ab.反之不成立,如a=0,b=2,x=1,那么有x>2ab,但x=1<4=a2+b2,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但a<b,c>d.反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,应选D.【答案】 D9.(2023·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,那么“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1,所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分而不必要条件,应选A.【答案】 A10.已知集合A ={x |x >5},集合B ={x |x >a },假设命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,那么实数a 的取值范围是( )A .a <5B .a ≤5C .a >5D .a ≥5【解析】 由题意可知A B ,又A ={x |x >5},B ={x |x >a },如下图,由图可知a <5.【答案】 A11.(2023·上海高考)钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【解析】 根据等价命题,廉价⇒没好货,等价于,好货⇒不廉价,应选B. 【答案】 B12.(2023·湖北高考)设U 为全集,A ,B 是集合,那么“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【解析】 假设存在集合C 使得A ⊆C ,B ⊆∁U C ,那么可以推出A ∩B =∅;假设A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件. 【答案】 C 二、填空题13.已知集合A ={1,a },B ={1,2,3},那么“a =3”是“A ⊆B ”的________条件. 【解析】 a =3⇒A ⊆B ,A ⊆B ⇒a =2或3,因此“a =3”是“A ⊆B ”的充分不必要条件. 【答案】 充分不必要14.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“假设两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,那么a 1b 2-a 2b 1=0”.那么f (p )=________.【解析】 命题p 为真命题,其逆否命题也为真命题;命题p 的逆命题为假命题,其否命题也为假命题.【答案】 215.假设命题“ax 2-2ax -3>0不成立”是真命题,那么实数a 的取值范围是________. 【解析】 由题意得,ax 2-2ax -3≤0,当a =0时,有-3≤0,成立;当a ≠0时,需满足⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,即-3≤a <0,综上知-3≤a ≤0.【答案】 [-3,0]16.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,假设q 是p 的必要而不充分条件,那么m 的取值范围为________.【解析】 命题p :-2≤x ≤10,由q 是p 的必要不充分条件知, {x |-2≤x ≤10}{x |1-m ≤x ≤1+m ,m >0},∴⎩⎪⎨⎪⎧m >01-m ≤-21+m >10或⎩⎪⎨⎪⎧m >01-m <-21+m ≥10,∴m ≥9,即m 的取值范围是[9,+∞). 【答案】 [9,+∞)。
高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。
命题及其关系、充分条件与必要条件高考突破2训练(限时45分钟)1.以下命题中:①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②向量,a b 不共线,则关于x 的方程20ax bx +=有唯一实根;③函数y =的图像关于y 轴对称. 真命题是( )A .①③B .②C .③D .②③2.设,a b 是向量,命题“若a b =-,则||||a b =”的逆否命题是( )A .若a b ≠-,则||||a b ≠B .若a b =-,则||||a b ≠C .若||||a b ≠,则a b ≠-D .若||||a b =,则a b =-3.以下四个命题中,真命题的个数是( )①命题“若2320x x -+=,则1x =”的逆否命题为“1x ≠,则2320x x -+≠”; ②若p q ∨为假命题,则,p q 均为假命题;③命题:p 存在x R ∈,使得210x x ++<,则:p ⌝对任意x R ∈,都有210x x ++≥; ④在ABC ∆中,A B <是sin sin A B <的充分不必要条件.A .1B .2C .3D .44.“a c b d +>+”是“a b >且c d >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合{}1|28,|112x A x R B x R x m ⎧⎫=∈<<=∈-<<+⎨⎬⎩⎭,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .[2,)+∞B .(,2]-∞C .(2,)+∞D .(2,2)-6.已知a b <,函数()sin ,()cos f x x g x x ==.命题:()()0p f a f b <,命题:()q g x 在(,)a b 内有最值,则命题p 是命题q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.给定下列命题:①若0k >,则方程220x x k +-=有实数根;②“若a b >,则a c b c +>+”的否命题;③“矩形的对角线相等”的逆命题;④“若0xy =,则,x y 中至少有一个为0"的否命题.其中真命题的序号是 .8.已知对数函数21()log a f x x +=,命题21:()log a p f x x +=是增函数.则p ⌝为真时,a 的取值范围是 .9.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 .10.已知集合{}1|0,|||1x A x B x x b a x -⎧⎫=<=-<⎨⎬+⎩⎭,若“1a =”是“A B ⋂≠∅”的充分条件,则实数b 的取值范围是 .11.设命题2:(43)1p x -≤,命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围. 12.已知全集U R =,非空集合2|0(31)x A x x a ⎧⎫-=<⎨⎬-+⎩⎭,22|0x a B x x a ⎧⎫--=<⎨⎬-⎩⎭. (1)当12a =时,求()U B A ⋂; (2)集合:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.最有效训练21.D解析对于命题①:错误!未找到引用源。
用心 爱心 专心【训练1】 用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+12n -12n +1=n 2n +1. 【例4】►数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法证明(1)中的猜想.解 (1)a n =2n-12n -1(n ∈N *). 【例】► 在数列{a n }、{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512.答案(1)a n =n (n +1),b n =(n +1)2. [例6] (2008学年中山市一中高三年级统测试题)在ABC ∆中,“s i ns i n A B >”是“A B >”的 A .充分而不必要条件 B . 必要而不充分条件C .充分必要条件 D .既不充分也不必要条件8.(2009届省实高三次月考数学试题)函数1)(3++=x ax x f 有极值的充要条件是 ( )A .0≥aB .0>aC .0≤aD .0<a 答案:D9.“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的 ( ) A .充分条件不必要 B .必要不充分条件C .充要条件 D .既不充分也不必要条件答案:A[例7] (广东省四会中学2009届高三上学期第一次质量检测)“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件9. (2008学年中山市一中高三年测试题理科数学)已知p :1123x --≤,q :(1)(1)0(0)x m x m m -+--≤> 且q 是p 的必要不充分条件,求实数m 的取值范围。
专题训练(二) 命题及其关系、充分条件与必要条件基础过关一、选择题1.命题“若a >b ,则a +c >b +c ”的否命题是( )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c2.设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A .ac 2>bc 2B .a b >1C .a -c >b -cD .a 2>b 24.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 5.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020·皖南八校联考)“1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >18.在等比数列{a n }中,“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]10.(2020·南昌市第一次模拟)已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,255 B .(0,1] C .⎣⎢⎡⎭⎪⎫255,+∞ D .[2,+∞)二、填空题11.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为________。
