2018年高三理科专题四空间立体几何
- 格式:docx
- 大小:1.44 MB
- 文档页数:17
【简介】1.立体几何是高考的重要内容,为解答题的必考题型.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).【2015新课标1】如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值【答案】在直角梯形BDFE 中,由BD =2,BE DF =2可得EF =2,∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角.【2015新课标2】如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F==.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.【2016新课标1】如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析;(II )【解析】试题分析:(I )证明ΑF ⊥平面ΕFDC ,结合F A ⊂平面ΑΒΕF ,可得平面ΑΒΕF ⊥平面ΕFDC .(II )建立空间坐标系,利用向量求解.试题解析:(I )由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF ⊥平面ΕFDC .(II )过D 作DG ΕF ⊥,垂足为G ,由(I )知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,3DG =,可()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//AB EF ,所以//AB 平面EFDC .又平面ABCD 平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,60C ΕF ∠= .从而可得(C -.所以(ΕC = ,()0,4,0ΕΒ= ,(3,ΑC =-- ,()4,0,0ΑΒ=-.设(),,x y z =n 是平面ΒC Ε的法向量,则【考点】垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量法解决. 【2016新课标2】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF交BD 于点H . 将△DEF 沿EF 折到△D EF '的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;.故D H OH '⊥.又D H EF '⊥,而OH EF H = , 所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC = ,()3,1,3AD '=【考点】线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 【2016新课标3】如图,四棱锥P−ABC 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(I )详见解析;(II . 【解析】试题分析:(I )取BP 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT ,由此结合线面平行的判定定理可证;(II )以A 为坐标原点,AE的方向为x 轴正方向,建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 的法向量的夹角的余弦值来求解AN 与平面PMN 所成角的正弦值.试题解析:(I )由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ……3分 又BC AD //,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT . 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB . ……6分设(,,)x y z =n 为平面PMN 的一个法向量,则0,0,PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n即240,20,y z x y z -=⎧+-= ……10分 可取(0,2,1)=n .于是|||cos ,|||||AN AN AN ⋅==n n n ……12分【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.【2017新课标1】如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值.由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB为单位长,建立如图所示的空间直角坐标系F xyz -.【2017新课标2】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.【答案】(1)证明略;(2【考点】判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等,故有|cos θ|=|cos<m,n>|=m nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【2017新课标3】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)证明略;(2)7【考点】二面角的平面角;二面角的向量求法【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【3年高考试题比较】全国高考命题的一个显著变化是,由知识立意转为能力立意,往往遵循大纲又不拘泥于大纲.高考在考查空间想象能力的同时又考查空间想象能力、逻缉思维能力、推理论证能力、运算能力和分析问题以及解决问题的能力.通过比较近三年的高考试题,可发现,立体几何一般有两问,第一问均为考查线面的位置关系,平行和垂直均有涉及;第二问主要考查角的运算,异面所成角,线面角,二面角都有考查,利用空间直角坐标系计算的需要先证明再建系,对于空间位置关系要求较高.【必备基础知识融合】1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.3.(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.4.空间点、直线、平面之间的位置关系5.平行公理(平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:⎝⎛⎦⎤0,π2.7.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理8.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理9.(1)a ⊥α,b ⊥α⇒a ∥b . (2)a ⊥α,a ⊥β⇒α∥β.10.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理11.(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理12.(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 13.空间位置关系的向量表示14.设a ,b 分别是两异面直线l 1,l 2的方向向量,则15.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 16.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【解题方法规律技巧】典例1:在如图所示的几何体中,四边形ABCD 为正方形, ABE ∆为直角三角形, 90BAE ∠= ,且AD AE ⊥.(1)证明:平面AEC ⊥平面BED ;(2)若AB=2AE ,求异面直线BE 与AC 所成角的余弦值.【答案】(1)详见解析;(2.所以DB ⊥平面AEC ,BD a 面BED 故有平面AEC ⊥平面BED.【规律方法】(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. (2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.