第二章 数字图像处理中的常用数学变换2012
- 格式:pdf
- 大小:2.00 MB
- 文档页数:69
一、离散傅里叶变换1. 离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT 0DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。
DFT的应用十分广泛,女口:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。
2. 离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1. 离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。
传统的正交变换多是复变换,运算量大,不易实时处理。
随着数字图像处理技术的发展,出现了以离散余弦变换(DCT )为代表的一大类正弦型实变换,均具有快速算法。
目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。
由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言 及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。
对给定长度为N 的输入序列f(x),它的DCT 变换定义为:IT r-(2x+i )阳、F (u)C (u ) i .二“ f (x) cos V N "2N )式中:u =0,1, ............... ,N _1,式中的C(u)的满足:C (u)=其它其逆变换IDCT 为:由于DCT 的变换核是可分离的,为此,二维DCT 变换可通过两次一维变换由图知,该方法是先沿行(列)进行一维 DCT 变换计算,再沿列(行)进 行一次一维DCT 变换,共需做 M 次N 点的和N 次M 点的一维DCT 变换。
数字图像处理中的快速傅里叶变换算法数字图像处理是一门非常重要的学科,它主要关注如何对数字图像进行处理和分析。
在数字图像处理中,傅里叶变换是一种非常重要的工具,在很多领域都有广泛的应用。
特别是在数字信号处理和图像处理领域,傅里叶变换是一种重要的工具,它可以将时域信号转化成频域信号,进行频域分析和处理,帮助我们从中获取更多的信息。
在数字图像处理中,快速傅里叶变换算法是一种非常重要的算法,它拥有很高的计算效率和精度,被广泛应用于数字图像处理中。
一、傅里叶变换傅里叶变换是数学中的一种重要的工具,它可以将任意一个函数分解为一系列正弦波的加权和。
在数字图像处理中,傅里叶变换可以将图像表示为一个二维函数,其中每个分量代表着不同的频率。
通过傅里叶变换,我们可以了解图像中不同颜色和亮度的分布状况,从而帮助我们更好地进行图像处理和分析。
二、快速傅里叶变换算法快速傅里叶变换算法是对传统傅里叶变换进行优化得到的一种算法。
传统的傅里叶变换算法计算复杂度很高,需要进行许多乘法和加法运算,运算时间很长,难以满足实时处理的要求。
为了解决这个问题,人们开发出了快速傅里叶变换算法,它可以有效地缩短傅里叶变换的运算时间,提高计算效率。
快速傅里叶变换算法的基本思想是将傅里叶变换的计算分解为多个较小的傅里叶变换,从而实现快速计算。
这样就可以通过迭代的方式,逐步将傅里叶变换的计算分解为多个较小的傅里叶变换,从而获得更高的计算效率。
快速傅里叶变换算法一般采用分治的思想,将二维傅里叶变换分解为两个一维傅里叶变换,从而实现二维傅里叶变换的计算。
三、应用领域快速傅里叶变换算法被广泛应用于数字图像处理领域。
在图像去噪、图像压缩、图像增强、图像分割等领域,傅里叶变换都有着很广泛的应用。
特别是在数字信号处理和通信领域,傅里叶变换被广泛应用于信号的频域分析和处理,帮助我们了解信号的频域特性和频谱分布状况,从而更好地进行信号处理和分析。
四、总结快速傅里叶变换算法是数字图像处理中非常重要的一种算法,它可以快速、高效地实现傅里叶变换的计算,提升计算效率,满足实时处理的要求。
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
第一章导论图像是对客观存在对象的一种相似性的、生动性的描述或写真。
模拟图像空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像数字图像空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。
是图像的数字表示,像素是其最小的单位。
数字图像处理(Digital Image Processing)利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。
(计算机图像处理)数字图像处理的特点(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
数字图像处理的目的(1)提高图像的视感质量,以达到赏心悦目的目的。
(2)提取图像中所包含的某些特征或特殊信息。
(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。
数字图像处理的主要研究内容(1)图像的数字化(2)图像的增强(3)图像的恢复(4)图像的编码(5)图像的重建(6)图像的分析(7)图像分割与特征提取(8)图像隐藏(9)图像通信图像工程的三个层次(1)图像分析:图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
(2)图像理解:图像理解的重点是在图像分析的基础上,进一步研究图像中各个目标的性质和他们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
(3)图像处理:数字图像处理的应用领域1.通信:图象传输,电视电话等。
2.宇宙探测:星体图片处理。
遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的监测,气象云图。
3.生物医学:CT,X射线成象,B超,红外图象,显微图象。
4.工业生产:产品质量检测,生产过程控制,CAD,CAM。
5.军事:军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等。
【数字图像处理】灰度变换原⽂链接:作者:图像的空间域滤波,其对像素的处理都是基于像素的某⼀邻域进⾏的。
本⽂介绍的图像的灰度变换则不同,其对像素的计算仅仅依赖于当前像素和灰度变换函数。
灰度变换也被称为图像的点运算(只针对图像的某⼀像素点)是所有图像处理技术中最简单的技术,其变换形式如下:s=T(r)s=T(r)其中,T是灰度变换函数;r是变换前的灰度;s是变换后的像素。
图像灰度变换的有以下作⽤:改善图像的质量,使图像能够显⽰更多的细节,提⾼图像的对⽐度(对⽐度拉伸)有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征可以有效的改变图像的直⽅图分布,使像素的分布更为均匀常见的灰度变换灰度变换函数描述了输⼊灰度值和输出灰度值之间变换关系,⼀旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。
可见灰度变换函数的性质就决定了灰度变换所能达到的效果。
⽤于图像灰度变换的函数主要有以下三种:线性函数(图像反转)对数函数:对数和反对数变换幂律函数:n次幂和n次开⽅变换上图给出了⼏种常见灰度变换函数的曲线图,根据这⼏种常见函数的曲线形状,可以知道这⼏种变换的所能达到的效果。
例如,对数变换和幂律变换都能实现图像灰度级的扩展/压缩,另外对数变换还有⼀个重要的性质,它能压缩图像灰度值变换较⼤的图像的动态范围(例如,傅⽴叶变换的频谱显⽰)。
线性变换令r为变换前的灰度,s为变换后的灰度,则线性变换的函数:s=a⋅r+bs=a⋅r+b其中,a为直线的斜率,b为在y轴的截距。
选择不同的a,b值会有不同的效果:a>1a>1,增加图像的对⽐度a<1a<1,减⼩图像的对⽐度a=1且b≠0a=1且b≠0,图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对⽐度。
a<0且b=0a<0且b=0,图像的亮区域变暗,暗区域变亮a=1且b=0a=1且b=0,恒定变换,不变a=−1且b=255a=−1且b=255,图像反转。