限时作业2 命题及其关系、充分条件与必要条件一、选择题1.全称命题“∀x∈Z ,2x+1是整数〞的逆命题是( )A.假设2x+1是整数,那么x∈ZB.假设2x+1是奇数,那么x∈ZC.假设2x+1是偶数,那么x∈ZD.假设2x+1能被3整除,那么x∈Z解析:命题“∀x∈Z ,2x+1是整数〞的条件为x∈Z ,结论为2x+1是整数,应选A. 答案:A2.(2021重庆高考,文2)设x 是实数,那么“x>0”是“|x|>0”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解析:由x >0⇒|x|>0充分,而|x|>0⇒x >0或x <0,不必要,应选A.答案:A3.对任意实数a 、b 、c,给出以下命题:①“a=b 〞是“ac=bc 〞的充要条件;②“a+5是无理数〞是“a 是无理数〞的充要条件;③“a>b 〞是“a 2>b 2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是( )A.1B.2C.3D.4 解析:当c =0,a 、b 不为0时,ac≠bc ⇒a =b,所以①是假命题;当a =2,b =-3时,a >b 推不出a 2>b 2,所以③是假命题;②④显然正确.答案:B4.假设f(x)是R 上的减函数,且f(0)=3,f(3)=-1.设P ={x||f(x+t)-1|<2},Q ={x|f(x)<-1},假设“x∈P〞是“x∈Q〞的充分不必要条件,那么实数t 的取值范围是( )A.t ≤0B.t ≥0C.t ≤-3D.t ≥-3解析:由题意知P ={x|-1<f(x+t)<3}={x|-t <x <3-t},Q ={x|f(x)<f(3)}={x|x >3}, ∵“x∈P〞是“x∈Q〞的充分而不必要条件, ∴P Q.∴-t ≥3,t ≤-3.应选C.答案:C5.设p 、q 是简单命题,那么“p 且q 为假〞是“p 或q 为假〞的( )A.必要不充分条件B.充分不必要条件C.充要条件D.不充分且不必要条件 解析:由“p 且q 为假〞,知p 、q 中至少有一个为假即可;而“p 或q 为假〞,那么p 、q 都为假.由此可推得“p 且q 为假〞是“p 或q 为假〞的必要不充分条件,应选A.答案:A6.在△ABC 中,“A>30°〞是“sinA>21〞的…( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:举反例,如A >30°,设A =160°,那么sinA =sin20°<sin30°=21,那么“A>30°〞不是“sinA>21〞的充分条件;如果sinA >21,那么A∈(30°,150°), 即有A >30°.应选B.答案:B7.以下各小题中,p 是q 的充要条件的是…( )①p:m<-2或m >6;q:y =x 2+mx+m+3有两个不同的零点②p:)()(x f x f -=1;q:y =f(x)是偶函数 ③p:cosα=cosβ; q:tanα=tanβ④p:A∩B=A;q:B ⊆ AA.①②B.②③C.③④D.①④ 解析:②由1)()(=-x f x f 可得f(-x)=f(x),但y =f(x)的定义域不一定关于原点对称;③α=β是tanα=ta nβ的既不充分也不必要条件.答案:D8.(2021陕西高考,文6)“a=1”是“对任意正数x,xa x +2≥1”的〔 〕 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 解析:a =1⇒xx x a x 122+=+≥221·22=x x >1,显然a =2也能推出,所以“a=1〞是“对任意正数x,xa x +2≥1”的充分不必要条件. 答案:A二、填空题9.假设集合A ={1,m 2},B ={2,4},那么“m=2”是“A∩B={4}〞的___________条件.(从“充分不必要〞“必要不充分〞“既不充分也不必要〞中选一个填在横线上)解析:∵A∩B={4}的充分条件是m 2=4,即m =±2,∴“m=2”是“A∩B={4}〞的充分不必要条件.答案:充分不必要10.设p 、q 是两个命题,p:21log (|x|-3)>0,q:61652+-x x >0,那么p 是q 的___________条件.解析:考查充要条件的判定及不等式解法.∵p:21log (|x|-3)>0⇒0<|x|-3<1⇒3<|x|<4⇒-4<x <-3或3<x <4;q:61652+-x x >0⇒(31-x )(21-x )>0⇒x >21或x <31, ∴p 是q 的充分而不必要条件.答案:充分而不必要 11.p:|321--x |≤2,q:x 2-2x+1-m 2≤0(m >0),而⌝p 是⌝q 的必要不充分条件,那么实数m 的取值范围为_______________.解析:由题意,知q 是p 的必要不充分条件.由p:-1≤x ≤11;由q:1-m ≤x ≤1+m,因此⎩⎨⎧≤⇒-≤-≤⇒+≤mm m m 211,10111所以m ≥10. 答案:m ≥10三、解答题12.判断命题“a,x 为实数,如果关于x 的不等式x 2+(2a+1)x+a 2+2≤0的解集非空,那么a ≥1”的逆否命题的真假.解法一:直接由原命题写出其逆否命题,然后判断逆否命题的真假.原命题:a,x 为实数,如果关于x 的不等式x 2+(2a+1)x+a 2+2≤0的解集非空,那么a ≥1.逆否命题:a,x 为实数,如果a <1,那么关于x 的不等式x 2+(2a+1)x+a 2+2≤0的解集为空集.判断如下:抛物线:y =x 2+(2a+1)x+a 2+2开口向上.判别式Δ=(2a+1)2-4(a 2+2)=4a-7.∵a<1,∴4a -7<0,即抛物线y =x 2+(2a+1)x+a 2+2与x 轴无交点,∴关于x 的不等式x 2+(2a+1)x+a 2+2≤0的解集为空集,故逆否命题为真.解法二:根据命题之间的关系“原命题与逆否命题同真同假〞,只需判断原命题的真假即可.∵a,x 为实数,且关于x 的不等式x 2+(2a+1)x+a 2+2≤0的解集非空,∴Δ=(2a+1)2-4(a 2+2) ≥0,即4a-7≥0,解得a ≥47. ∵a≥47>1, ∴原命题为真.又∵原命题与其逆否命题同真同假,∴逆否命题为真.解法三:利用充要条件与集合的包含、相等关系求解.命题p:关于x 的不等式x 2+(2a+1)x+a 2+2≤0有非空解集.命题q:a ≥1.∴p:A={a|关于x 的不等式x 2+(2a+1)x+a 2+2≤0有实数解}={a|(2a+1)2-4(a 2+2) ≥0}={a|a ≥47}.q:B ={a|a ≥1}. ∵A ⊆B,∴“假设p 那么q 〞为真.∴“假设p 那么q 〞的逆否命题:“假设⌝q 那么⌝p 〞为真,即原命题的逆否命题为真.13.设数列{a n }、{b n }、{c n }满足:b n =a n -a n+2,c n =a n +2a n+1+3a n+2(n =1,2,3,…).证明{a n }为等差数列的充分必要条件是{c n }为等差数列且b n ≤b n+1(n =1,2,3,…). 证明:必要性:设{a n }是公差为d 1的等差数列,那么b n+1-b n =(a n+1-a n+3)-(a n -a n+2)=(a n+1-a n )-(a n+3-a n+2)=d 1-d 1=0,∴b n ≤b n+1(n =1,2,3,…)成立.又c n+1-c n =(a n+1-a n )+2(a n+2-a n+1)+3(a n+3-a n+2)=d 1+2d 1+3d 1=6d 1(常数)(n =1,2,3,…). ∴数列{c n }为等差数列.充分性:设数列{c n }是公差为d 2的等差数列,且b n ≤b n+1(n =1,2,3,…).证法一:∵c n =a n +2a n+1+3a n+2, ① ∴c n+2=a n+2+2a n+3+3a n+4. ② ①-②,得c n -c n+2=(a n -a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n +2b n+1+3b n+2,∴c n -c n+2=(c n -c n+1)+(c n+1-c n+2)=-2d 2.∴b n +2b n+1+3b n+2=-2d 2, ③ 从而有b n+1+2b n+2+3b n+3=-2d 2. ④ ④-③,得(b n+1-b n )+2(b n+2-b n+1)+3(b n+3-b n+2)=0. ⑤ ∵b n+1-b n ≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,∴由⑤得b n+1-b n =0(n =1,2,3,…).由此不妨设b n =d 3(n =1,2,3,…),那么a n -a n+2=d 3(常数).由此c n =a n +2a n+1+3a a+2=4a n +2a n+1-3d 3,从而c n+1=4a n+1+2a n+2-3d 3=4a n+1+2a n -5d 3.两式相减,得c n+1-c n =2(a n+1-a n )-2d 3,因此a n+1-a n =21(c n+1-c n )+d 3=21d 2+d 3(常数)(n =1,2,3…), ∴数列{c n }是等差数列.证法二:令A n =a n+1-a n ,由b n ≤b n+1,知a n -a n+2≤a n+1-a n+3,从而a n+1-a n ≥a n+3-a n+2,即A n ≥A n+2(n =1,2,3…).由c n =a n +2a n+1+3a n+2,c n+1=a n+1+2a n+2+3a n+3,得c n+1-c n =(a n+1-a n )+2(a n+2-a n+1)+3(a n+3-a n+2), 即A n +2A n+1+3A n+2=d 2时 ⑥ 由此得A n+2+2A n+3+3A n+4=d 2. ⑦ ⑥-⑦,得(A n -A n+2)+2(A n+1-A n+3)+3(A n+2-A n+4)=0. ⑧ ∵A n -A n+2≥0,A n+1-A n+3≥0,A n+2-A n+4≥0,∴由⑧,得A n -A n+2=0(n =1,2,3,…).于是由⑥,得4A n +2A n+1=A n +2A n+1+3A n+2=d 2, ⑨ 从而2A n +4A n+1=4A n+1+2A n+2=d 2. ⑩ 由⑨和⑩,得4A n +2A n+1=2A n +4A n+1,故A n+1=A n ,即a n+2-a n+1=a n+1-a n (n =1,2,3,…),∴数列{c n }是等差数列.。