典例2:如图,在长方体1111ABCD A BC D -中, 1,2,,AB AD E F ==分别为1,AD AA 的中点, Q 是BC 上一个动点,且(0)BQ QC λλ=>.(1)当1λ=时,求证:平面//BEF 平面1A DQ ;(2)是否存在λ,使得BD FQ ⊥?若存在,请求出λ的值;若不存在,请说明理由. 【答案】(1)详见解析(2)13λ=(2)连接,AQ BD 与FQ ,因为1A A ⊥平面,ABCD BD ⊂平面ABCD ,所以1A A BD ⊥.若1,,BD FQ A A FQ ⊥⊂平面1A AQ ,所以BD ⊥平面1A AQ . 因为AQ ⊂平面1A AQ ,所以AQ BD ⊥.在矩形ABCD 中,由AQ BD ⊥,得~AQB DBA ∆∆,所以, 2AB AD BQ =⋅.【规律方法】(1)判断或证明线面平行的常用方法有: ①利用反证法(线面平行的定义);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); ③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); ④利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线. (3)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行. (4)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).典例3:如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB=BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.典例4:如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .【规律方法】 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.典例5:如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2.求: (1)△PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.解 (1)因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以PA ⊥CD .又AD ⊥CD ,PA ∩AD =A , 所以CD ⊥平面PAD ,又PD ⊂平面PAD ,从而CD ⊥PD .因为PD =22+(22)2=23,CD =2, 所以△PCD 的面积为12×2×23=2 3.图1图2法二 如图2,建立空间直角坐标系,则B (2,0,0),C (2,22,0), E (1,2,1),AE →=(1, 2,1),BC →=(0,22,0). 设AE →与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,所以θ=π4.由此可知,异面直线BC 与AE 所成的角的大小是π4.【规律方法】(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. (2)两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.典例6:如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°. (1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.∴AB⊥平面AB1C.又B1C⊂平面AB1C,∴AB⊥B1C.【规律方法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.典例7:如图,在三棱柱ABC -A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D . (1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值; (3)求二面角B -B 1D -C 的余弦值.(2)解 由(1)知,OB ,OD ,OB 1两两垂直.②以O 为坐标原点,OB →的方向为x 轴的方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O -xyz . 由题设知B 1(0,0,3),D (0,1,0), A (-1,0,0),C (1,2,0),C 1(0,2,3).则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·AC →=0,m ·CC 1→=0,得⎩⎨⎧x +y =0,-x +3z =0,取m =(3,-3,1).∴cos 〈B 1D →,m 〉=B 1D →·m |B 1D →||m |=0×3+1×(-3)+(-3)×102+12+(-3)2×(3)2+(-3)2+12=-217, ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217.③ (3)解 由题设知B (1,0,0),则BD →=(-1,1,0),B 1D →=(0,1,-3),DC →=(1,1,0). 设平面BB 1D 的一个法向量为n 1=(x 1,y 1,z 1),则由 ⎩⎪⎨⎪⎧BD →·n 1=0,B 1D →·n 1=0,得⎩⎨⎧-x 1+y 1=0,y 1-3z 1=0,可取n 1=(3,3,1). 同理可得平面B 1DC 的一个法向量为n 2=(-3,3,1), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=3×(-3)+3×3+1×1(3)2+(3)2+12×(-3)2+(3)2+12=17. ∴二面角B -B 1D -C 的余弦值为17.④【规律方法】(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)利用向量计算二面角大小的常用方法:①找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.易错警示 对于①:用线面垂直的判定定理易忽视面内两直线相交; 对于②:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;对于③:线面角θ的正弦sin θ=|cos 〈B 1D →,m 〉|,易误认为cos θ=|cos 〈B 1D →,m 〉|;对于④:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法:1°通过观察二面角是锐角还是钝角来确定其余弦值的正负;2°当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.典例8:如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14. 【规律方法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.典例9:如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,A D =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);【规律方法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【归纳常用万能模板】 如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB.2分又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.4分又CO ⊂平面COD ,∴平面PDB ⊥平面COD.6分(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).8分设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).10分设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO ⊥平面PDB ”.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)问中求法向量n ,计算线面角正弦值sin θ.