可确定隐函数的条件
- 格式:docx
- 大小:194.88 KB
- 文档页数:11
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法.(2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域 (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明 w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 22 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uvf y uw f z y22z uv f x vw f z x 22+yuw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z y z x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程222222)(z x y zy x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得 xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂=])(2[)(22222222222x y y f x y y x f z y y f yf z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂=])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂ z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=.即 222222)(z x y zy x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
第十八章 隐函数存在定理§1 隐函数存在定理引例:221x y y +=⇒=(1,0)U ∀±的点,不能显化,是使0y F =的点。
定理1 (一元隐函数存在定理)若(,)F x y 满足1)00(,)0F x y =;2)00{(,)|||,||}D x y x x a y y b =-≤-≤内(,)F x y 连续且连续偏导,y x F F ; 3)00(,)0y F x y ≠,则有i) 在00(,)x y 附近由(,)0F x y =唯一确定隐函数0(),(,)y f x x O x ρ=∈满足(,())0F x f x =,00()y f x =;ii) ()y f x =在0(,)x O x ρ∈连续; iii) ()y f x =在0(,)x O x ρ∈连续导数,且(,)(,)x y F x y dydx F x y =-。
证明 设0y F >1)存在性 由连续函数y F 保号性,在00{(,)|||,||}D x y x x a y y b =-≤-≤上(,)0y F x y >,在固定的0x ,0(,)F x y 在00[,]y y ββ-+↑(严格),又00(,)0F x y =,从而0000(,)0,(,)0F x y F x y ββ-<+>,由(,)F x y 连续,0ρ∃>,在00,x x x ρρ-<<+ 0y y β=+上0(,)0F x y β+>;在00,x x x ρρ-<<+0y y β=-上0(,)0F x y β-<。
对00(,)x x x ρρ∀∈-+,(,)F x y 是y 在00[,]y y ββ-+上连续函数,则0(,)0F x y β-<0(,)0F x y β+>,由零点定理,00(,)y y y ββ∃∈-+,使得(,)0F x y =,由0y F >知唯一,从而有0(),(,)y f x x O x ρ=∈满足(,())0F x f x =,00()y f x =; 2)连续性 设00(,)x x x ρρ∀∈-+,对0ε∀>,由(,)0(())F x y y f x ==知(,)0F x y ε-<,(,)0F x y ε+>,则由前面讨论可知,0(,)x O x ρ∈时相应的隐函数满足()(),f x y y εε∈-+,即|()()|f x f x ε-<,连续。
隐函数存在定理隐函数存在定理是微分学中的一个重要定理,用于判断一个方程是否存在隐函数。
隐函数存在定理有好几个版本,其中隐函数存在定理3是对多元函数的一个扩展。
该定理在数学分析、物理学和工程学等领域中有着广泛的应用。
函数的定义在介绍隐函数存在定理3之前,我们首先来了解一下函数的基本概念。
在数学中,函数可以简单地理解为对于给定的输入,给出一个唯一的输出。
函数可以用公式、图表或者描述性的文字来表示。
以y = f(x)为例,y表示函数的输出,x表示函数的输入,f表示函数的定义域和值域之间的对应关系。
函数的定义域是指所有可能的输入值的集合,值域是指所有可能的输出值的集合。
隐函数则是一种特殊的函数,其定义形式为F(x, y) = 0。
