电动力学课件4-1电磁波的传播
- 格式:ppt
- 大小:1.04 MB
- 文档页数:21
第四章电磁波的传播讨论电磁场产生后在空间传播的情形和特性。
分三类情形讨论:一:平面电磁波在无界空间的传播问题二. 平面电磁波在分界面上的反射与透射问题;三.在有界空间传播 -导行电磁波第一部分平面电磁波在无界空间的传播问题讨论一般均匀平面电磁波和时谐电磁波在无界空间的传播问题1时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。
2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或 wave equations 的解。
3 在某些特定条件下,Maxwell equations或wave equations可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。
4最简单的电磁波是平面波。
等相面(波阵面)为无限大平面电磁波称为平面波。
如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。
5许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。
故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。
§4.1波动方程 (1)§4.2无界空间理想介质中的均匀平面电磁波 (4)§4.3 正弦均匀平面波在无限大均匀媒质中的传播 (7)4.1-4.3 总结 (13)§4.4电磁波的极化 (14)§4.5电磁波的色散与波速 (16)4.4-4.5 总结 (18)§4.1 波动方程本节主要容:研究各种介质情形下的电磁波波动方程。
学习要求: 1. 明确介质分类; 2. 理解和掌握波动方程推到思路 3. 分清楚、记清楚无界无源区理想介质和导电介质区波动方程和时谐场情形下理想介质和导电介质区波动方程4.1.1介质分类:电磁波在介质中传播,所以其波动方程一定要知道介质的电磁性质方程。
一般情况下,皆知的电磁性质方程很复杂,因为反应介质电磁性质的介电参数是量。
第四章电磁波的传播●在迅变情况下,电磁场以波动形式存在,变化着的电场和磁场互相激发,形成在空间中传播的电磁波电磁波的传播、辐射和激发问题已发展为独立的学科,具有十分丰富的内容本章介绍关于电磁波传播的最基本的理论知识平面电磁波是交变电磁场存在的一种最基本的形式,本章研究:1. 无界空间中平面电磁波传播的主要特性2. 电磁波在介质界面上的反射和折射从电磁理论出发导出光学中的反射和折射定律3. 有导体存在时的电磁波传播问题4. 有界空间的电磁波2. 介质情形:当以一定角频率ω作正弦振荡的电磁波入射于介质内时,在线性介质中有关系)()()(ωωεωE D =在研究介质中电磁波的传播问题时,必须给出E 和D以及 B 和H之间的关系)()()(ωωμωH B =同样对不同频率的电磁波,介质的电容率是不同的,即ε和μ是ω的函数)(ωεε=)(ωμμ=ε和μ随频率而变的现象——介质的色散由于色散,对一般非正弦变化的电场E (t ),关系式因此在介质内,不能够推出E 和B 的一般波动方程D (t )=εE (t )不成立二、时谐电磁波以一定频率作正弦振荡的波称为时谐电磁波(单色波)在一般情况下,即使电磁波不是单色波,它也可以用傅里叶(Fourier)分析(频谱分析)方法分解为不同频率的正弦波的叠加1. 场量的复数形式:设电磁场频率为ω,电磁场对时间的依赖关系是cosωt,或用复数形式表为tietω−xEE=)(),(xtitω−exBB(x(=)),以后,在电磁波的问题中,用E 表示抽出时间因子e-iωt以后的电场强度E(x)同样用B 表示B(x)2. 时谐情形下(复数形式)的麦氏方程组:在一定频率下,有D =ε0E , B =μ0H ,代入麦克斯韦方程组,消去共同因子e -i ωt 后得0=⋅∇=⋅∇−=×∇=×∇H E E H H E ωεωμi i 注意:在ω≠0 的时谐电磁波情形下这组方程不是独立的(1)(2)(3)(4)(1)式取散度可以得出(4)式同样由(2)式可以得出(3)式●亥姆霍兹方程是一定频率下电磁波的基本方程●其解E(x) 代表电磁波场强在空间中的分布情况●每一种可能的形式称为一种波模由条件∇⋅E =0 得i ke x ⋅E =0以上为了运算方便采用了复数形式,对于实际存在的场强应理解为只取上式的实数部分,即()t kx t ω−=cos ),(0E x E 因此,需要E 0 与x 轴垂直只要E 0 与x 轴垂直,上式就代表一种可能的模式t=3. 平面波的一般表达式x 表示坐标原点到某等相位面的距离()t kx i et ω−=0),(E x E 沿x 轴方向传播的平面波k x 即为传播这一距离所对应的相位差对于任意方向传播的平面波:令k 表示一个矢量,其大小为k ,方向沿平面波的传播方向。