利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【易错易混温馨提醒】一、利用空间向量求解线面角时,得到是线面角的正弦值,注意不是余弦值.易错1:如图,三棱柱111ABC A B C -中, 01111160,4B A A C A A AA AC ∠=∠===,2AB =, ,P Q 分别为棱1,AA AC 的中点.(1)在平面ABC 内过点A 作//AM 平面1PQB 交BC 于点M ,并写出作图步骤,但不要求证明.(2)若侧面11ACC A ⊥侧面11ABB A ,求直线11AC与平面1PQB 所成角的正弦值.【答案】(1)见解析(2).试题解析:(1)如图,在平面11ABB A 内,过点A 作1//ANB P 交1BB 于点N ,连结BQ ,在1BBQ ∆中,作1//NH B Q 交BQ 于点H ,连结AH 并延长交BC 于点M ,则AM 为所求作直线.∵Q 为AC 的中点,∴点Q 的坐标为(0,-,∴((110,,0,AC PQ =-=- .∵011112,60A B AB B A A ==∠=,∴)1B ,∴)1PB = , 设平面1PQB 的法向量为(),,m x y z =,二、不能直接建立空间直角坐标系时,要利用条件先证再建系.易错2:如图,在三棱柱111ABC A B C -中, D 为BC 的中点, 00190,60BAC A AC ∠=∠=,12AB AC AA ===.(1)求证: 1//A B 平面1ADC ;(2)当14BC =时,求直线1B C 与平面1ADC 所成角的正弦值.【答案】(1)见解析;(2. 【解析】【试题分析】(1)依据题设条件运用直线与平面平行的判定定理进行分析推证;(2)依据题设条件建立空间直角坐标系,借助向量的有关知识与数量积公式分析求解:(1)证明:连结1AC 与1AC 相交于点E ,连结ED . ∵,D E 为中点,∴1//A B ED , 又∵1A B ⊄平面1,ADC ED ⊂平面1ADC , ∴1//A B 平面1ADC .三、在空间中点的坐标不好确定时,可以先设出来,再根据条件列方程求解确定即可.易错3:如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , 2AB BC ==, 30ACB ∠= , 1120C CB ∠= , 11BC AC ⊥,E 为AC 的中点.(1)求证: 1AC ⊥平面1C EB ; (2)求二面角1A AB C --的余弦值.【答案】(1)见解析;(2)13.则由余弦定理得2221122412AC x x x x =+-⋅=-+.22213223C E x x x x ⎛=+-⋅=++ ⎝⎭,设1AC 与1C E 交于点H ,则 1123A H AC =, 1123C H C E =,而1AC ⊥ 1C E ,则2221111A H C H AC +=.于是()()(222444122399x x x x -++++=,即260x x --=,∴3x =或2-(舍)容易求得: 1A E =22211AE AE AA +=. 故1A E AC ⊥,由面11A ACC ⊥面ABC ,则1A E ⊥面ABC ,过E 作EF AB ⊥于F ,连1A F ,则1AF E ∠为二面角1A AB C --的平面角,由平面几何知识易得2EF =, 1A F =∴111cos 3AE A FE A F ∠===.方法二:以A 点为原点, AC 为y 轴,过点A 与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系,设1A A x =, 1A AC θ∠=,则()13,0B ,()C ,()E ,()10,cos ,sin C x x θθ.∴()1,CB = , ()10,cos ,sin CC x x θθ= .由1111c o s ,2C B C C C BC C C B C C ⋅==- ,12=-,∴cos 3θ=,则1A x x ⎛⎫ ⎪ ⎪⎝⎭,10,C x x ⎛⎫ ⎪ ⎪⎝⎭,于是10,,A C x ⎛⎫= ⎪ ⎪⎝⎭ ,1,33BC x ⎛=- ⎝⎭ ,∵11AC BC ⊥ ,不妨设平面ABC 的法向量()20,0,1n =,则1212121cos ,3n n n n n n ⋅===- ,故二面角1A AB C --的余弦值为13.四、建立空间直角坐标系的原则是:让尽量多的点落在坐标轴或轴面上.易错4:如图,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将 AED DCF △,△分别沿DE ,DF 折起,使 A C ,两点重合于P .(Ⅰ)求证:平面PBD BFDE ⊥平面;(Ⅱ)求二面角P DE F --的余弦值.【答案】(Ⅰ)详见解析(Ⅱ)23所以 BE BF DE DF ==,,所以DEB DFB △≌△,所以在等腰DEF △中,O 是EF 的中点,且EF OD ⊥,因此在等腰PEF △中,EF OP ⊥,从而EF OPD ⊥平面,又EF BFDE ⊂平面,所以平面BFDE OPD ⊥平面,即平面PBD BFDE ⊥平面.…………………6分所以AF DE ⊥,于是,在翻折后的几何体中,PGF ∠为二面角P DE F --的平面角,在正方形ABCD 中,解得AG =,GF =,所以,在PGF △中,PG AG ==,GF =,1PF =, 由余弦定理得2222cos 23PG GF PF PGF PG GF +-∠==⋅, 所以,二面角P DE F --的余弦值为23.………………………………12分五、求二面角余弦值时,要正确判断二面角为钝角还是锐角.易错5:四棱锥P ABCD -中,底面ABCD 为矩形, 2AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(1)证明: PC BD ⊥;(2)设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值.【答案】(1)见解析(2)【试题解析】解:(1)证法一:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD以O 为原点, OP 为z 轴, OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()()))0,0,,0,1,0,,1,0P h B C D-所以)),2,0PC h BD =-=- 0PC BD ⋅= ,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ②由①②知BD ⊥平面PCO所以PC BD ⊥.六、多解问题的取舍.易错6:如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.(2)设平面EFPQ 的一个法向量为(),,n x y z = ,则 由0{0FE n FP n ⋅=⋅= ,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=- . 设平面MNPQ 的一个法向量为()',','m x y z = ,由0{0N M m N P m ⋅=⋅= ,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=-- .若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-= ,即()()2210λλλλ---+=,解得12λ=±,显然满足02λ<<.故存在12λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.【新题好题提升能力】1.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -的体积最大时,求平面PCM 与平面PCD 所成二面角的余弦值.【答案】(1)见解析;(2.。
