弹塑性力学应力分析
- 格式:ppt
- 大小:2.07 MB
- 文档页数:28
弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。
2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。
一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。
3.体积力:作用在物体每一点的外力。
比如每一点都有的重力。
4.面力:作用在物体表面的外力。
比如水给大坝表面的压力。
5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。
物体表面的任一点的应力和该点的面力是相同的大小和方向。
6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。
直角坐标下的方程形式上简单,其它坐标的复杂些。
7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。
8.位移:分析一点:一点变形前后的位置差值。
变形体研究的位移是该点空间位置的连续函数。
9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。
直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。
10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。
直角坐标下的方程形式上简单,其它坐标的复杂些。
11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。
12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。
13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。
第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。
这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。
本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。
弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。
本章学习的困难是应力函数的确定。
虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。
这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。
二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。
§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。
平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。
这种弹性体的位移将发生在横截面内,可以简化为二维问题。
根据平面应变问题定义,可以确定问题的基本未知量和基本方程。
对于应力解法,基本方程简化为平衡微分方程和变形协调方程。
学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
如何在工程力学中处理弹塑性问题?在工程力学领域,弹塑性问题是一个至关重要且复杂的研究方向。
弹塑性力学主要用于分析材料在受力过程中,从弹性阶段到塑性阶段的变形和应力分布规律,这对于确保工程结构的安全性和可靠性具有极其重要的意义。
要理解如何处理弹塑性问题,首先得清楚弹性和塑性的基本概念。
弹性阶段,材料在受到外力作用时会发生变形,一旦外力消失,材料能够完全恢复其原来的形状和尺寸,这种变形是可逆的。
而塑性阶段,材料在受力超过一定限度后,产生的变形即使外力去除也不能完全恢复,会留下永久的变形。
在实际工程中,很多材料都表现出弹塑性的特性,比如金属材料。
当对这类材料进行加工或者构建结构时,就需要准确地处理弹塑性问题,以预测其在不同载荷条件下的行为。
处理弹塑性问题的第一步是建立合适的本构模型。
本构模型用于描述材料的应力应变关系,它是分析弹塑性问题的基础。
常见的本构模型包括理想弹塑性模型、线性强化弹塑性模型和非线性强化弹塑性模型等。
选择合适的本构模型取决于材料的性质、加载条件以及分析的精度要求。
在建立本构模型之后,就需要运用相应的数学方法来求解弹塑性问题。
有限元法是目前广泛应用的一种数值方法。
它将连续的物体离散化为有限个单元,通过对每个单元的分析,最终得到整个物体的应力和应变分布。
在有限元分析中,需要合理地划分网格,选择合适的单元类型,并确定边界条件和加载方式。
边界条件的确定在处理弹塑性问题中也非常关键。
边界条件包括位移边界条件和力边界条件。
位移边界条件规定了物体某些点的位移,而力边界条件则规定了物体某些表面所受到的力。
正确地设定边界条件能够使分析结果更符合实际情况。
加载方式同样会影响弹塑性问题的分析结果。
加载可以是静载、动载或者循环加载等。
不同的加载方式会导致材料的响应不同,因此在分析时需要根据实际情况准确地模拟加载过程。
在处理弹塑性问题时,还需要考虑材料的各向异性。
很多材料在不同方向上具有不同的力学性能,这就需要在本构模型和分析中考虑这种各向异性的特点。
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。