命题及其关系、充分条件与必要条件练习题一.选择题(共29小题)1.(2014•陕西)原命题为“若<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A .真、真、真B.假、假、真C.真、真、假D.假、假、假2.(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A .p2,p3B.p1,p4C.p1,p2D.p1,p33.(2014•江西)下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2﹣4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β4.(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A .若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=5.(2012•辽宁)已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0 B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0 D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<06.(2012•安徽)命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x>1 B.不存在实数x,使x≤1C.对任意实数x,都有x≤1 D.存在实数x,使x≤17.(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则列数{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列8.(2010•天津)命题“若f(x)是奇函数,则f(﹣x)是奇函数”的否命题是() A.若f(x)是偶函数,则f(﹣x)是偶函数B.若f(x)不是奇函数,则f(﹣x)不是奇函数C.若f(﹣x)是奇函数,则f(x)是奇函数D.若f(﹣x)不是奇函数,则f(x)不是奇函数9.(2010•湖南)下列命题中是假命题的是()A .∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=210.(2009•宁夏)有四个关于三角函数的命题:P1:∃x∈R,sin2+cos2=;P2:∃x、y∈R,sin(x﹣y)=sinx﹣siny;P3:∀x∈[0,π],=sinx;P4:sinx=cosy⇒x+y=.其中假命题的是()A .P1,P4B.P2,P4C.P1,P3D.P2,P411.(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.(2014•天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件13.(2014•北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件15.(2013•陕西)设,为向量,则|•|=||||是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件17.(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是()A .B.C.D.且18.(2012•福建)下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件19.(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件20.(2009•福建)设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A .m∥β且l∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l221.(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h (x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件22.(2008•北京)“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件23.(2007•山东)下列各小题中,p是q的充要条件的是()(1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.(2);q:y=f(x)是偶函数.(3)p:cosα=cosβ;q:tanα=tanβ.(4)p:A∩B=A;q:∁U B⊆∁U A.A .(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)24.(2005•湖北)对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A .1 B.2 C.3 D.425.(2004•浙江)在△ABC中,“A>30°”是“sinA>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件26.(1992•云南)设△ABC不是直角三角形,A和B是它的两个内角,那么()A.“A<B“是“tanA<tanB“的充分条件,但不是必要条件.B.“A<B“是“tanA<tanB“的必要条件,但不是充分条件.C.“A<B“是“tanA<tanB“的充分必要条件.D.“A<B“不是“tanA<tanB“的充分条件,也不是必要条件.27.在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件28.(2006•湖南)“a=1”是“函数f(x)=|x﹣a|在区间[1,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件29.(2006•安徽)设a,b∈R,已知命题p:a=b;命题q:,则p是q成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件二.填空题(共1小题)30.(2008•陕西)关于平面向量,,,有下列三个命题:①若•=•,则=、②若=(1,k),=(﹣2,6),∥,则k=﹣3.③非零向量和满足||=||=|﹣|,则与+的夹角为60°.其中真命题的序号为_________.(写出所有真命题的序号)命题及其关系、充分条件与必要条件高考练习题参考答案与试题解析一.选择题(共29小题)1.(2014•陕西)原命题为“若<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A .真、真、真B.假、假、真C.真、真、假D.假、假、假考点:四种命题.专题:阅读型;简易逻辑.分析:先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.解答:解:∵<a n⇔a n+1<a n,n∈N+,∴{a n}为递减数列,命题是真命题;其否命题是:若≥a n,n∈N+,则{a n}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A.点评:本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键.2.(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A .p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.3.(2014•江西)下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2﹣4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β考点:命题的真假判断与应用.专题:简易逻辑.分析:本题先用不等式的知识对选项A、B中命题的条件进行等价分析,得出它们的充要条件,再判断相应命题的真假;对选项以中的命题否定加以研究,判断其真假,在考虑全称量词的同时,要否定命题的结论;对选项D利用立体几何的位置关系,得出命题的真假,可知本题的正确答案.解答:(1)对于选项A若a,b,c∈R,当“ax2+bx+c≥0”对于任意的x恒成立时,则有:①当a=0时,b=0,c≥0,此时b2﹣4ac=0,b2﹣4ac≤0成立;②当a>0时,b2﹣4ac≤0.∴“ax2+bx+c≥0”是“b2﹣4ac≤0”充分不必要条件,“b2﹣4ac≤0”是“ax2+bx+c≥0”必要不充分条件.故选项A不正确.(2)对于选项B当ab2>cb2时,b2≠0,且a>c,∴“ab2>cb2”是“a>c”的充分条件.反之,当a>c时,若b=0,则ab2=cb2,不等式ab2>cb2不成立.∴“a>c”是“ab2>cb2”的必要不充分条件.故选项B不正确.