三角形相似判定定理的内容
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
相似三角形的判定定理是什么
1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。
2、所有等腰直角三角形相似,所有的等边三角形都相似。
3、一条直角边与斜边成比例的两个直角三角形相似。
4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。
5、三边对应平行的两个三角形相似。
扩展资料
相似三角形的性质
1、相似三角形的'对应角相等
2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;
3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。
相似三角形判定定理的证明核心知识相似三角形是几何学中一个重要的概念,涉及到角度、比率以及几何图形的比例关系。
掌握相似三角形的判定定理及其证明,是深入学习几何学和解决几何问题的基础。
本文将从相似三角形判定定理的基本理论出发,探讨其证明过程中的核心知识和技巧。
一、相似三角形的定义在几何学中,如果两个三角形的对应角相等,并且对应边的比率相等,那么这两个三角形被称为相似三角形。
用数学语言表述,即:三角形ABC与三角形DEF相似(记作△ABC ∼ △DEF),当且仅当角A = 角D,角B = 角E,角C = 角F,并且AB/DE = BC/EF = AC/DF。
二、相似三角形的判定定理角角(AA)判定定理如果两个三角形的两个角分别相等,那么这两个三角形是相似的。
证明核心知识:角相等性:两角相等是三角形相似的充要条件之一。
利用角的和为180度的性质,如果两角分别相等,那么第三个角也必然相等。
相似三角形的边比性质:通过角角判定定理可以直接推导出对应边的比率相等。
边角边(SAS)判定定理如果两个三角形的两边的比率相等,并且夹角相等,则这两个三角形是相似的。
证明核心知识:边比与夹角:利用相似三角形中夹角的性质,可以证明两三角形的边比相等是它们相似的充分条件。
三角形的全等性:通过证明三角形的两边比率相等并且夹角相等,进一步确定了三角形的相似关系。
边边边(SSS)判定定理如果两个三角形的三边的比率分别相等,那么这两个三角形是相似的。
证明核心知识:边比的相等性:边边边定理通过对比三角形的三边比率的相等性,利用相似三角形的比例性质进行证明。
比率恒等性:三边比率相等可以导出三角形的角度关系,继而说明两个三角形的相似性。
三、证明相似三角形的基本方法角相等的证明方法角角判定定理的证明一般包括两个步骤:证明两个角相等,然后利用三角形内角和为180度的性质推导出第三个角的相等性。
证明过程中常用的方法包括:角对角对比:利用已知条件或外部角定理证明两个角相等。
三角形相似的判定定理相似三角形是高中数学中一个重要的概念,它指的是具有相同形状但可能不同大小的三角形。
判定两个三角形是否相似是数学学习中的一个关键问题。
在本文中,我们将介绍三角形相似的判定定理,帮助读者更好地理解这一概念。
什么是三角形相似在几何学中,两个三角形被称为相似三角形,如果它们的三个对应角相等,或者它们的三条边成比例。
具体来说,如果两个三角形的对应角全部相等,则这两个三角形为全等三角形;如果两个三角形的对应角不全等,但三个对应边的长度成比例,则这两个三角形为相似三角形。
相似三角形之间的对应边之比称为这两个三角形的相似比例。
相似的判定定理判定两个三角形是否相似有一些定理可以帮助我们做出判断。
以下是几条常用的相似判定定理:AA 相似判定定理定理描述:如果两个三角形的两个对应角分别相等,则这两个三角形相似。
详细说明:如果三角形 ABC 和三角形 DEF 中,∠A = ∠D 且∠B = ∠E,那么这两个三角形相似。
这个定理也被称为角-角相似判定定理。
SSS 相似判定定理定理描述:如果两个三角形的三条对应边成比例,则这两个三角形相似。
详细说明:如果三角形 ABC 和三角形 DEF 中,AB/DE = BC/EF = AC/DF,那么这两个三角形相似。
这个定理也被称为边-边-边相似判定定理。
SAS 相似判定定理定理描述:如果两个三角形的一个角相等,两个对边成比例,则这两个三角形相似。
详细说明:如果三角形 ABC 和三角形 DEF 中,∠A = ∠D 且 AB/DE = AC/DF,那么这两个三角形相似。
这个定理也被称为边-角-边相似判定定理。
总结通过学习三角形相似的判定定理,我们可以更好地理解相似三角形的性质,对解决几何学中的一些问题有所帮助。
在实际问题中,利用相似三角形的性质可以简化计算,快速求解各种几何问题。