2018年全国高考理科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B﹣CD﹣C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【解答】(I)证明:∵E,F分别是AC,A1C1的中点,∴EF∥CC1,∵CC1⊥平面ABC,∴EF⊥平面ABC,又AC⊂平面ABC,∴EF⊥AC,∵AB=BC,E是AC的中点,∴BE⊥AC,又BE∩EF=E,BE⊂平面BEF,EF⊂平面BEF,∴AC⊥平面BEF.(II)解:以E为原点,以EB,EC,EF为坐标轴建立空间直角坐标系如图所示:则B(2,0,0),C(0,1,0),D(0,﹣1,1),∴=(﹣2,1,0),=(0,﹣2,1),设平面BCD的法向量为=(x,y,z),则,即,令y=2可得=(1,2,4),又EB⊥平面ACC1A1,∴=(2,0,0)为平面CD﹣C1的一个法向量,∴cos<,>===.由图形可知二面角B﹣CD﹣C1为钝二面角,∴二面角B﹣CD﹣C1的余弦值为﹣.(III)证明:F(0,0,2),(2,0,1),∴=(2,0,﹣1),∴•=2+0﹣4=﹣2≠0,∴与不垂直,∴FG与平面BCD不平行,又FG⊄平面BCD,∴FG与平面BCD相交.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4.(江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.6.(全国1卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()AA.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长明明就的最大值为:6×=.故选:A.7.(全国1卷)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,联结DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,=,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a,在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.8.(全国2卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C.9.(全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.【解答】解:(1)证明:∵AB=BC=2,O是AC的中点,∴BO⊥AC,且BO=2,又PA=PC=PB=AC=2,∴PO⊥AC,PO=2,则PB2=PO2+BO2,则PO⊥OB,∵OB∩AC=O,∴PO⊥平面ABC;(2)建立以O坐标原点,OB,OC,OP分别为x,y,z轴的空间直角坐标系如图:A(0,﹣2,0),P(0,0,2),C(0,2,0),B(2,0,0),=(﹣2,2,0),设=λ=(﹣2λ,2λ,0),0<λ<1则=﹣=(﹣2λ,2λ,0)﹣(﹣2,﹣2,0)=(2﹣2λ,2λ+2,0),则平面PAC的法向量为=(1,0,0),设平面MPA的法向量为=(x,y,z),则=(0,﹣2,﹣2),则•=﹣2y﹣2z=0,•=(2﹣2λ)x+(2λ+2)y=0令z=1,则y=﹣,x=,即=(,﹣,1),∵二面角M﹣PA﹣C为30°,∴cos30°=|=,即=,解得λ=或λ=3(舍),则平面MPA的法向量=(2,﹣,1),=(0,2,﹣2),PC与平面PAM所成角的正弦值sinθ=|cos<,>|=||==.10.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.11.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()BA.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.12.(全国3卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.【解答】解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.(2)∵△ABC的面积为定值,∴要使三棱锥M﹣ABC体积最大,则三棱锥的高最大,此时M为圆弧的中点,建立以O为坐标原点,如图所示的空间直角坐标系如图∵正方形ABCD的边长为2,∴A(2,﹣1,0),B(2,1,0),M(0,0,1),则平面MCD的法向量=(1,0,0),设平面MAB的法向量为=(x,y,z)则=(0,2,0),=(﹣2,1,1),由•=2y=0,•=﹣2x+y+z=0,令x=1,则y=0,z=2,即=(1,0,2),则cos<,>===,则面MAB与面MCD所成二面角的正弦值sinα==.13.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.14.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.15. (天津)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:=.故答案为:.16.(天津)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【解答】(Ⅰ)证明:依题意,以D为坐标原点,分别以、、的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).设为平面CDE的法向量,则,不妨令z=﹣1,可得;又,可得.又∵直线MN⊄平面CDE,∴MN∥平面CDE;(Ⅱ)解:依题意,可得,,.设为平面BCE的法向量,则,不妨令z=1,可得.设为平面BCF的法向量,则,不妨令z=1,可得.因此有cos<>=,于是sin<>=.∴二面角E﹣BC﹣F的正弦值为;(Ⅲ)解:设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),可得,而为平面ADGE的一个法向量,故|cos<>|=.由题意,可得,解得h=∈[0,2].∴线段DP的长为.17.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.18.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()AA.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.19.(浙江) 已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()DA.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.20.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。
立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
实用标准文案2018年高考数学试题分类汇编之立体几何(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(B . 4C . 6(A ) 1 2.(北京卷理) (B) 2(A ) 1 3.(浙江)(3) (C ) 3 (D) 4(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为正〔主)观图 恻(左)帆圈(B) 2(C ) 3 (D) 4某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位: cm 3俯视图r*— 2—侧视图」、选择题1.(北京卷文)4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为O i , O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积8的正方形,则该圆柱的表面积为5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图•圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为A . 2 17 C . 36.(全国卷一文)(10)在长方体ABCD-AB 1C 1D 1中,AB 二BC=2 , AG 与平面BBGC 所成的角为30,则该长方体的体积为 A . 8B . 6、2C . 8.2D •7 .(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A . 2.178 (全国卷一理)(12)已知正方体的棱长为 1,每条棱所在直线与平面 体所得截面面积的最大值为 A .二4B .二 39. (全国卷二文)(9)在正方体 ABCD -AB 1C 1D 1中,E 为棱C 。