与显式函数不同,隐函数无法通过直接解出y来表示。
例如,对于方程x2+y2-1=0来说,我们无法直接解出y作为x的函数。
因此,我们需要通过隐函数存在定理来判断方程是否存在隐函数,并进一步求解该隐函数。
隐函数存在定理3隐函数存在定理3是对多元函数隐函数存在定理的一个扩展。
它给出了判断一个方程组是否存在隐函数的条件,以及如何求解这个隐函数。
具体而言,隐函数存在定理3可以表述为以下几点:1.假设有一个方程组G(x, y) = 0,其中G是从定义域D到值域R上的函数。
我们需要找到一对点(x0, y0)使得G(x0, y0) = 0,并且在该点的某个领域内,函数G满足一定的可微分条件(偏导数连续)。
这样的点(x0, y0)称为方程组的一个解。
2.假设方程组G(x, y) = 0满足某个可微分条件,函数G的偏导数连续,并且在(x0, y0)附近的一个矩形区域内满足Gx(x, y)≠ 0。
这意味着在该区域内,方程组可以被表示为y = f(x),其中f是一个函数。
3.如果上述条件满足,并且方程组G(x, y) = 0的任意两条曲线都不相交,那么在(x0, y0)附近存在一个函数f(x),满足方程组G(x, f(x)) = 0。
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法. (2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域Y (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x Y (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 2 2 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uv f y uw f z y22zuvf x vw f z x 22+y uw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z yz x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂= ])(2[)(22222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂= ])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=. 即 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
第十七章隐函数定理及其定理1隐函数一、隐函数的概念设E ur2,函数F:E-r2.如果存在集合|,JuE,对任何XGI,有惟一确定的yej,使得(x,y)GE,且满足方程F(x,y)=O,则称F(x,y)=O确定了一个定义在I上,值域含于J的隐函数.若把它记为y=f(x),xWI,yEJ,则有F(x,f(x))三0,xWI.注:由自变量的某个算式表示的函数称为显函数,如:y=x+l.二、隐函数存在性条件的分析隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线,「•要使隐函数存在,至少要存在点Po(x o,y o),使F(x o,yo)=O,y0=f(x0).要使隐函数y=f(x)在点P°连续,需F在点P°可微,且(Fx(Po),Fy(P°))TO,O),即曲面z=F(x,y)在点P。
存在切平面.要使隐函数y=f(x)(或x=g(y))在点P。
可微,则在F可微的假设下,通过F(x,y)=O在P°处对x求导,由链式法则得:Fx(P°)+Fy(P。
)字匚=0.dx当FyR)尹0时,可得字j=-耍2,同理,当V dxi F…(PJFx(Po)尹。
时,可得刑,『=-轶牛r x V r0/三、隐函数定理定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件:(1)F在以Po(x o,yo)为内点的某一区域DUR?上连续;(2)F(x°,yo)=O(通常称为初始条件);(3)F在D内存在连续的偏导数Fy(x,y);(4)Fygyo)尹0.则1、存在点的P。
某邻域U(P°)uD,在U(Po)上方程F(x,y)=O惟一地决定了一个定义在某区间(x0-a,x0+a)上的(隐)函数y=f(x),使得当xG(x0-a,x0+a)时,(x,f(x))e U(P0),且F(x,f(x))三0,y0=f(x0);2、f(x)在(Xo-a,xo+a)上连续.证:1、由条件⑷,不妨设F y(x o,y o)>O(若F y(x o,y o)<O,则讨论-F(x,y)=O).由条件⑶Fy在D上连续,及连续函数的局部保号性知,存在点Po的某一闭方邻域[x0-P,x0+p]x[y o-p,y o+p]<=D,使得在其上每一点都有Fy(x,y)>0.对每个固定的xE[Xo-B,xo+。