因此,掌握相似三角形的判定定理是数学学习中的一个重要内容。
希望本文能够帮助读者更深入地理解三角形相似的概念,掌握判定相似三角形的方法,从而在数学学习中取得更好的成绩。
相似三角形的判定定理
近些年来,相似三角形的判定定理开始备受话题,它是几何学中的重要理论,故本文专门针对这一定理进行深入论述。
相似三角形是指含有相同角度的三角形,也就是两个三角形的外角相等。
而当两个三角形中腰边的比例相等时,则可以推出这两个三角形相似的定理,这就是相似三角形的判定定理。
该定理实质是:设三角形ABC有三边分别为a,b,c ,它的三个内角分别为A,B,C;另三角形A'B'C'具有相同角度,其边长分别为a',b',c';那么当两个三角形有相同比
例时,则能断定这两个三角形是相似的,比例值即为a:a’=b:b’=c:c’。
相似三角形的判定定理在数学中有着广泛的应用,它可以用于解决在构图(geometric figures)、测量、研究面积以及体积计算等技术问题。
通过相似三角
形的判定,我们可以求解许多深度抽象的数学难题,例如计算海岸环形多边形的面积和体积等。
另外,该定理在投影映射,图象的缩放,等值面等地理学方面开展研究始终备受关注,它可以帮助我们解决日常生活中实用问题。
至此,相似三角形的判定定理不仅可以解决知识结构种类繁多的数学问题,而且在严谨思维,统筹拳头等方面也起到了重要作用,值得大家深入研究学习,尤其是数学爱好者更应急加重视,以解读聪明机械背后的奥秘。
三角形相似的判定方法
判断两个三角形是否相似,可以使用以下方法:
1. AA相似定理:如果两个三角形的两个角相等,则这两个三角形相似。
2. SSS相似定理:如果两个三角形的对应边的比值相等,则这两个三角形相似。
3. SAS相似定理:如果两个三角形的一个角相等,并且一个对应边的比值相等,则这两个三角形相似。
4. SAA相似定理:如果两个三角形的一个角相等,并且两个对应边的比值相等,则这两个三角形相似。
要注意的是,相似三角形的顶点顺序可以是任意的,只要相应的对应边和角是相等的即可。
三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。
二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。
相似三角形判定定理的证明核心知识首先,我们来看一下相似三角形的定义。
两个三角形ABC和DEF是相似的,当且仅当它们的对应角度相等,并且对应边的比值相等。
数学符号表示为:∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=BC/EF=AC/DF。
现在,我们来证明相似三角形的判定定理。
相似三角形判定定理分为三种情况,即AAA(角-角-角)判定定理、AA(角-角)判定定理和SSS(边-边-边)判定定理。
接下来,我们将分别对这三种情况进行证明。
首先,我们证明AAA判定定理。
假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。
我们假设∠A=∠D,∠B=∠E,∠C=∠F,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。
根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。
通过计算可以得到AB/DE=BC/EF=AC/DF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AAA判定定理。
接下来,我们证明AA判定定理。
假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。
我们假设∠A=∠D,∠B=∠E,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。
首先,我们可以得到∠C=180°-∠A-∠B,∠F=180°-∠D-∠E。
然后,根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。
通过计算可以得到AB/DE=BC/EF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AA判定定理。
最后,我们证明SSS判定定理。
假设有两个三角形ABC和DEF,它们的对应边分别为AB、BC、AC和DE、EF、DF。
我们假设AB/DE=BC/EF=AC/DF,要证明这两个三角形是相似的,我们需要证明它们的对应角度相等。
根据余弦定理和正弦定理,我们可以得到三角形的角度与边长的关系。