测井常识
- 格式:ppt
- 大小:148.50 KB
- 文档页数:51
第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
测井基础知识1. 名词解释:孔隙度:岩石孔隙体积与岩石总体积之比。
反映地层储集流体的能力。
有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积百分比。
原生孔隙度:原生孔隙体积与地层体积之比。
次生孔隙度:次生孔隙体积与地层体积之比。
热中子寿命:指热中子从产生的瞬时起到被俘获的时刻止所经过的平均时间。
放射性核素:会自发的改变结构,衰变成其他核素并放射出射线的不稳定核素。
地层密度:即岩石的体积密度,是每立方厘米体积岩石的质量。
地层压力:地层孔隙流体(油、气、水)的压力。
也称为地层孔隙压力。
地层压力高于正常值的地层称为异常高压地层。
地层压力低于正常值的地层称为异常低压地层。
水泥胶结指数:目的井段声幅衰减率与完全胶结井段声幅衰减率之比。
周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象。
一界面:套管与水泥之间的胶结面。
二界面:地层与水泥之间的胶结面。
声波时差:声速的倒数。
电阻率:描述介质导电能力强弱的物理量。
含油气饱和度(含烃饱和度Sh):孔隙中油气所占孔隙的相对体积。
含水饱和度Sw:孔隙中水所占孔隙的相对体积。
含油气饱和度与含水饱和度之和为1.测井中饱和度的概念:1.原状地层的含烃饱和度Sh=1-Sw。
2.冲洗带残余烃饱和度:Shr =1-Sxo (Sxo表示冲洗带含水饱和度)。
3.可动油(烃)饱和度Smo=Sxo-Sw或Smo =Sh-Shr。
4.束缚水饱和度Swi与残余水饱和度Swr成正比。
泥质含量:泥质体积与地层体积的百分比。
矿化度:溶液含盐的浓度。
溶质重量与溶液重量之比。
2. 各测井曲线的介绍:SP 曲线特征:1.泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。
2.最大静自然电位SSP:均质巨厚的完全含水的纯砂层的自然电位读数与泥岩基线读数差。
3.比例尺:SP曲线的图头上标有的线性比例,用于计算非泥岩层与泥岩基线间的自然电位差。
4.异常:指相对泥岩基线而言,渗透性地层的SP曲线位置。
1、井中自然电位产生的机制有哪些?2、以砂泥岩剖面为例,当泥浆电阻率大于地层水电阻率时,绘制井中自然电动势及其等效电路图,并说明自然电位测井幅值的计算公式。
3、影响自然电位曲线的七种因素有哪些?4、自然电位曲线有哪方面的应用?5、简述利用自然电位曲线计算地层水电阻率的4个步骤6、什么是泥岩基线?1、简述普通电阻率测井的原理?什么是视电阻率(包括视电阻率的计算公式)?2、什么是电极系?什么是电位电极系和梯度电极系?3、解释电位电极系、梯度电极系测井曲线的变化特征,分析影响视电阻率测井曲线的因素1、什么是微电极系测井的正幅度差?简述微电极系测井的应用?侧向测井的应用条件(即产生的背景)?双侧向电阻率测井电极系的结构及其测量原理?微球聚焦电阻率测井电极系的结构及其测量原理?如何利用微球聚焦测井与双侧向测井快速判断油气水层?视电阻率、探测深度的概念?几何因子(单元环,径向,纵向)绘图并说明感应测井的原理感应测井是在什么样的生产需求下产生与发展的感应测井仪器为什么采用多线圈系1、声波时差测井的原理,声波时差测井测量的物理量是什么?2、声波时差测井下井仪器的三个组成部分?3、声波补偿测量消除井径变化和仪器倾斜影响的原理是什么?4、什么是“周波跳跃”?5、地层厚度对声波测井的影响结果如何?6、声波时差测井的应用?1.岩石天然放射性是什么原因造成的?为什么和泥质有密切关系?2.自然伽马测井的原理及探测什么参数?3.闪烁计数管探测射线的原理?4.自然伽马曲线有什么特征?如何改善曲线形状?5.自然伽玛测井的应用?它在地层对比中的优势?6. 概念:同位素放射性同位素α、β、γ射线统计涨落γ射线与物质的三种作用是什么?