遥感地学应用04 水体和海洋遥感.
- 格式:ppt
- 大小:2.69 MB
- 文档页数:47
1. 狭义广义遥感狭义遥感:主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
(利用电磁波进行遥感)广义遥感:利用仪器设备从远处获得被测物体的电磁波辐射特征(光,热),力场特征(重力、磁力)和机械波特征(声,地震),据此识别物体。
(除电磁波外,还包括对电磁场、力场、机械波等的探测)两者探测手段不一样2. 遥感技术系统信息源-信息获取-信息纪录和传输-信息处理信息应用3. 遥感的分类(1)按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等(2)按照传感器工作方式分类:主动遥感、被动遥感4. 遥感的应用内容上可概括:资源调查与应用、环境监测评价、区域分析规划、全球宏观研究5. 海洋遥感的意义(1)海洋气候环境监测的需要海洋占全球面积约71%,海洋是全球气候环境变化系统中不可分割的重要部分厄尔尼诺、拉尼娜、热带气旋、大洋涡流、上升流、海冰等现象都与海洋密切相关。
厄尔尼诺是热带大气和海洋相互作用的产物,它原是指赤道海面的一种异常增温,现在其定义为在全球范围内,海气相互作用下造成的气候异常。
(2)海洋资源调查的需要海洋是人类最大的资源宝库,是全球生命支持系统的基本组成部分,海洋资源的重要性促使人们采用各种手段对其进行调查研究海岸带是人类赖以生存和进行生产活动的重要场所,海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要(3)海洋遥感在海洋研究中的重要性海洋遥感具有大范围、实时同步、全天时、全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律。
它是20 世纪后期海洋科学取得重大进展的关键学科之一。
重要性体现在:是海洋科学的一个新的分支学科;为海洋观测和研究提供了一个崭新的数据集,并开辟了新的考虑问题的视角;多传感器资料可推动海洋科学交叉学科研究的发展1. 海洋遥感的概念(重点)、研究内容海洋遥感:指以海洋及海岸带作为监测、研究对象,利用电磁波与大气和海洋的相互作用原理来观测和研究海洋的遥感技术。
海洋遥感在海洋资源勘探中的作用如何关键信息项:1、海洋遥感技术的定义和分类定义:____________________________分类:____________________________2、海洋资源勘探的目标和范围目标:____________________________范围:____________________________3、海洋遥感在海洋资源勘探中的具体应用应用领域 1:____________________________应用领域 2:____________________________应用领域 3:____________________________4、海洋遥感技术的优势优势 1:____________________________优势 2:____________________________优势 3:____________________________5、海洋遥感技术的局限性局限性 1:____________________________局限性 2:____________________________局限性 3:____________________________6、应对海洋遥感技术局限性的措施措施 1:____________________________措施 2:____________________________措施 3:____________________________7、海洋遥感技术在未来海洋资源勘探中的发展趋势趋势 1:____________________________趋势 2:____________________________趋势 3:____________________________11 海洋遥感技术的定义和分类海洋遥感技术是指利用传感器对海洋表面和海洋内部的物理、化学、生物等参数进行非接触式测量和监测的技术手段。
遥感技术在海洋研究中的应用与发展在当今科技飞速发展的时代,遥感技术如同一位“千里眼”,为我们揭开了海洋神秘面纱的一角。
海洋,占据了地球表面约 71%的面积,是地球上最大的生态系统之一,也是人类尚未完全了解的领域。
遥感技术的出现,为海洋研究带来了前所未有的机遇和突破。
遥感技术,简单来说,就是通过非接触式的手段获取远距离目标的信息。
在海洋研究中,它主要依靠卫星、飞机、船舶等搭载的传感器,收集海洋的各种数据。
这些数据包括海洋表面的温度、盐度、海流、海浪、海冰等物理参数,以及海洋中的叶绿素浓度、悬浮颗粒物等生物和化学参数。
海洋表面温度是海洋研究中的一个重要参数。
遥感技术可以通过热红外传感器,大范围、高频率地监测海洋表面温度的分布和变化。
这对于了解海洋环流、海气相互作用以及气候变化等具有重要意义。
例如,厄尔尼诺和拉尼娜现象与海洋表面温度的异常变化密切相关。
通过遥感技术对海洋表面温度的长期监测,我们能够提前预测这些气候现象的发生,为农业生产、渔业捕捞等活动提供重要的参考依据。
海流是海洋中的“高速公路”,对全球的物质和能量输送起着关键作用。
遥感技术中的微波传感器可以测量海面的高度变化,从而推算出海流的速度和方向。
这有助于我们更好地理解海洋中的物质循环、渔场的形成以及污染物的扩散等过程。
此外,遥感技术还可以监测海浪的高度、周期和方向等信息。
这对于海上航行安全、港口建设以及海洋工程的设计都具有重要的价值。
在海洋生态研究方面,遥感技术也发挥着不可或缺的作用。
叶绿素浓度是衡量海洋初级生产力的重要指标。
通过光学传感器,可以获取海洋中叶绿素浓度的分布情况,从而了解海洋中浮游植物的生长状况。
浮游植物是海洋食物链的基础,它们的数量和分布直接影响着海洋生态系统的结构和功能。
此外,遥感技术还可以监测海洋中的悬浮颗粒物,这些颗粒物不仅反映了海洋中的泥沙运输和沉积过程,还与海洋的水质和生态环境密切相关。
海冰是极地海洋的重要组成部分。