的中点,则异面直线 AE 与CD 所成角 的正切值为12.2 nB . 12 nC .D . 10 nB . 2.5 D . 2D . 2a 所成的角相等,则 a 截此正方恵43 45 47 A• T B• T C• 2 D•210. (全国卷~理) (9)在长方体ABCD 一 AB 1C 1D 1中,AB 二BC 二1 , AA 13,则异面直线 AD 1与DB 1所成角的余弦值为11. (全国卷三文)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯 眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则 咬合时带卯眼的木构件的俯视图可以是形且其面积为 9 3,则三棱锥D-ABC 体积的最大值为13.(全国卷三理)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯 眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则 咬合时带卯眼的木构件的俯视图可以是12.(全国卷三文)(12)设 A , B , C , D 是同一个半径为 4的球的球面上四点, △ ABC 为等边三角A . 12、.3B . 183C . 24.3D . 54 36A C10)设A , B , C , D是同一个半径为4的球的球面上四点,△ ABC为等边三角形且14 .(全国卷三理)其面积为9 3,则三棱锥D - ABC体积的最大值为第(打)题图3. (天津理)(11)已知正方体 ABCD - ABC 1D 1的棱长为1,除面ABCD 夕卜,该正方体其余各面的中心分别为点E , F , G , H , M (如图),则四棱锥 M -EFGH 的体积为 ___________第(11)腔團A . 12..3B . 18.3 二、填空题1.(江苏)(10)如图所示,正方体的棱长为C . 24 3D . 54 . 32,以其所有面的中心为顶点的多面体的体积为 ____________(第1()题)2.(天津文)ABCD -\1B 1C 1D 1的棱长为1,则四棱柱 A 1 -BB 1D 1D 的体积为4. (全国卷二文)(16)已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成角为30,若△ SB的面积为8,则该圆锥的体积为 ____________ .5. (全国卷二理)(16)已知圆锥的顶点为 S ,母线SA ,SB 所成角的余弦值为-,SA 与圆锥底面所成角8为45°若厶SAB 的面积为5丽,则该圆锥的侧面积为 ________________ .三、解答题1.(北京文)(18)(本小题14分)如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形,平面 PAD 丄平面 ABCD ,PA 丄PD ,PA=PD ,E ,F 分别为AD ,PB 的中点.2.(北京理)(16)(本小题14 分) 如图,在三棱柱 ABC-ABG 中, CG _平面 ABC,D,E, F,G 分别为 AA, ,AC, AC 1,BB 1 的中点,AB=BC=・. 5,AC= AA =2.(I )求证:AC 丄平面BEF ; ( n )求二面角 B-CD-C 1的余弦值;(川)证明:直线 FG 与平面BCD 相交.C1(I )求证:PE 丄BC ; (H )求证:平面FAB 丄平面PCD ;(川)求证:EF //平面 PCD.B3.(江苏)(15)(本小题满分14分)《第15题)在平行六面体ABCD _A i B i CQ i 中,AA =AB, AR _ RG .求证:(1)AB//平面A i B i C ; (2)平面ABB1A1 _平面ABC .4.(浙江)(19)(本题满分15分)如图,已知多面体ABCA1B1C1, A A, B i B, C i C均垂直于平面ABC,/ ABC=120°, A1A=4, C1C=1 , AB=BC=B1B=2 .(I)证明:AB1丄平面A1B1C仁(H)求直线AC1与平面ABB1所成的角的正弦值.5.(天津文)(17)(本小题满分13分)如图,在四面体ABCD中,△ ABC是等边三角形,平面ABC丄平面ABD,点M为棱AB的中点,AB=2, AD=2 3,/ BAD=90 ° .(I )求证:AD丄BC;(H )求异面直线BC与MD所成角的余弦值;(川)求直线CD与平面ABD所成角的正弦值.(2) Q为线段AD上一点,2 P在线段BC上,且艸心严,6. (天津理)(17)(本小题满分13分)如图,AD// BC 且AD=2BC, AD _ CD , EG// AD 且EG=AD , CD// FG 且CD=2FG,DG _ 平面ABCD , DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MN //平面CDE ;(II )求二面角E — BC —F的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.7. (全国卷一文)(18)( 12分)如图,在平行四边形ABCM中,AB =AC =3,/ ACM =90,以AC为折痕将厶ACM折起, 使点M到达点D 的位置,且AB丄DA .(1)证明:平面ACD丄平面ABC ;A求三棱锥Q-ABP的体积.8. (全国卷一理)(18)(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△ DFC折起, 使点C到达点P的位置,且PF _ BF .(1)证明:平面PEF —平面ABFD ;(2)求DP与平面ABFD所成角的正弦值.9. (全国卷二文)(19)(12分)如图,在三棱锥P - ABC 中,AB=BC=2.2,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO _平面ABC ;(2)若点M在棱BC上,且MC =2MB,求点C到平面POM的距离.10. (全国卷二理)(20)(12分)如图,在三棱锥P -ABC 中,AB 二BC=2..2,PA 二PB 二PC 二AC = 4,O 为AC 的中点.(1)证明:PO _平面ABC ;(2)若点M在棱BC上,且二面角M -PA-C为30,求PC与平面PAM所成角的正弦值.11. (全国卷三文)(19)(12分)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C , D的点.(1)证明:平面AMD丄平面BMC ;(2)在线段AM上是否存在点P,使得MC //平面PBD ?说明理由.C12.(全国卷三理)(19)(12分)如图, D的点.(1)(2) 边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,证明:平面AMD丄平面BMC ;当三棱锥M —ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.。
2018年高考数学(理)考试大纲解读立体几何2018年考试大纲中的立体几何初步部分包含了以下内容:1.空间几何体学生需要认识柱、锥、台、球等几何体的结构特征,并且能够运用这些特征来描述现实生活中的简单物体。
此外,学生还需要能够画出简单空间图形的三视图,并且能够识别上述三视图所表示的立体模型。
学生还需要会用斜二侧法画出这些图形的直观图,并且了解不同的表示形式。
最后,学生需要了解球、棱柱、棱锥、台的表面积和体积的计算公式。
2.点、直线、平面之间的位置关系学生需要理解空间直线、平面位置关系的定义,并且了解一些可以作为推理依据的公理和定理。
学生需要以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
学生需要理解以下判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行;如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行;如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直;如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
学生还需要理解以下性质定理,并且能够证明:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行;如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行;垂直于同一个平面的两条直线平行;如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
最后,学生需要能够运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