什么是岩石电子密度、岩石的视密度简述密度测井基本原理补偿密度测井原理如何利用密度测井确定地层的孔隙度?1 中子与地层物质发生的作用有哪些2 根据能量可以将中子分为哪几类?3 在地层中,什么元素是快中子的最好减速剂?4 什么元素是热中子的最好的吸收剂?5 井壁超热中子测井(SNP)的基本原理?6 SNP测井的应用?7 如何利用中子-密度交会图确定地层的孔隙度?8 补偿中子测井的原理?9 补偿中子测井的探测深度与地层含氢量的定性关系?10 补偿中子测井的应用?井径测井的应用地层倾角测井能够测量的九条曲线简述利用地层倾角测井资料得到层面倾角与倾向的过程有哪些地层倾角测井成果的图示方法地层倾角测井矢量图的模式在哪些?地层倾角测井矢量图在构造研究中的应用?已知超热中子测井石灰岩孔隙度和密度测井的体积密度值,就可用图版确定孔隙度与岩性。
测井测井是记录钻入地壳的一口井中岩石或流体混合物不同的物理、化学、电子或其他性质的过程。
感应测井是利用电磁感应原理来研究地层电层电阻率的一种测井方法。
电阻率测井法都需要井内有导电的液体,使供电电极电流通过它进入地层,在井内形成直流电场。
然后测量井轴上的电位分布,求出地层电阻率。
这些方法只能用于导电性能好的泥浆中。
为了获得地层的原始含油饱和度,需要在个别的井中使用油基泥浆,在这样的条件下,井内无导电性介质,就不能使用普通电阻率测井方法。
感应测井就是为了解决测量油基泥浆电阻率的需要而产生的,它也能用于淡水泥浆的井中,在一定条件下,它比普通电阻率测井法优越,受高阻临层影响小、对低电阻率地层反应灵敏。
感应测井和普通电阻率测井一样记录的是一条随深度变化的视电导率曲线,也可同时记录出视电阻率变化曲线。
侧向测井是利用聚焦电流测量地层电阻率的一种测井方法。
在地层厚度较大,地层电阻率与泥浆电阻率相差不太悬殊的情况下,可以用普通电极系的横向测井,能比较准确地求出地层电阻率。
但是在地层较薄且电阻率很高,或者在盐水泥桨的条件下由于泥浆电阻率很低,使供电电极流出的电流,大部分都由井内和围岩中流过,流入测量层内的电流很少,因此测量的视电阻率曲线变化平缓,不能用来划分地层,判断岩性。
为了解决这些问题,创造了带有聚焦电极的侧向测井。
他是在主电极两侧加有同极性的屏蔽电极,把主电极发出的电流聚焦成一定厚度的平板状电流束,沿垂直于井轴方向进入地层,使井的分流作用和围岩的影响大大减小。
实践证明,侧向测井在高电阻率薄层和高矿化度泥浆的井中,比普通电阻率测井曲线变化明显。
测井系列的选择1.三侧向、七侧向、双侧向、感应测井等电阻率测井法的特点是采用了聚焦原理来加大探测深度,减小井、围岩、侵入带的影响,以便求准地层电阻率。
根据需要选用一种或两种方法。
常用深浅组合的方法,将测量的曲线进行重叠比较,可以研究储集层径向电阻率的变化,判断油气水层。
2.孔隙度测井如中子测井、密度测井、声波测井,可以定量的确定地层岩性和孔隙度。
测井知识点总结一、测井的概念测井是指利用测井仪器和设备,通过测量井底岩层岩石和流体的性质,为油气勘探和开发提供地层信息的一种技术。
测井是一种地球物理和地质学的交叉学科,是油气勘探开发中的重要技术手段。
二、测井的作用1.评价储层性质:通过测井可以了解地层的岩石类型、孔隙度、渗透率等参数,帮助确定储层的物性特征,为油气储集层的评价提供数据支持。
2.确定油藏参数:通过测井可以确定油藏的含油饱和度、油层厚度、垂向展布和孔隙结构,为油田的储量估算和开发方案提供依据。
3.指导井位设计:测井可以确定地层的性质和构造,为井位的设计和钻井方案的制定提供依据。
4.优化井筒完井设计:通过测井可以了解井下岩性的变化和油层的特征,指导井筒完井设计,选择合适的生产层位和工程措施,提高油井的生产效率。
5.监测油气层动态:测井可以监测井底岩层的性质和变化,及时了解油气层的动态变化情况,指导油气开发策略。
6.保证油井安全:通过对井下岩层进行测量,可以了解地质构造、地应力状态、孔隙稳定性等情况,确保钻井安全。
三、常见的测井工具和方法1.自然伽马测井:自然伽马测井是利用地下岩石放射性元素自然辐射的特性,通过测量自然伽马射线的能量和强度,了解岩石的密度和成分,判断岩石类型和含油气性质。
2.电测井:电测井是利用钻井井筒和地层的电性差异,通过测量井底岩层对电流的导电、电阻、介电等特性参数,推断地层的电性特征、含水饱和度和孔隙度等信息。