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球外表的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然〔陆地海洋火山〕;人为〔汽车尾气、污染物〕4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层结构简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比〔可见光、海色遥感〕:公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源〔植被,棕黄酸〕,海洋〔动物死亡分解〕9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
海洋遥感知识点总结本文将从海洋遥感技术的基本原理、常用遥感技术和海洋遥感的应用领域等方面进行详细的介绍,并结合一些实际案例,希望可以为读者对海洋遥感技术有一个更全面的了解。
一、海洋遥感技术的基本原理海洋遥感技术是通过传感器对海洋进行观测和测量,然后将获取到的数据传输到地面处理系统进行分析,从而得到关于海洋的信息。
传感器可以是搭载在卫星上的遥感仪器,也可以是在飞机、船只等平台上安装的探测设备。
遥感技术主要依靠电磁波在大气和海洋中的传播和反射特性来获取海洋信息。
具体而言,通过用不同波段的电磁波对目标进行监测和探测,再利用电磁波与目标反射或散射作用时的特性来获取目标物体的信息。
遥感技术主要包括被动遥感和主动遥感两种方式。
被动遥感是指通过接收目标物体所发出的自然辐射或反射的电磁波,比较常用的是太阳辐射。
而主动遥感是指通过发送特定频率的电磁波到目标物体上,然后将目标物体发射的辐射或反射返回的信号进行分析。
被动遥感和主动遥感一般配合使用,可以获取更加全面的目标物体信息。
二、常用的海洋遥感技术1. 被动微波遥感被动微波遥感是通过接收海洋表面微波辐射来获取海洋信息的一种遥感技术。
微波辐射可以在大气中穿透,因此即使在云层遮挡的情况下,也可以对海洋进行探测。
被动微波遥感技术可以用来测量海洋表面温度、海洋表面风速、盐度等信息,对海洋动力学和大气海洋相互作用研究有着重要的意义。
2. 被动光学遥感被动光学遥感是通过接收海洋表面反射的太阳光来获取海洋信息的一种遥感技术。
光学遥感可以测量海洋表面的叶绿素浓度、海水透明度、沉积物含量等信息,可以用于海洋生态系统监测和海洋污染监测等方面。
3. 合成孔径雷达遥感合成孔径雷达(SAR)是一种主动遥感技术,通过发送微波信号到海洋表面,然后接收被海洋表面物体反射的信号,来获取海洋表面的信息。
SAR可以用来监测海洋表面风场、海洋表面粗糙度、海洋污染等信息,对海上风暴预警、海洋污染监测等具有重要的应用价值。
基于遥感在海洋资源勘查中的应用
遥感是一种以卫星、飞机等空中平台进行观测和测量的技术手段,通过获取地表和物体表面的电磁能谱信息,可以实现对海洋资源的勘查和监测。
遥感在海洋资源勘查中的应用包括海洋水色遥感、海洋温度遥感、海洋色素遥感、海洋浮游植物遥感、海洋浮游动物遥感、海洋沉积物遥感等多个方面。
海洋水色遥感是通过测量和分析海洋水体的反射光谱和吸收特性,来获取海洋水质信息的技术。
利用遥感技术可以实时监测水体体积浓度、浊度、营养盐含量等参数,从而评估海洋水质的变化和污染程度,为海洋环境保护提供科学依据。
海洋温度遥感是通过测量海水的辐射热能,来获取海洋温度分布和变化的技术。
利用遥感技术可以实时获取海洋表面温度和垂直温度剖面,并结合大气热力学模型,预测海洋环流和海气相互作用等海洋动力学过程,为海洋资源的合理开发和利用提供支持。
海洋浮游植物遥感是通过测量海水中浮游植物的荧光辐射和散射特性,来获取海洋光合作用和生态系统功能的技术。
利用遥感技术可以实时监测海洋中浮游植物的生理状态和生长速率,评估海洋碳循环和气候变化的影响,为海洋资源的可持续利用提供决策依据。
遥感在海洋资源勘查中的应用具有广阔的发展前景,可以为海洋环境保护、海洋资源管理和海洋经济发展提供可靠的技术支持。
随着遥感技术和数据处理方法的不断改进和发展,相信在未来会有更多有效的遥感技术应用于海洋资源勘查中。
遥感技术在海洋中的应用海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。
随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。
所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。
在种种情况下,遥感技术应运而生。
1.遥感技术在海洋中应用的优越性与常规的海洋调查手段相比海洋遥感技术具有许多独特的优点:第一,它不受地理位置、天气和人为条件的限制,可以覆盖地理位置偏远、环境条件恶劣的海区及由于政治原因不能直接去进行常规调查的海区。
第二,卫星遥感能提供大面积的海面图像,每个像幅的覆盖面积达上千平方公里,对海洋资源普查、大面积测绘制图及污染监测都极为有利。
第三,卫星遥感能周期性地监视大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等。
第四,卫星遥感获取的海洋信息量非常大。
第五,能同步观测风、流、污染、海气相互作用和能量收支情况。
2.遥感技术在海洋中的应用2.1在海岸开发中的应用我国有1.8万公里海岸线,海岸带面积约35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12亿吨以上。
如果我们掌握了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。
利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。
这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。
2.2在海洋渔业中的应用卫星遥感信息可以用于渔场海洋环境研究,主要有:①水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己最适生存温度范围,而且随季节进行适温洄游。
气象卫星可提供大面积海面温度信息,为渔业生产服务。
②流隔研究:海洋中存在着不同的流系,不同流系之间存在着较大的温度梯度,成为流隔。