《电动力学电子教案》课件第一章:电磁场基本概念1.1 电磁场的定义与特性电磁场的概念电磁场的分类:静态电磁场和动态电磁场电磁场的特性:保守场与非保守场1.2 电磁场的基本方程高斯定律法拉第电磁感应定律安培环路定律麦克斯韦方程组1.3 电磁波的产生与传播电磁波的产生:麦克斯韦方程组的波动解电磁波的传播:波动方程和解电磁波的频率、波长和速度第二章:电磁波的波动方程及其解2.1 电磁波的波动方程电磁波的波动方程推导波动方程的边界条件2.2 电磁波的解平面电磁波的解球面电磁波的解2.3 电磁波的极化线极化圆极化椭圆极化第三章:电磁波的反射与折射3.1 电磁波在介质边界上的反射反射定律反射波的性质3.2 电磁波在介质边界上的折射折射定律折射波的性质3.3 电磁波的全反射全反射的条件全反射的物理意义第四章:电磁波的传播与应用4.1 电磁波在自由空间中的传播自由空间中的电磁波传播特性电磁波的传播速度和波长4.2 电磁波在大气中的传播大气对电磁波传播的影响大气层对电磁波的吸收和散射无线通信雷达微波炉第五章:电磁波的辐射与吸收5.1 电磁波的辐射电磁波的辐射机制天线辐射特性5.2 电磁波的吸收电磁波被物质吸收的机制吸收系数和损耗5.3 电磁波的辐射与吸收的应用无线通信设备的设计电磁兼容性分析电磁波探测与成像第六章:电磁波的量子电动力学基础6.1 量子力学与经典电磁学的对比经典电磁学的基本原理量子力学的基本原理6.2 量子电动力学的基本概念费米子的电磁相互作用光子与物质的相互作用6.3 量子电动力学的应用激光的原理与应用电子加速器与粒子物理实验第七章:相对论性电子学7.1 狭义相对论与电子学狭义相对论的基本原理狭义相对论对电子学的影响7.2 洛伦兹变换与电子学洛伦兹变换的定义与性质洛伦兹变换在电子学中的应用7.3 相对论性效应的应用高速电子设备的相对论性效应分析粒子加速器中的相对论性效应第八章:电子加速器与辐射效应8.1 电子加速器的基本原理电子加速器的工作原理电子束的特性和应用8.2 辐射效应的基本概念辐射对物质的影响辐射防护的基本原则8.3 辐射效应的应用医学影像学中的辐射效应无线电通信中的辐射效应第九章:电磁波探测器与测量9.1 电磁波探测器的原理与分类光电探测器微波探测器射线探测器9.2 电磁波测量技术直接测量法与间接测量法频率测量与功率测量9.3 电磁波探测与测量的应用无线电通信系统的性能评估地球物理勘探第十章:电磁波在现代科技中的应用10.1 电磁波在信息技术中的应用光纤通信技术无线通信技术10.2 电磁波在医学中的应用磁共振成像(MRI)射频消融技术10.3 电磁波在其他领域的应用雷达与遥感技术电磁兼容性与电磁防护重点和难点解析重点环节:1. 电磁场的定义与特性:电磁场的分类、电磁场的特性。
§4.4.3 3 3 有导体存在时电磁波的传播有导体存在时电磁波的传播有导体存在时电磁波的传播引言:(1)真空或介质中电磁波传播可视为无能量损耗,电磁波无衰减(能量20E ∝);(2)电磁波遇到导体,导体内自由电子在电场作用下运动,形成电流,电流产生焦耳热,使电磁波的能量不断损耗,因此在导体内电磁波是一种衰减波,电磁能→热能;(3)导体中电磁波传播过程:交变电磁场与自由电子运动相互作用,使它不同于真空或介质中的传播形式。
一.导体内的自由电荷分布1. 静电场中导体上的电荷分布静电场中导体上的电荷分布:: 静电平衡时,电荷仅分布在表面上,导体内部无电荷,且0=E r ,导体表面的电场⊥E r表面。
2.变化场情况下的电荷分布变化场情况下的电荷分布::在有变化电磁场情况下,导体不再处于静电平衡状态,必然有体电荷分布)(t ρ,)(t ρ分布变化形成电流,产生附加变化电磁场,形成导体内总电磁场分布,又影响)(t ρ。
仅讨论均匀导体:由电荷守恒定律0=∂∂+⋅∇tJ ρr 和J E σ=r r、ρ=⋅∇D r 及E D r r ε=导出:ρεσρ−=∂∂t (其中σ为导体的电导率,ε为导体的介电常数(静电场下∞→ε))。
解为:00t t t e e ()σετρρρετσ−−== =其中 τ为特征时间或驰豫时间,表示ρ减小到e 0ρ所需时间。
3.良导体条件良导体条件::τ>>T (σεω>>>1T )或者1>>εωσ特性:导体内0)(=t ρ,电荷仅分布在导体表面一薄层内。
二.导体内的电磁波1.基本方程基本方程((导体内部导体内部))=⋅∇≈=⋅∇∂∂+=×∇∂∂−=×∇00B D t D J H t B E r r r r r rr ρ 对于良导体0=ρ,但是可考虑0≠J r ,E J r r σ=,但J r一般良导体下也只分布在导体表面一薄层内;若考虑0≠J r,则边值关系中面电流0≡αr,若0=J r,则0≠αr。