3.声波测井:声波测井是利用声波在地层中的传播特性,通过测量声波波速和波幅的变化,推断地层的孔隙度、渗透率、孔隙结构和成岩环境等信息。
4.核磁共振测井:核磁共振测井是利用核磁共振技术,通过测量原子核在地层中的共振信号,获得储层的渗透率、孔隙度、岩石类型等参数。
5.测井解释方法:根据测井资料的性质、特点和目标,采用各种物理、地质和数学方法,对测井资料进行综合解释和处理,得出地层的物性参数和岩性解释结果。
6.测井井筒完整性检测方法:针对井筒完整性的要求,包括封隔壁、封堵操作、水泥防漏、井下环序装置,钻进模式,测井系统等方面,研究井筒完整性检查方法、工具及其应用。
测井基础知识汇总什么是测井:测井是记录钻入地幔的一口井中岩石或流体混合物不同的物理、化学、电子或其他性质的过程。
一次测井是一次行程的记录,类似于一条航船的航海日志。
在这种情况下,航船是某种类型的一支测仪器,而行程是下入和取出井眼的过程。
测井能够测量的一些性质有:1)岩石的电子密度(岩石重量的函数);2)岩石的声波传播时间(岩石的压缩技术的函数);3)井眼不同距离处岩石的电阻率(岩石含水量的函数);4)中子吸收率(岩石含氢量的函数);5)岩石或井液界面的自然电位(在岩石或井眼中水的函数);6)在岩石中钻的井眼大小;7)井眼中流体流量与密度;8)与岩石或井眼环境有关的其它性质。
生产测井:在套管井或油气水井中,测量地层参数,产出剖面,注入剖面及井下技术状况和措施效果检查的测井。
产出剖面测井:在油气井生产过程中,了解每个小层或层段的产出量及产出物质性质变化的测井。
注入剖面测井:在注入井的正常注入过程中,了解每个层段或小层的吸入状况的测井。
工程测井:了解井下管柱深度,检查作业效果,检查井下技术状况和套管状况的测井。
时间推移测井:对油水井需要解决的问题,用一种或几种测井方法,有计划的定期监测,随着时间的推移不断积累资料,以掌握其变化规。
这种有计划的定期监测测井称为时间推移测井。
气顶观测:在气顶油田,为了掌握气顶变化情况,指导油田开发,有计划的定期对气顶进行监测,根据不同时期的资料,掌握气顶运行规的测井。
放射性校深:油水井各项作业中,发现地层深度有误时,利用中子咖玛或自然咖玛等测井资料确定的地层深度去校正原来的地层深度为放射性校深。
过环空测井:通过油管与套管的环形空间,起下测井仪器,在套管内录取各种参数的测井称为过环空测井。
流量:单位时间内流过管道横截面的流体量。
当用流体流过的体积与时间之比来表示流量时称为体积流量,当用流体流过的质量与时间之比来表示流量时称为质量流量。
两相流:在管道内有两相物质相互混合一起流动时称为两相流。
测井学基础知识第一章 普通电阻率测井普通电阻率测井是地球物理测井中最基本最常用的测井方法,它根据岩石导电性的差别,测量地层的电阻率,在井内研究钻井地质剖面。
岩石电阻率与岩性、储油物性、和含油性有着密切的关系。
普通电阻率测井主要任务是根据测量的岩层电阻率,来判断岩性,划分油气水曾研究储集层的含油性渗透性,和孔隙度。
普通电阻率测井包括梯度电极系、电位电极系微电极测井。
本章先简要讨论岩石电阻率的影响因素,然后介绍电阻率测井的基本原理,曲线特点及应用。
第一节 岩石电阻率与岩性储油物性和含油物性的关系各种岩石具有不同的导电能力,岩石的导电能力可用电阻率来表示。
由物理学可知,对均匀材料的导体其电阻率为:SL R r = 其中L :导体长度,S :导体的横截面积,R :电阻率仅与材料性质有关由上式可以看出,导体的电阻不仅和导体的材料有关,而且和导体的长度、横截面积有关。
从研究倒替性质的角度来说,测量电阻这个物理量显然是不确切的,因此电阻率测井方法测量的是地层的电阻率,而不是电阻。
下面分别讨论一下影响岩石电阻率的各种因素:一 岩石电阻率与岩石的关系按导电机理的不同,岩石可分成两大类,离子导电的岩石很电子导电的岩石,前者主要靠连同孔隙中所含的溶液的正负离子导电;后者靠组成岩石颗粒本身的自由电子导电。
对于离子导电的岩石,其电阻率的大小主要取决于岩石孔隙中所含溶液的性质,溶液的浓度和含量等(如砂岩、页岩等),虽然其造岩矿物的自由电子也可以传导电流,但相对于离子导电来说是次要的,因此沉积岩主要靠离子导电,其电阻率比较底。
对于电子导电的岩石,其电阻率主要由所含导电矿物的性质和含量来决定。