3.空间向量与立体几何学生需要了解空间向量的概念,并且掌握空间向量的基本定理及其意义。
学生还需要掌握空间向量的正交分解及其坐标表示。
1.理解空间几何基本概念研究空间几何的基础是理解空间几何的基本概念,包括空间向量、直线的方向向量、平面的法向量等。
这些概念是空间几何的基础,掌握它们对于后续的研究和应用都非常重要。
2.掌握空间向量的线性运算及其坐标表示空间向量的线性运算包括加法、数乘和减法等,这些运算可以用坐标表示。
第8讲 空间几何体的三视图、表面积和体积题型1 几何体的三视图、表面积和体积(对应学生用书第27页)■核心知识储备………………………………………………………………………· 1.画几何体的三视图应遵循:“长对正、高平齐、宽相等”. 2.柱体、锥体、台体的侧面积公式(1)S 柱侧=ch (c 为底面周长,h 为高); (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).3.柱体、锥体、台体的体积公式(1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (不要求记忆).4.球体的体积公式V =43πR 3;表面积公式S =4πR 2(其中R 为球的半径).■典题试解寻法………………………………………………………………………·【典题1】 (考查多面体的体积问题)如图81,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为( )【导学号:07804054】图81A .64 B.643 C .16 D.163[思路分析] 三视图―→直观图―→多面体的体积. [解析] 利用正方体还原几何体,如图中的三棱锥D ABC 所示,由三视图可知△ABC 的边BC =2,BC 边上的高为4,三棱锥D ABC 的高为CD =4,故三棱锥D ABC 的体积为V =13×12×2×4×4=163.故选D.[答案] D【典题2】 (考查组合体的表面积问题)(2016·全国Ⅰ卷)如图82,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图82A .17πB .18πC .20πD .28π[思路分析] 三视图―→球体的78―→球体的半径―→几何体的表面积.[解析] 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.[答案] A【典题3】 (考查立体几何中的数学文化题)(2017·武昌区模拟)(立体几何中的数学文化题)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图83所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )图83A .1.2B .1.6C .1.8D .2.4[思路分析] 数学文化信息提取―→空间几何体的体积―→量的计算.[解析] 该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x 、3、1的长方体,∴组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π≈3),解得x =1.6.故选B. [答案] B [类题通法]1.在长方体或正方体中根据三视图还原几何体的直观图,能快速确定几何体中线面位置关系.2.空间几何体的体积与表面积求法三视图中数据的还原:分析三视图,从三视图中发现几何体中各元素间的位置关系及数量关系.割补法:求不规则几何体的体积或表面积时,通过割补转化成规则几何体求解. 等积变换:涉及三棱锥的体积,注意灵活选择底面和对应的高.■对点即时训练………………………………………………………………………·1.正方体ABCD A 1B 1C 1D 1中,E 为棱BB 1的中点(如图84),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )【导学号:07804055】图84C [过点A ,E ,C 1的平面与棱DD 1相交于点F ,且F 是棱DD 1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.]2.某几何体的三视图如图85所示,则该几何体的表面积为( )图85A.+22π2+1B .13π6C.+2π2+1D .+22π2+1C [由三视图可知该几何体是一个圆柱和半个圆锥的组合体,故其表面积为22π+1+2π×2+32π=+2π2+1,选C.]■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 3、T 4、T 5、T 6、T 11、T 14、T 15、T 16、T 17、T 19)题型2 球与几何体的切接问题(对应学生用书第28页)■核心知识储备………………………………………………………………………· 1.多面体与球接、切问题求解策略(1)截面法:过球心及多面体中的特殊点(一般为接、切点)或线作截面,利用平面几何知识寻找几何体中元素间的关系.(2)补形法:“补形”成为一个球内接长方体,则利用4R 2=a 2+b 2+c 2求解. 2.球的切、接问题的常用结论(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R . (3)棱长为a 的正方体的面对角线长等于内切球的直径,即2a =2R .(4)若直棱柱(或有一条棱垂直于一个面的棱锥)的高为h ,底面外接圆半径为x ,则该几何体外接球半径R 满足R 2=⎝ ⎛⎭⎪⎫h 22+x 2.■典题试解寻法………………………………………………………………………·【典题1】 (考查与球有关的几何体的切、接问题)(2016·南昌二模)一个几何体的三视图如图86所示,其中正视图是正三角形,则该几何体的外接球的表面积为( )【导学号:07804056】图86A.8π3 B .16π3C.48π3D .64π3[思路分析] 三视图―→空间几何体―→确定球心―→求半径R .[解析] 由三视图可知,该几何体是如图所示的三棱锥S ABC ,其中HS 是三棱锥的高,由三视图可知HS =23,HA =HB =HC =2,故H 为△ABC 外接圆的圆心,该圆的半径为2.由几何体的对称性可知三棱锥S ABC 外接球的球心O 在直线HS 上,连接OB .设球的半径为R ,则球心O 到△ABC 外接圆的距离为OH =|SH -OS |=|23-R |,由球的截面性质可得R =OB =OH 2+HB 2=|23-R |2+22,解得R =433,所以所求外接球的表面积为4πR 2=4π×163=64π3.故选D.[答案] D【典题2】 (考查与球有关的最值问题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[思路分析] 先计算球与直三棱柱三个侧面相切时球的半径,再计算球与直三棱柱两底面相切时球的半径,半径较小的球即为所求.[解析] 由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R .因为△ABC 的内切圆半径为6+8-102=2,所以R ≤2.又2R ≤3,所以R ≤32,所以V max =43π⎝ ⎛⎭⎪⎫323=92π.故选B.[答案] B[类题通法] 多面体与球接、切问题的求解策略涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点一般为接、切点或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,进而画出内接、外切的几何体的直观图,确定球心的位置,找到球的半径或直径与该几何体已知量的关系,列方程组求解.■对点即时训练………………………………………………………………………·1.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为4的正三角形,平面SAB ⊥平面ABC ,则三棱锥S ABC 的体积的最大值为( )【导学号:07804057】A.833B .33C. 3 D .2 3A [取AB 中点D ,连接SD ,CD ,可知当SD ⊥AB 时棱锥体积最大.因为平面SAB ⊥平面ABC ,交线为AB , 所以SD ⊥平面ABC . 解正三角形ABC 可得:S △ABC =43,球半径R =OC =43 3,SD =R 2-OD 2=2.故棱锥体积为13×2×43=833.]2.如图87,在四面体ABCD 中,AB ⊥平面BCD ,△BCD 是边长为6的等边三角形.若AB =4,则四面体ABCD 外接球的表面积为________.