(3)对于选项C结论要否定,注意考虑到全称量词“任意”,命题“对任意x∈R,有x2≥0”的否定应该是“存在x∈R,有x2<0”.故选项C不正确.(4)对于选项D命题“l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.”是两个平面平行的一个判定定理.故答案为:D点评:本题考查了命题、充要条件的知识,考查到了不等式、立体几何知识,有一定容量,总体难度不大,属于基础题.4.(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题.专题:应用题.分析:首先否定原命题的题设做逆否命题的结论,再否定原命题的结论做逆否命题的题设,写出新命题就得到原命题的逆否命题.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠故选C点评:考查四种命题的相互转化,命题的逆否命题是对题设与结论分别进行否定且交换条件与结论的位置,本题是一个基础题.5.(2012•辽宁)已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0 B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0 D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0考点:命题的否定.专题:规律型.分析:由题意,命题p是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项解答:解:命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0是一个全称命题,其否定是一个特称命题故¬p:∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0故选C点评:本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律.6.(2012•安徽)命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x>1 B.不存在实数x,使x≤1C.对任意实数x,都有x≤1 D.存在实数x,使x≤1考点:命题的否定.专题:计算题.分析:根据存在命题(特称命题)否定的方法,可得结果是一个全称命题,结合已知易得答案.解答:解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C点评:本题以否定命题为载体考查了特称命题的否定,熟练掌握全(特)称命题的否定命题的格式和方法是解答的关键.7.(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则列数{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列考点:命题的真假判断与应用;数列的函数特性.专题:证明题.分析:由题意,可根据数列的类型对数列首项的符号与公差的正负进行讨论,判断出错误选项解答:解:对于选项A,若d<0,则列数{S n}有最大项是正确的,如果首项小于等于0,则S1即为最大项,若首项为正,则所有正项的和即为最大项;对于B选项,若数列{S n}有最大项,则d<0是正确的,若前n项和有最大项,则必有公差小于0;对于选项C,若数列{S n}是递增数列,则对任意n∈N*,均有S n>0是错误的,因为递增数列若首项为负,则必有S1<0,故均有S n>0不成立,对于选项D,若对任意n∈N*,均有S n>0,则数列{S n}是递增数列,正确,这是因为若公差小于0,一定存在某个实数k,当n>k时,以后所有项均为负项,故不正确;综上,选项C是错误的故选C点评:本题以数列的函数特性为背景考查命题真假的判断,考查了分析判断推理的能力,有一定的探究性8.(2010•天津)命题“若f(x)是奇函数,则f(﹣x)是奇函数”的否命题是()A .若f(x)是偶函数,则f(﹣x)是偶函数B.若f(x)不是奇函数,则f(﹣x)不是奇函数C .若f(﹣x)是奇函数,则f(x)是奇函数D.若f(﹣x)不是奇函数,则f(x)不是奇函数考点:四种命题.分析:用否命题的定义来判断.解答:解:否命题是同时否定命题的条件结论,故由否命题的定义可知B项是正确的.故选B点评:本题主要考查否命题的概念,注意否命题与命题否定的区别.9.(2010•湖南)下列命题中是假命题的是()A .∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0C.∃x∈R,lgx<1 D.∃x∈R,tanx=2考点:四种命题的真假关系.分析:本题考查全称命题和特称命题真假的判断,逐一判断即可.解答:解:B中,x=1时不成立,故选B答案:B点评:本题考查逻辑语言与指数函数、二次函数、对数函数、正切函数的值域,属容易题.10.(2009•宁夏)有四个关于三角函数的命题:P1:∃x∈R,sin2+cos2=;P2:∃x、y∈R,sin(x﹣y)=sinx﹣siny;P3:∀x∈[0,π],=sinx;P4:sinx=cosy⇒x+y=.其中假命题的是()A .P1,P4B.P2,P4C.P1,P3D.P2,P4考点:四种命题的真假关系;三角函数中的恒等变换应用.分析:P1:同角正余弦的平方和为1,显然错误;P2:取特值满足即可;P3将根号中的式子利用二倍角公式化为平方形式,再注意正弦函数的符号即可.P4由三角函数的周期性可判命题错误.解答:解:∀x∈R都有sin2+cos2=1,故P1错误;P2中x=y=0时满足式子,故正确;P3:∀x∈[0,π],sinx>0,且1﹣cos2x=2sin2x,所以=sinx正确;P4:x=0,,sinx=cosy=0,错误.故选A点评:本题考查全称命题和特称命题的真假判断、以及三角函数求值、公式等,属基本题.11.(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.12.(2014•天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:①若a>b≥0,则不等式a|a|>b|b|等价为a•a>b•b此时成立.②若0>a>b,则不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③若a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b>0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b<0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.13.(2014•北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A .充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但“{a n}”不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}”为递增数列的既不充分也不必要条件,故选:D.点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.14.(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A .充分而不必要条件B.必要而不充分条件C .充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.解答:解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选A.点评:本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.15.(2013•陕西)设,为向量,则|•|=||||是“∥”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;向量的模;平行向量与共线向量.专题:平面向量及应用.分析:利用向量的数量积公式得到•=,根据此公式再看与之间能否互相推出,利用充要条件的有关定义得到结论.解答:解:∵•=,若a,b为零向量,显然成立;若⇒cosθ=±1则与的夹角为零角或平角,即,故充分性成立.而,则与的夹角为为零角或平角,有.因此是的充分必要条件.故选C.点评:本题考查平行向量与共线向量,以及充要条件,属基础题.16.(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:φ=⇒f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.解答:解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.17.(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是()A .B.C.D.且考点:充分条件.专题:证明题.分析:利用向量共线的充要条件,求已知等式的充要条件,进而可利用命题充要条件的定义得其充分条件解答:解:⇔⇔与共线且同向⇔且λ>0,故选C点评:本题主要考查了向量共线的充要条件,命题的充分和必要性,属基础题18.(2012•福建)下列命题中,真命题是()A .∃x0∈R,≤0B.∀x∈R,2x>x2C .a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件考点:必要条件、充分条件与充要条件的判断;全称命题;特称命题;命题的真假判断与应用.专题:计算题.分析:利用指数函数的单调性判断A的正误;通过特例判断,全称命题判断B的正误;通过充要条件判断C、D的正误;解答:解:因为y=e x>0,x∈R恒成立,所以A不正确;因为x=﹣5时2﹣5<(﹣5)2,所以∀x∈R,2x>x2不成立.a=b=0时a+b=0,但是没有意义,所以C不正确;a>1,b>1是ab>1的充分条件,显然正确.