大部分火成岩(如玄武岩、花岗岩等)非常致密坚硬不含地层水,主要靠造岩矿物中少量的自由电子导电,所以电阻率都很高。
如果火成岩含有较多的金属矿物,由于金属矿物自由电子很多,这种火成岩电阻率就比较底。
二 岩石电阻率与地层水性质的关系沉积岩电阻率主要由孔隙溶液(即地层水)的电阻率决定,所以研究沉积岩的电阻率必须首先研究影响地层水电阻率的因素。
测井介绍第一节引言1927年发明测井时,法国人把它译为Carottage eletrigue,其意为"电取心",它相当准确地描述了这种地球物理勘探方法。
有少数人直译为“在井内用测量装置记录所穿过的地层的特性”。
但是,测井对不同人有不同的用途,对于地质学家来说,测井主要是一种地下勘探的绘图技术;对岩石物理学家来说,测井是评价储层油气生产潜力的一种方法;对地球物理学家来说,测井是地面地震分析的一种补充资料。
对于测井工程师来说,测井可能仅仅为模拟应用提供数值。
测井的最初应用,是按电导率曲线形态进行逐井地层对比,有时可以越过大的距离。
由于测量方法的改井和增多,测井的应用开始趋向于定量评价油气层。
下面大部分内容将主要说明在地层评价中发展起来的测量装置和解释方法。
虽然测井是由石油工业为评价油气聚集的特殊需要发展起来的,但是,它和地学家感兴趣的其它许多领域有关。
为了地下绘图而发展起来的新的有用的测量可用于绘制构造图、油藏描述和沉积识别。
另外它还可用来识别裂缝或提供地层的矿物组成。
在讨论这些应用之前,先详细分析测量原理。
在这个过程中,测井被看成是需要许多学科的综合体,例如物理学、化学、电化学、地球化学、声学和地质学。
本章将按照传统方法讨论测井油气层评价中应用,描述与岩石物理参数有关的各种物理测量,我们从描述测井过程开始,提供一个必须测量的理想试验环境。
第二节测井是什么测井过程包括许多组成部分。
我们的主要兴趣是测量装置或探测器。
为了满足各种资料的要求和任务,目前不同类型的测井仪器已超过五十余种,其中一些是无源的测量装置,而另一些是对所穿过的地层产生一些影响的有源装置。
它们的测量结果通过特制的铠装点缆传送至地面,叫做电缆测井。
后面的大部分章节讲述测量探测器的基本原理,没有更多地涉及实际仪器的细节,只对探测器的结构作一般性叙述。
所有探测器从外形上来看相互类似,一般呈圆柱装置,直径为4in或更小,以便适应在直径小于6in的井眼中测量。
淡水泥浆通常是指18℃时泥浆电阻率大于0.5Ω·m的泥浆。
而咸水泥浆则是指18℃时泥浆电阻率小于0.5Ω·m的泥浆。
2、钻井液的性能钻井液的性能常用密度、粘度、含砂量、失水量、泥饼厚度、矿化度、钻井液切力等指标来衡量。
(1)钻井液密度:是指20℃是每立方厘米钻井液的质量。
单位是克/厘米3。
(2)钻井液粘度:是指一定量的钻井液通过一定的流程所需的时间。
单位是Pa•s。
它代表了钻井液流动时的粘滞程度。
(3)钻井液含砂量:是指钻井液中所含直径大于0.05mm的砂子体积占钻井液总体积的百分数。
(4)钻井液失水量:是指钻井液中的水渗入地层的多少,单位是毫升。
它表示了钻井液中的水渗入地层的能力。
(5)泥饼厚度:钻井液在失水时形成的附着于井壁的固相物叫泥饼。
其厚度的大小就是泥饼的厚度,单位是毫米。
泥饼厚度的大小对测井的安全施工及测井资料的质量都会造成很大影响(6)钻井液矿化度:是指钻井液中所含氯化物的数量。
单位是毫克/升。
钻井液矿化度的高低决定了钻井液的导电性能,矿化度高的钻井液导电性能好,钻井液电阻率就低;反之导电性能差,电阻率高。
(7)钻井液切力:使钻井液由静止到开始流动时,作用在单位面积上的力。
单位是毫克/平方厘米。
它表示了钻井液静止时防止岩屑下沉的能力。
为保证测井施工安全顺利地进行,一般对钻井液有如下要求:(1)测井前,钻井液应充分循环并调整好钻井液性能,同时尽量保证测井全井段钻井液矿化度基本一致。
(2)要求钻井液粘度不宜过大,通常要求钻井液粘度小于90Pa•s。
因为粘度太大,将使井壁粘附较多的钻屑,导致井壁太脏,造成仪器下放遇阻,上提时电缆、仪器粘卡。
(3)钻井液厚度一般应小于1.5mm。
(4)钻井液失水量一般应小于5ml。
(5)钻井液含砂量小于2%。
(6)钻井液电阻率1~5Ω•m较为适宜。