隐函数存在定理注: ∧P 读作P roof .定理1 设),(y x F 满足下列条件:i) x F ,y F 在D :a x x ≤-∧||,b y y ≤-∧||上连续; ii) 0),(=∧∧y x F (通常称为初始条件); iii) 0),(≠∧∧y x F y . 则有以下三个结论:(1)0>∃α, 使得在点),(∧∧∧y x P 的某一个邻域内, 方程0),(=y x F 唯一地确定了一个定义在区间),(αα+-∧∧x x 内的隐函数)(x f y =, 满足)(∧∧=x f y .换句话说, 存在定义在),(αα+-∧∧x x 内的函数)(x f y =, 满足0)](,[≡x f x F , 且)(∧∧=x f y ;(2))(x f y =在),(αα+-∧∧x x 上连续;(3))(x f y =在),(αα+-∧∧x x 上有连续的导数, 且),(),()(y x F y x F x f y x -='.定理2 设函数),,,,(21y x x x F n 满足下列条件:i) 偏导数),,2,1(n i F i x =和y F 在D :),,2,1(||n i a x x i i i =≤-∧,b y y ≤-∧||上连续, 其中0>b ,),,2,1(0n i a i =>;ii) 0),,,,(21=∧∧∧∧y x x x F n ; iii) 0),,,,(21≠∧∧∧∧y x x x F n y . 则有以下结论成立:(1)存在),,,(21∧∧∧∧n x x x Q 的一个邻域)(∧Q O , 使得在点),,,,(21∧∧∧∧∧y x x x P n 的某个邻域内, 方程0),,,,(21=y x x x F n 唯一地确定了一个定义在)(∧Q O 的n 元隐函数),,,(21n x x x f y =, 满足),,,(21∧∧∧∧=n x x x f y .换句话说, 存在函数),,,(21n x x x f y =,∈),,,(21n x x x )(∧Q O , 使得当∈),,,(21n x x x )(∧Q O 时,,,,,[21n x x x F ),,,(21n x x x f 0]≡,且),,,(21∧∧∧∧=n x x x f y ;(2)),,,(21n x x x f y =在)(∧Q O 内连续;(3)),,,(21n x x x f y =在)(∧Q O 内有连续的偏导数, 且n i y x x x F y x x x F f n x n x x i i i ,,2,1,),,,,(),,,,(2121 =-=.定理3 设函数),,,(v u y x F 和),,,(v u y x G 满足:i) 在点),,,(∧∧∧∧∧v u y x P 的某个邻域U 内, F ,G 对各变元均有一阶连续偏导数; ii) 0)(=∧P F ,0)(=∧P G (称为初始条件); iii) 0),(),(≠∂∂=∧∧PPv u G F J.则有以下结论成立:(1)在点∧P 的某个邻域U ⊂∆内, 方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 唯一地确定一组函数),(y x u u =,),(y x v v =,它们定义在),(∧∧y x 的某个邻域D 内, 当D y x ∈),(时,∆∈),,,(v u y x ,满足),(∧∧∧=y x u u ,),(∧∧∧=y x v v ,且D y x y x v y x u y x G y x v y x u y x F ∈⎩⎨⎧≡≡),(,0)],(),,(,,[,0)],(),,(,,[; (2)),(y x u u =及),(y x v v =在D 内连续;(3)),(y x u u =及),(y x v v =在D 内有关于x ,y 的偏导数, 且),(),(1v x G F J x u ∂∂-=∂∂, ),(),(1v y G F J y u ∂∂-=∂∂, ),(),(1x u G F J x v ∂∂-=∂∂, ),(),(1y u G F J y v ∂∂-=∂∂.定理4 设函数组),(y x u u =,),(y x v v =满足i) 在),(∧∧∧y x P 的某邻域D 内对x ,y 有连续偏导数; ii) ),(∧∧∧=y x u u ,),(∧∧∧=y x v v ; iii) 0),(),(≠∂∂=∧∧PPv u G F J.则在),(∧∧∧y x Q 的某邻域D '内存在唯一一组反函数),(v u x x =,),(v u y y =使得(1)),(∧∧∧=v u x x ,),(∧∧∧=v u y y ,且当D v u '∈),(时D y x ∈),(,有)],(),,([v u y v u x u u ≡, )],(),,([v u y v u x v v ≡;(2)),(v u x x =,),(v u y y =在D '内存在连续的一阶偏导数, 且y v J u x ∂∂=∂∂1, yu J v x ∂∂-=∂∂1, x v J u y ∂∂-=∂∂1, xu J v y ∂∂=∂∂1.推论1 在定理4的条件下有1),(),(),(),(=∂∂⋅∂∂y x v u v u y x .