故选D.点评:本题考查必要条件、充分条件与充要条件的判断,全称命题,特称命题,命题的真假判断与应用,考查基本知识的理解与应用.19.(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A .既不充分也不必要的条件B.充分而不必要的条件C必要而不充D充要条件.分的条件.考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:证明题.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:由题意,f(x)是定义在R上的偶函数,f(x)为[0,1]上的增函数所以f(x)为[﹣1,0]上是减函数又f(x)是定义在R上的函数,且以2为周期[3,4]与[﹣1,0]相差两个周期,故两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立,若f(x)为[3,4]上的减函数,由周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误,20.(2009•福建)设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A .m∥β且l∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2考点:必要条件、充分条件与充要条件的判断;平面与平面之间的位置关系.分析:本题考查的知识点是充要条件的判断,我们根据面面平行的判断及性质定理,对四个答案进行逐一的分析,即可得到答案.解答:解:若m∥l1,n∥l2,m.n⊂α,l1.l2⊂β,l1,l2相交,则可得α∥β.即B答案是α∥β的充分条件,若α∥β则m∥l1,n∥l2不一定成立,即B答案是α∥β的不必要条件,故m∥l1,n∥l2是α∥β的一个充分不必要条件,故选B点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.21.(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h (x)为偶函数”的()A .充要条件B.充分而不必要的条件C .必要而不充分的条件D.既不充分也不必要的条件考点:必要条件、充分条件与充要条件的判断;函数奇偶性的判断.专题:压轴题.分析:本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.解答:解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B点评:本题考查充要条件的判断和函数奇偶性的判断,属基本题.22.(2008•北京)“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A .充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.分析:函数f(x)(x∈R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必要条件显然成立解答:解:“函数f(x)在R上为增函数”⇒“函数f(x)(x∈R)存在反函数”;反之取f(x)=﹣x(x∈R),则函数f(x)(x∈R)存在反函数,但是f(x)在R上为减函数.故选B点评:本题考查充要条件的判断及函数存在反函数的条件,属基本题.23.(2007•山东)下列各小题中,p是q的充要条件的是()(1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.(2);q:y=f(x)是偶函数.(3)p:cosα=cosβ;q:tanα=tanβ.(4)p:A∩B=A;q:∁U B⊆∁U A.A .(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)考点:必要条件、充分条件与充要条件的判断.分析:(1)中求出q的范围,可得p是q的充要条件,排除B,C,再判断(2),p中为分式,应考虑分母不等于0.(3)中注意正切函数的定义域,(4)中,由A∩B=A可知A⊆B,由韦恩图可判.解答:解:(1)q:y=x2+mx+m+3有两个不同的零点,△>0,得m<﹣2或m>6,即为p;排除B,C,(2)由可得f(﹣x)=f(x)⇒q,反之,若y=f(x)是偶函数,可以有f(0)=0,p不成立;故选D点评:本题考查充要条件的判断,注意选择题中,排除法的应用.24.(2005•湖北)对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A .1 B.2 C.3 D.4考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:本题考查的知识点是必要条件、充分条件与充要条件的判断及不等式的性质,我们根据充要条件的定义对题目中的四个答案逐一进行分析即可得到答案.解答:解:∵①中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故①为假命题;∵②中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故②为真命题;∵③中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的即充分也不必要条件,故③为假命题;∵④中{a|a<5}⊉{a|a<3},故“a<5”是“a<3”的必要条件,故④为真命题.故真命题的个数为2故选B点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.25.(2004•浙江)在△ABC中,“A>30°”是“sinA>”的()A .充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:要注意三角形内角和是180度,不要丢掉这个大前提.解答:解:∵在△ABC中,∠A+∠B+∠C=180°∵A>30°∴30°<A<180°∴0<sin A<1∴可判读它是sinA>的必要而不充分条件故选B.点评:此题要注意思维的全面性,不能因为细节大意失分.26.(1992•云南)设△ABC不是直角三角形,A和B是它的两个内角,那么()A.“A<B“是“tanA<tanB“的充分条件,但不是必要条件.B.“A<B“是“tanA<tanB“的必要条件,但不是充分条件.C.“A<B“是“tanA<tanB“的充分必要条件.D.“A<B“不是“tanA<tanB“的充分条件,也不是必要条件.考点:必要条件、充分条件与充要条件的判断.专题:探究型.分析:利用充分条件和必要条件的定义分别判断.解答:解:因为△ABC不是直角三角形,A和B是它的两个内角,所以A≠90°,B≠90°.若A=30°,B=45°,满足A<B,则tan30°<tan45°,若A=30°,B=135°,满足A<B,则tan30°>tan45°,所以A,B的大小与tanA,tanB的大小没有关系.所以“A<B“不是“tgA<tgB“的充分条件,也不是必要条件.故选D.点评:本题主要考查正切函数的图象和性质以及充分条件和必要条件的应用.27.在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的()A .充分必要条件B.充分非必要条件C .必要非充分条件D.非充分非必要条件考点:充要条件.专题:简易逻辑.分析:直接利用正弦定理以及已知条件判断即可.解答:解:由正弦定理可知,∵△ABC中,角A、B、C所对应的边分别为a,b,c,∴a,b,sinA,sinB都是正数,∴“a≤b”⇔“sinA≤sinB”.∴“a≤b”是“sinA≤sinB”的充分必要条件.故选:A.。
命题及其关系、充分条件与必要条件一、基础小题1.命题“若a∉A,则b∉B”的否命题是()A.若a∉A,则b∉B B.若a∈A,则b∈BC.若b∈B,则a∉A D.若b∉B,则a∈A答案 B解析由原命题与否命题的定义知选B.2.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是() A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠0答案 D解析写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.3.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为() A.“若x=-4,则x2+3x-4=0”为真命题B.“若x≠-4,则x2+3x-4≠0”为真命题C.“若x≠-4,则x2+3x-4≠0”为假命题D.“若x=-4,则x2+3x-4=0”为假命题答案 C解析根据逆否命题的定义可以排除A,D,由x2+3x-4=0,得x=-4或1,故选C.4.一个命题与它的逆命题、否命题、逆否命题这四个命题中() A.真命题与假命题的个数相同B.真命题的个数一定是奇数C.真命题的个数一定是偶数D.真命题的个数可能是奇数,也可能是偶数答案 C解析在原命题与其逆命题、否命题、逆否命题这四个命题中,互为逆否的命题是成对出现的,故真命题的个数和假命题的个数都是偶数.5.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析如果x∈(A∩B),则x∈A且x∈B;但当x∈A,x∉B时,x∉(A∩B),所以“x∈A”是“x∈(A∩B)”的必要不充分条件,故选B.6.下列命题中为真命题的是()A.命题“若x>1,则x2>1”的否命题B.