图8764π [由题意知四面体ABCD 的外接球与如图中正三棱柱的外接球是同一个球,记E 、F 分别为△AC ′D ′和△BCD 的中心,连接EF ,则EF 的中点O 为四面体ABCD 外接球的球心.连接AO ,AE ,BF ,因为底面是边长为6的正三角形,所以AE =23×6×sin 60°=23,OE =12AB =2,所以R 2=OE 2+AE 2=16,则外接球表面积S =4πR 2=64π.]■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 7、T 8、T 9、T 10、T 12、T 13、T 18、T 20)三年真题| 验收复习效果 (对应学生用书第29页)1.(2017·全国Ⅰ卷)某多面体的三视图如图88所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )【导学号:07804058】图88A .10B .12C .14D .16B [观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2×12×(2+4)×2=12.故选B.]2.(2017·全国Ⅱ卷)如图89,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )图89A .90πB .63πC .42πD .36πB [法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱被截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π故选B.法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合题意. 故选B.]3.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4C.π2D .π4B [设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.]4.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图810,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()图810A .14斛B .22斛C .36斛D .66斛B [ 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]5.(2015·全国Ⅱ卷)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ABC =V C AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ABC 最大为13×12R 2×R =36, ∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.]6.(2017·全国Ⅰ卷)如图811,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.【导学号:07804059】图811415 cm 3[如图,连接OD ,交BC 于点G ,由题意,知OD ⊥BC ,OG =36BC . 设OG =x ,则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2=25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积 V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4.令f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.∴三棱锥体积的最大值为415 cm 3.]。
2018届高三理科专题(四)立体几何专题姓名:班别:学号:【知识点一:三视图求表面积体积问题】1、(2017新课标I卷第7题).某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(). A.10 B.12 C.14 D.162、(2017新课标II卷第4题)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90πB.63πC.42πD.36π3、(2017年市一模第6题)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是4、(2016年市一模第11题)(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A)88246++(B)88226++(C)2226++(D)126224++5、(2016新课标I卷第6题)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()(A)17π(B)18π(C)20π(D)28π283π6、(2016新课标II 卷第6题) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π7、(2016新课标III 卷第9题)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )(B ) (C )90 (D )818、(2015新课标II 卷第6题)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .519. (2015新课标I 卷第11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( )(A )1 (B )2 (C )4 (D )8【知识点二:内接球与外接球的问题】1、(2017年市一模第10题)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC , 2PA AB ==,4AC =, 三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表面积为( )18365+54185+(A )8π (B )12π (C )20π (D )24π 2. (2015新课标II 卷第9题)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π3、(2017新课标III 卷第8题)8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ). A .πB .3π4C .π2D .π44、(2016年市一模第9题)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )(A )20π (B)3(C )5π (D)65、(2016新课标III 卷第10题)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB BC ,AB=6,BC=8,AA 1=3,则V 的最大值是( ) (A )4π (B )(C )6π (D ) 【知识点三:点线面的位置关系】1、(2016新课标I 卷第11题)平面a 过正方体ABCD-A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,平面ABCD=m ,平面ABA 1B 1=n ,则m ,n 所成角的正弦值为( ) (A)(B) (C) (D)2、(2016新课标II 卷第14题)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)⊥92π323πa ⋂a⋂22313⊂【知识点四:★★设置线面角与面面角的定义作为条件障碍,考察立体几何】1、(2017新课标II 卷第19题)如图所示,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=,E 是PD 的中点. (1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45,求二面角M AB D --的余弦值.2、(2016年广州市一模19)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,ACBD O =,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ;(Ⅱ)若60BAD ∠=,求二面角1B OB -EM DCBAP3、(阅读)(2016新课标I 卷第18题)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,,且二面角D -AF -E 与二面角C -BE -F 都是. (I )证明:平面ABEF EFDC ; (II )求二面角E-BC-A 的余弦值.2、【答案】试题分析:(I )证明平面,结合平面,可得平面平面.