推论2 设函数组),(y x u u =,),(y x v v =在开集D 内有连续偏导数, 且在D 内),(),(y x v u ∂∂恒不为零, 则由函数组定义的映射)(:D T D T →的像集)(D T 是uv 平面上的开集.推论3 在推论2的条件下, 设D E ⊂是任一有界闭集, 则它的像集))()((D T E T ⊂也是有界闭集, 且E 的内点映射为)(E T 的内点, E 的边界点映射为)(E T 的边界点映射.定理5 设有n 个m n +元函数),,,,,,,(2121n m i y y y x x x F ),,2,1(n i =,满足i) 在点),,,,,,,(2121∧∧∧∧∧∧∧n m y y y x x x P 的某邻域U 内有对各变元的连续偏导数; ii) n i P F i ,,2,1,0)( ==∧; iii) .0),,,(),,,(2121≠∂∂=∧Pn n y y y F F F J则有以下结论成立:(1) 在∧P 的某邻域内, 方程组0),,,,,,(121=n m i y y x x x F ,n i ,,2,1 =,唯一地确定函数组),,,(21m i i x x x f y =,n i ,,2,1 =,它们定义在),,,(21∧∧∧m x x x 的某邻域D 内, 使得),,,(21∧∧∧∧=m i i x x x f y ,n i ,,2,1 =,且当D x x x m ∈),,,(21 时有恒等式0)],,,(,),,,,(,,,,[2121121≡m n m m i x x x f x x x f x x x F ;(2) 这组函数),,2,1(n i f i =在D 内连续;(3) 这组函数),,2,1(n i f i =在D 内对个变元有连续的偏导数, 且对j x ),,2,1(n j =的偏导数可由下面方程组解出:02211=∂∂∂∂++∂∂∂∂+∂∂∂∂+∂∂jn n i j i j i j i x fy F x f y F x f y F x F ),,2,1(n j =.。
隐函数存在定理几何解释
首先理解关于F(x,y)关于x的偏导数的几何意义:如下图所示:F(x,y)关于X的偏导数的空间几何意义: 首先将F(x,y)中的y固定为一点,通过该点,做平行于XoZ的平面(命名为A),A与空间曲面的交线是一条曲线,自变量是X,因变量是z; F(x,y)对X的偏导数的几何意义就是在一个确定的y上,Z随X的瞬间变化率;(即P点随着平面与曲面相交所形成的曲线向上或向下移动,y值不变,x值会变)
然后再来看一下F(x,y)关于Y的偏导数的几何意义;如下图所示:同样和关于X的偏导数一样的操作,使用平行于yOX 的平面去截取空间曲面,会得到一条自变量是Y,因变量是z的曲线,故F(x,y)关于y的偏导数的几何意义是固定一个x 后,z随y的瞬时变化率;(即P点随着平面与曲面相交所形成的曲线向上或向下移动,x值不变,y值会变)
首先z = F(x,y)描述的是一个空间曲面,则F(x,y) = 0 描述的是无论x 与y取任何值,z值都为0,因为F(x,y) = 0时,所以导致x与y之间存在某种对应关系y=f(x),即F(x,f(x))=0,该F(x,f(x))=0函数相当于用平行于XOY平面与z = F(x,y)空间曲面形成的曲线;如下图所示:相当于三维的图形压扁到二维平面里,对于函数 f(x,y)=x^2y-1 与方
程 x^2y-1=0 如下图所示:
该曲面在点P(蓝色点)处满足 F(x_0,y_0) = 0 ,且该点的关于y的偏导数不等于零(即:在空间曲面的p点的关于y的偏导数不等于零,
而不是平行于平面XOY的,高度为0的平面,截取空间曲面形成一个平面图形P点关于y的偏导数不等于零)
如果P点关于y的偏导等于零,意味随着y值的变化z值不变化,意味着F(x,y)是一个类似长方形或者是圆柱形这种平顶的三维图形,当y变化时,z值也不变化,才导致关于y的偏导数为零,如下图所示
为曲平面上的一个点与平面XOY相切,表示在空间曲面和平面XOY 相交形成的曲线方向上,p点的切线(上图红色的箭头)与Y轴平行,这样使得一个x对应了多个y,不符合函数的定义,也就是不能确定隐函数的存在,如下图所示:
严格数学证明
引例: x^2+y^2+1=0 是否存在隐函数?因为 x^2+y^2+1≥0
所以: y=-\sqrt{-1-x^2}、y=\sqrt{-1-x^2}
不成立,因为无解,无解则没有隐函数;对于 x^2+y^2-1=0 ,如下图所示;在A邻域范围内一个X对应唯一一个Y(因为Y的范围和X的范围已经固定了),而在C邻域内,一个X可以对应两个Y,所以在C 邻域范围不存在隐函数;隐函数存在定理是需要在某一邻域范围
下面给出隐函数存在条件和证明
定理:若函数 F(x,y) 满足
①:在 (x_0,y_0) 某一邻域内 F_{y}、F_{x} 连续;
②: F(x_0,y_0)=0
③: F_y(x_0,y_0)≠0
则有:
(1).在点(x_0,y_0) 某一邻域内方程F(x,y)确定一个隐函数 y=f(x) 即: F(x,f(x))=0 即: x∈(x_0-α,x_0+α) 时,存在 y_0=f(x_0)