命题“若x>y,则x>|y|”的逆命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“已知a,b,c∈R,若ac2>bc2,则a>b”的逆命题、否命题、逆否命题均为真命题答案 B解析对于选项A,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故选项A为假命题;对于选项B,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知选项B为真命题;对于选项C,命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,故选项C为假命题;对于选项D,原命题为真,所以逆否命题为真,逆命题、否命题均为假,故选项D 为假命题.综上可知,选B.7.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},则“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 因为集合N ={x |0<x ≤2}是M ={x |0<x ≤3}的真子集,故由a ∈M 不能得到a ∈N ,由a ∈N 可以得到a ∈M ,所以“a ∈M ”是“a ∈N ”的必要不充分条件.8.a <0,b <0的一个必要条件为( )A .a +b <0B .a -b >0 C.a b >1D.a b <-1 答案 A解析 若a <0,b <0,则一定有a +b <0,故选A.9.在等比数列{a n }中,a 1>0,则“a 1<a 3”是“a 3<a 6”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 设等比数列{a n }的公比为q ,若a 1<a 3,则a 1(1-q 2)<0,因为a 1>0,所以1-q 2<0,故q >1或q <-1,又a 3-a 6=a 1q 2(1-q 3),若q >1,则a 3<a 6,若q <-1,则a 3>a 6,故充分性不成立.反之,若a 3<a 6,则1-q 3<0,故q >1,则a 1<a 3,必要性成立,故“a 1<a 3”是“a 3<a 6”的必要不充分条件,选B.10.若命题p 的逆命题是q ,命题p 的否命题是r ,则q 是r 的________.(填“否命题”“逆命题”或“逆否命题”)答案 逆否命题解析 由4种命题的相互关系,可知原命题的否命题与逆命题互为逆否命题.11.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________.答案 [1,2)解析 根据题意得⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4,解得1≤x <2,故x ∈[1,2).12.设p,r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用“充分”“必要”或“充要”填空)答案充分充要解析由题知p⇒q⇔s⇒t,又t⇒r,r⇒q,故p是t的充分条件,r是t的充要条件.二、高考小题13.[2016·四川高考]设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析当x>1且y>1时,x+y>2,所以充分性成立;令x=-1,y=4,则x+y>2,但x<1,所以必要性不成立,所以p是q的充分不必要条件.故选A.14.[2015·山东高考]设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案 D解析由原命题和逆否命题的关系可知D正确.15.[2015·陕西高考]“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若sinα=cosα,则cos2α=cos2α-sin2α=0,所以充分性成立;若cos2α=0,则cos2α=sin2α,即|sinα|=|cosα|,所以必要性不成立,故选A. 16.[2016·山东高考]已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 因为直线a 和直线b 相交,所以直线a 与直线b 有一个公共点,而直线a ,b 分别在平面α,β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a 与直线b 可能相交、平行、异面.故选A.17.[2016·天津高考]设x >0,y ∈R ,则“x >y ”是“x >|y |”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 答案 C解析 令x =1,y =-2,满足x >y ,但不满足x >|y |;又x >|y |≥y ,∴x >y 成立,故“x >y ”是“x >|y |”的必要而不充分条件.18.[2016·浙江高考]已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 解法一:记g (x )=f (f (x ))=(x 2+bx )2+b (x 2+bx )=⎝ ⎛⎭⎪⎫x 2+bx +b 22-b 24 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +b 22-b 24+b 22-b 24. 当b <0时,-b 24+b 2<0,即当⎝ ⎛⎭⎪⎫x +b 22-b 24+b 2=0时,g (x )有最小值,且g (x )min =-b 24, 又f (x )=⎝ ⎛⎭⎪⎫x +b 22-b 24,所以f (f (x ))的最小值与f (x )的最小值相等,都为-b 24,故充分性成立.另一方面,当b =0时,f (f (x ))的最小值为0,也与f (x )的最小值相等.故必要性不成立.选A.解法二:函数f (x )=x 2+bx 在x =-b 2处取得最小值且最小值为-b 24;令f (x )=t ,则f (f (x ))=f (t )=t 2+bt ⎝ ⎛⎭⎪⎫t ≥-b 24,函数f (f (x ))=f (t )=t 2+bt ⎝ ⎛⎭⎪⎫t ≥-b 24也在t =-b 2处取得最小值,为保证f (t )与f (x )的最小值相等,则需满足-b 24≤-b 2,解得b ≥2或b ≤0,所以“b <0”是“f (f (x ))与f (x )的最小值相等”的充分不必要条件,故选A.三、模拟小题19.[2017·中原名校联考]已知p :a <0,q :a 2>a ,则綈p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为綈p :a ≥0,綈q :0≤a ≤1,所以綈q ⇒綈p 且綈p ⇒/綈q ,所以綈p 是綈q 的必要不充分条件.20.[2017·安徽模拟]若p 是q 的充分不必要条件,则下列判断正确的是( )A .綈p 是q 的必要不充分条件B .綈q 是p 的必要不充分条件C .綈p 是綈q 的必要不充分条件D .綈q 是綈p 的必要不充分条件答案 C解析 由p 是q 的充分不必要条件可知p ⇒q ,q ⇒/p ,由互为逆否命题的两命题等价可得綈q ⇒綈p ,綈p ⇒/綈q ,∴綈p 是綈q 的必要不充分条件.故选C. 21.[2017·湖北黄冈质检]设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( )A .-1<x ≤1B .x ≤1C .x >-1D .-1<x <1 答案 D解析 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.故选D.22.[2016·洛阳二练]已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A 解析 A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.23.[2016·辽宁五校联考]若f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .t ≤-1B .t >-1C .t ≥3D .t >3答案 D解析 P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)},因为函数f (x )是R 上的增函数,所以P ={x |x +t <2}={x |x <2-t },Q ={x |x <-1},要使“x ∈P ”是“x ∈Q ”的充分不必要条件,则有2-t <-1,即t >3,选D.24.[2017·安徽“江南十校”联考]已知函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分也不必要”填写)答案 充要解析 若f (x )=13x -1+a 是奇函数,则f (-x )=-f (x ), 即f (-x )+f (x )=0,∴13-x -1+a +13x -1+a =2a +3x 1-3x +13x -1=0,即2a +3x -11-3x=0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.[2017·连云港统考]已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t 2-(a +3)t +(a +2)<0.(1)若命题p 为真,求实数t 的取值范围;(2)若命题p 是命题q 的充分不必要条件,求实数a 的取值范围.解 (1)由对数式有意义得1<t <52.(2)∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a+2)<0解集的真子集.解法一:因方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.解法二:令f (t )=t 2-(a +3)t +(a +2),因f (1)=0,故只需f ⎝ ⎛⎭⎪⎫52<0,解得a >12. 2.[2017·河北正定中学月考]已知条件p :|5x -1|>a 和条件q :12x 2-3x +1>0,请选取适当的实数a 的值,分别利用所给出的两个条件作为A ,B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.解 已知条件p 即5x -1<-a 或5x -1>a ,∴x <1-a 5或x >1+a 5.已知条件q 即2x 2-3x +1>0,∴x <12或x >1;令a =4,则p 即x <-35或x >1,此时必有p ⇒q 成立,反之不然.故可以选取一个实数是a =4,A 为p ,B 为q ,对应的命题是若p 则q .3.[2017·河南郑州模拟]已知命题p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.解 解法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴綈p :A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴綈q :B ={x |x >1+m 或x <1-m ,m >0}.∵綈p 是綈q 的必要而不充分条件,∴B A ⇔⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m ≥10,解得m ≥9.解法二:∵綈p 是綈q 的必要而不充分条件,∴q 是p 的必要而不充分条件,∴p 是q 的充分而不必要条件.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0).∴q :Q ={x |1-m ≤x ≤1+m ,m >0}.又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p :P ={x |-2≤x ≤10}.∴P Q ⇔⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m ≥10,解得m ≥9.4.[2016·莱州一中模拟]已知集合P ={x |x 2-8x -20≤0},S ={x ||x -1|≤m }.(1)若(P ∪S )⊆P ,求实数m 的取值范围;(2)是否存在实数m ,使得“x ∈P ”是“x ∈S ”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.解 由x 2-8x -20≤0,解得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由|x -1|≤m ,可得1-m ≤x ≤1+m ,∴S ={x |1-m ≤x ≤1+m }.(1)要使(P ∪S )⊆P ,则S ⊆P .①若S =∅,此时m <0.②若S ≠∅,此时⎩⎪⎨⎪⎧ m ≥0,1-m ≥-2,1+m ≤10,解得0≤m ≤3.综合①②知实数m 的取值范围为(-∞,3].(2)由题意“x ∈P ”是“x ∈S ”的充要条件,则S =P , 则⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,∴这样的m 不存在.。
课后练习——命题及其关系、充分条件与必要条件建议用时:45分钟一、选择题1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定B [命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.]2.原命题“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4C [当c =0时,ac 2=bc 2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.]3.设x ∈R ,则“2-x ≥0”是“(x -1)2≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [2-x ≥0,则x ≤2,(x -1)2≤1,则-1≤x -1≤1,即0≤x ≤2,据此可知:“2-x ≥0”是“(x -1)2≤1”的必要不充分条件.]4.设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件A [由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A .] 5.(2019·庆阳模拟)有下列命题:①“若x +y >0,则x >0且y >0”的否命题;②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题.其中为真命题的是( )A .①②③B .②③④C .①③④D .①④C [①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”, ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1. ∴③是真命题;④原命题为真,逆否命题也为真.综上得①③④为真命题,故选C .]6.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”B .“x =-1”是“x 2-x -2=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题是真命题D .“tan x =1”是“x =π4”的充分不必要条件C [对A 项,由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即A 错误;因为x 2-x -2=0⇔x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 错误;因为由x =y 能推出sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推出tan x =1,但由tan x =1推不出x =π4,所以“x =π4”是“tan x =1”的充分不必要条件,即D错误.]7.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]D[∵x>2m2-3是-1<x<4的必要不充分条件,∴(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1,故选D.]二、填空题8.在△ABC中,“A=B”是“tan A=tan B”的________条件.充要[由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B,故“A=B”是“tan A=tan B”的充要条件.]9.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)充分不必要[当x>1,y>1时,x+y>2一定成立,即p⇒q,当x+y>2时,可令x=-1,y=4,即q⇒/ p,故p是q的充分不必要条件.]10.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.k∈(-1,3)[直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|<2,解之得-1<k<3.]21.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C[由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.因为a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=10,|3a+b|=10,能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充要条件.]2.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件B[“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]3.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.②③[①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.]4.已知集合A=,B={x|-1<x<m+1,m∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是________.(2,+∞)[因为A=={x|-1<x<3},x∈B成立的一个充分不必要条件是x∈A,所以A B,所以m+1>3,即m>2.]1.下面四个条件中,使a>b成立的充分而不必要的条件是() A.a>b+1 B.a>b-1C.a2>b2D.a3>b3A[a>b+1⇒a>b,但反之未必成立,故选A.]2.给出下列说法:①“若x+y=π2,则sin x=cos y”的逆命题是假命题;②“在△ABC中,sin B>sin C是B>C的充要条件”是真命题;③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x -3≤0”.以上说法正确的是________(填序号).①②④[对于①,“若x+y=π2,则sin x=cos y”的逆命题是“若sin x=cos y,则x+y=π2”,当x=0,y=3π2时,有sin x=cos y成立,但x+y=3π2,故逆命题为假命题,①正确;对于②,在△ABC中,由正弦定理得sin B>sin C⇔b >c⇔B>C,②正确;对于③,“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.]。