(2).函数 F(x,y) 在 U(x_0) 邻域内连续
(3).函数 F(x,y) 在 U(x_0) 邻域内有连续导数,且 {dy \over dx}=-{F^{’}_x\over F^{’}_y} 成立
根据定理: F(x_0,y_0)=0 ,表示多元函数可以用y表示出来,例如: x^2-xy-1=0 可以表示为: y={{x^2-1}\over x} ,还要证明对于不同的x有唯一的y与之对应才能称为函数
隐函数存在与唯一性证明
由上图所示,在 P_0(x_0,y_0) 点由条件 F_y(x_0,y_0)≠0 ,不妨
设 F_y(x_0,y_0)>0 ,又因为 F_y 在 P_0(x_0,y_0) 邻域内连续,根据极限的局部保号性,故不妨设在此领域中 F_y(x,y)>0 ,可知三维曲面图形曲面与XOY平面随着Y值的增加z值而增加,随着Y值减小而Z值减小;所以函数 F(x,y) 关于Y严格递增;
在 P_0(x_0,y_0) 点为 z=F(x,y) 与平面XOY平面的交点,做平行于XOZ 平面与z=F(x,y)相交得到粉红色的曲线,这样可以观察X不变Y在变时
Z的值的变化,因为根据条件: F(x_0,y_0)=0 ,并且 F_y(x_0,y_0)>0 所以存在η>0
使得: F(x_0,y_0-η)<0,F(x_0,y_0+η)>0 函数值成立(注意: F(x_0,y_0-η) 不是 F_y(x_0,y_0-η)<0 )
因为在P_0(x_0,y_0) 点 F_{y}、F_{x} 连续,所以 F(x_0,y_0±η)
在x轴方向上连续因为在定点 x_0 处对于固定的y
存在: F(x_0,y_0-η)<0,F(x_0,y_0+η)>0
根据连续函数的局部保号性: \exists δ_1>0,\forall x∈(x_0-δ_1,x_0+δ_1),F(x,y_0-η)<0\\ \exists δ_2>0,\forall x∈(x_0-δ_2,x_0+δ
_2),F(x,y_0+η)>0\\
连续函数的局部保号性:对于连续函数f(x),若f(a)>0(或
f(a)<0),则存在δ>0,使得当x∈(a-δ,,a+δ)时,f(x)>0(或
f(x)<0)
取:δ=min\{δ_1,δ_2\}
则: \exists δ>0,\forall x∈(x_0-δ,x_0+δ),F(x,y_0+η)<0,F(x,y_0+η)>0
即在: F(x_0-δ,y_0+η)<0,F(x_0+δ,y_0+η)>0
总能找到使得: F(x,y)=0
任取: \overline {x}∈(x_0-δ,x_0+δ) 则: F(\overline x,y_0+
η)<0,F(\overline x,y_0+η)>0
因为: F_y(x,y)>0 ,函数在y轴方向上连续递增,根据零点定理,存在唯一的
\overline y∈(y_0-η,y_0+η) 使得 F(\overline x,\overline y)=0
上述论证可以表述为:在 (x_0-δ,x_0+δ)\times (y_0-η,y_0+η) 邻域内任取一个X总能根据某种对应关系 y=f(x) 找到一个Y,使得方程F(x,y)=0
可以表示成: F(x,f(x))=0
如上图所示:该证明所表达的是:在条件满足的情况下能在找到XOY 平面与曲面 z=F(x,y) 相交的所形成的曲线 y=f(x) (黄色曲线)
这条曲线可以表示成y=f(x)的形式
隐函数 y=f(x) 连续性证明
\forall \overline {x}∈(x_0-δ,x_0+δ),\exists F(\overline
x,f(\overline x))=0
\forall ε>0:F(\overline x,f(\overline x)-ε)<0,F(\overline
x,f(\overline x)+ε)>0
根据连续函数的局部保号性:∵\exists δ>0,\forall x∈(\overline x-δ,\overline x+δ)∴F(x,\overline y-ε)<0,F(x,\overline y+ε)>0
∴\exists y 使得:F(x,y)=0,也就是说 x 根据某种对应规则 y=f(x)
可以找唯一的 y 与之对应,记作 y=f(x) ,使得 F(x,f(x))=0
又因为: \forall x∈(\overline x-δ_2,\overline x+δ_2) ,并
且 F_y(x,y)>0 关于 y 上单调递增,相应的 y=f(x) 函数值满
足 \overline y-ε<f(x)<\overline y+ε
即 |f(x)-\overline y|=|f(x)-f(\overline x)|<ε
所以:y=f(x) 在 x∈(\overline x-δ,\overline x+δ) 连续
隐函数可微性
•几何解释
如下图所示:
\theta_1}{tan{\theta_2}}=-\frac{\frac{d_z}{F’
_y}}{\frac{d_z}{F’_x}}=-\frac{F’_x}{F’_y}
•数学解释
dx}=-{F^{’}_x\over F^{’}_y}。