第2讲命题及其关系、充分条件与必要条件一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且mα,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析mα,m∥βα∥β,但mα,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 显然a =0时,f (x )=sin x -1x 为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 答案 C5.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B.“x =4”是“x 2-3x -4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题. 答案 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 答案 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A8.(2017·汉中模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由ln a>ln b⇒a>b>0⇒a>b,故必要性成立.当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.答案 B二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案 210.“sin α=cos α”是“cos 2α=0”的________条件.解析cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.答案充分不必要11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.解析令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0<x<4}.∵p是q的充分不必要条件,∴M N,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③13.(2016·四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析 如图作出p ,q 表示的区域,其中⊙M 及其内部为p 表示的区域,△ABC 及其内部(阴影部分)为q 表示的区域. 故p 是q 的必要不充分条件.答案 A14.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 15.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案 (2,+∞)16.(2017·临沂模拟)下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. 解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”,故②正确.对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误.对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=1≠-log32,log23∴log32与log23不互为相反数,故④错误.答案②。
课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤06.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.38.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的__________条件.14.“x>1”是“”的__________条件.15.命题“若x>1,则x>0”的否命题是__________.16.如果“x2>1”是“x<a”的必要不充分条件,则a的最大值为__________.B组——能力提升练1.(2018·湖南十校联考)已知数列{a n}的前n项和S n=Aq n+B(q≠0),则“A=-B”是“数列{a n}是等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知函数f(x)=3ln(x+x2+1)+a(7x+7-x),x∈R,则“a=0”是“函数f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知数列{a n }的前n 项和为S n ,则“a 3>0”是“数列{S n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.。
高中数学:命题及其关系、充分条件与必要条件练习
(时间:30分钟)
1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( D )
(A)若方程x2+x-m=0有实根,则m>0
(B)若方程x2+x-m=0有实根,则m≤0
(C)若方程x2+x-m=0没有实根,则m>0
(D)若方程x2+x-m=0没有实根,则m≤0
解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.
2.(河南八市联考)命题“若a>b,则a+c>b+c”的否命题是( A )
(A)若a≤b,则a+c≤b+c
(B)若a+c≤b+c,则a≤b
(C)若a+c>b+c,则a>b
(D)若a>b,则a+c≤b+c
解析:将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.
3.(山东省日照市模拟)命题p:sin 2x=1,命题q:tan x=1,则p是q的( C )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
解析:由sin 2x=1,得2x=+2kπ,k∈Z,
则x=+kπ,k∈Z,
由tan x=1,得x=+kπ,k∈Z,
所以p是q的充要条件.故选C.
4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.
因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
5.(云南玉溪模拟)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
解析:若函数f(x)=a x在R上是减函数,则a∈(0,1),
若函数g(x)=(2-a)x3在R上是增函数,则a∈(0,2).
则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.
6.(江西九江十校联考)已知函数f(x)=则“x=0”是“f(x)=1”的( B )
(A)充要条件
(B)充分不必要条件
(C)必要不充分条件
(D)既不充分也不必要条件
解析:若x=0,则f(0)=e0=1;若f(x)=1,则e x=1或ln(-x)=1,解得x=0或x=-e.
故“x=0”是“f(x)=1”的充分不必要条件.故选B.
7.(北京卷)能说明“若a>b,则<”为假命题的一组a,b的值依次为.
解析:只要保证a为正b为负即可满足要求.
当a>0>b时,>0>.
答案:1,-1(答案不唯一)
8.有下列几个命题:
①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,
则-2<x<2”的逆否命题.
其中真命题的序号是.
解析:①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.
答案:②③
9.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是
.
解析:直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解之得-1<k<3.
答案:-1<k<3
能力提升(时间:15分钟)
10.(天津卷)设x∈R,则“|x-|<”是“x3<1”的( A )
(A)充分而不必要条件
(B)必要而不充分条件
(C)充要条件
(D)既不充分也不必要条件
解析:由“|x-|<”等价于0<x<1,而x3<1,即x<1,所以“|x-|<”是“x3<1”的充分而不必要条件.故选A.
11.已知命题p:x2+2x-3>0;命题q:x>a,且﹁q的一个充分不必要条件是﹁p,则a的取值范围是( A )
(A)[1,+∞) (B)(-∞,1]
(C)[-1,+∞) (D)(-∞,-3]
解析:由x2+2x-3>0,得x<-3或x>1,由﹁q的一个充分不必要条件是
﹁p,可知﹁p是﹁q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.
x-x+2(a>0且a≠1)有且仅有两个零点的充要条件12.函数f(x)=log
a
是 .
x-x+2(a>0,且a≠1)有两个零点,
解析:若函数f(x)=log
a
x的图象与直线y=x-2有两个交点,结合图象易知,此时a>1.
即函数y=log
a
可以检验,当a>1时,函数f(x)=log
a
x-x+2(a>0,且a≠1)有两个零点,
所以函数f(x)=log
a
x-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是a>1.
答案:a>1
13.(湖南十校联考)已知数列{a
n }的前n项和S
n
=Aq n+B(q≠0),则“A=-B”是“数列{a
n
}为等比
数列”的条件.
解析:若A=B=0,则S
n =0,数列{a
n
}不是等比数列.
如果{a
n }是等比数列,由a
1
=S
1
=Aq+B得
a 2=S
2
-a
1
=Aq2-Aq,a
3
=S
3
-S
2
=Aq3-Aq2,
由a
1a
3
=,从而可得A=-B,
故“A=-B”是“数列{a
n
}为等比数列”的必要不充分条件.
答案:必要不充分
14.(山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为.
解析:p对应的集合A={x|x<m或x>m+3},
q对应的集合B={x|-4<x<1}.
由p是q的必要不充分条件可知B A,
所以m≥1或m+3≤-4,即m≥1或m≤-7.
答案:(-∞,-7]∪[1,+∞)。