(II )建立空间坐标系,利用向量求解. 试题解析:(I )由已知可得,,所以平面.又平面,故平面平面.(II )过作,垂足为,由(I )知平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(I )知为二面角的平面角,故,则,,可得,,,.由已知,,所以平面.又平面平面,故,.由,可得平面,所以为二面角的平面角,.从而可得.所以,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,同理可取.则. 故二面角E BC A 的余弦值为.90AFD ∠=60⊥ΑF ⊥ΕFDC F A ⊂ΑΒΕF ΑΒΕF ⊥ΕFDC ΑF DF ⊥ΑF FE ⊥ΑF ⊥ΕFDC F A ⊂ΑΒΕF ΑΒΕF ⊥ΕFDC D DG ΕF ⊥G DG ⊥ΑΒΕF G GF x GF G xyz -DFE ∠D AF E --60DFE ∠=2DF =3DG =()1,4,0A ()3,4,0B -()3,0,0E -()0,0,3D //AB EF //AB EFDC ABCDEFDC DC =//AB CD //CD EF //BE AF BE ⊥EFDC C ΕF ∠C BE F --60C ΕF ∠=()2,0,3C -()1,0,3ΕC =()0,4,0ΕΒ=()3,4,3ΑC =--()4,0,0ΑΒ=-(),,x y z =n ΒC Ε00ΕC ΕΒ⎧⋅=⎪⎨⋅=⎪⎩n n 3040x z y ⎧+=⎪⎨=⎪⎩()3,0,3=-n m ΑΒCD 0ΑC ΑΒ⎧⋅=⎪⎨⋅=⎪⎩m m ()0,3,4=m 219cos ,⋅==-n m n m n m 219-A EDCB A【知识点五:★★★重点考察面面垂直、线面垂直、面面角(含折叠问题)】 1、 (2017新课标I 卷第18题)(本小题满分12分)如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值. 2、(2017年市一模第19题)(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB ⊥BC ,BD ⊥DC , 点E 是BC 边的中点, 将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE , 得到如 图2所示的几何体.(Ⅰ) 求证:AB ⊥平面ADC ;(Ⅱ) 若1AD =,二面角C AB D --的平面角的正切值为6,求二面角B AD E -- 的余弦值.图1 图2DCBAP【知识点六:线面平行、线面角、线线角】 1、(2016新课标III 卷第19题)(本小题满分12分)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (I )证明MN ∥平面P AB;(II )求直线AN 与平面PMN 所成角的正弦值.2、(2017新课标II 卷第10题)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()A .3B .15C .10D .3【知识点一:三视图求表面积体积问题答案】1.解析由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面()24226S =+⨯÷=梯,6212S =⨯=全梯. 故选B.2、B3、D4、A5、【答案】A 由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A . 6、【答案】C 试题分析:由题意可知,圆柱的侧面积为,圆锥的侧面积为,圆柱的底面面积为,故该几何体的表面积为,故选C.7、B 试题分析:由三视图知该几何体是一个斜四棱柱,所以该几何体的表面积为,故选B .8、【答案】D 【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .1878R 37428ππR 833V =⨯=R 2=7822734π2π217π84⨯⨯+⨯⨯=12π2416πS =⋅⋅=2π248πS =⋅⋅=23π24πS =⋅=12328πS S S S =++=236233233554185S =⨯⨯+⨯⨯+⨯⨯=+9、B 【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r =2,故选B.【知识点二:内接球与外接球的问题答案】1、C2、【答案】C3.解析由题可知球心在圆柱体中心,圆柱体上下底面圆半径r = 则圆柱体体积23ππ4V r h ==.故选B.4、D5、【答案】B 试题分析:要使球的体积最大,必须使球的半径最大.因为△ABC 内切圆的半径为2,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值,为,此时球的体积为,故选B . 【知识点三:点线面的位置关系答案】1、【答案】A试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.过作,交的延长线于点E ,连接,则为.连接,过B 1作,交的延长线于点,则为.连接BD ,则,则所成的角即为所成的角,为,故所成角的正弦值为,选A.2、【答案】②③④试题分析:对于①,,则的位置关系无法确定,故错误;对于②,因为,所以过直线作平面与平面相交于直线,则,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.【知识点四:★★★设置线面角与面面角的定义作为条件障碍,考察立体几何】1.解析(1)令PA 中点为F ,联结EF ,BF ,CE .V R 32334439()3322R π=π=π11CBD ABCD 'm 11CB D 11ABB A 'n α∥11CB D ','m m n n ∥∥,m n ','m n 1D 11D E B C ∥AD CE CE 'm 1A B 111B F A B ∥1AA 1F 11B F 'n 111,BD CE B F A B ∥∥','m n 1,A B BD 60︒,mn2,,//m n m n αβ⊥⊥,αβ//n αn γαc //n c ,,m m c m n α⊥⊥⊥所以所以因为E ,F 为PD ,PA 中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 又因为12AB BC AD ==,所以=1//2BC AD ,所以=//EF BC .所以四边形BCEF 为平行四边形,所以CE BF ∥. 又因为BF PAB ⊂面,所以CE ∥平面PAB .(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则()000O ,,,()010A -,,,()110B -,,,()100C ,,,()010D ,,, (00P .M 在底面ABCD 上的投影为M ',所以M M BM ''⊥.因为45MBM '∠=,所以MBM '△为等腰直角三角形. 因为POC △为直角三角形,OC OP =,所以60PCO ∠=.设MM a '=,CM '=,1OM '=.所以100M ⎛⎫' ⎪ ⎪⎝⎭,,.BM a a '===⇒=112OM '==-.所以100M ⎛⎫'- ⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭,11AM ⎛= ⎝⎭,(100)AB =,,.设平面ABM 的法向量11(0)y z =,,m .110y +=,所以(02)=,m , ()020AD =,,,()100AB =,,.设平面ABD 的法向量为()200z =,,n ,(001)=,,n .所以cos ,⋅==⋅m n m n m n所以二面角M AB D --.2、(Ⅰ)证明:因为1A O ⊥BD ⊂平面ABCD ,所以1A O BD ⊥因为ABCD 是菱形,所以CO BD ⊥因为1AO CO O =,所以BD ⊥平面1A CO 因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1A CO .…………………………………………………4分 (Ⅱ)解法一:因为1A O ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B ,()C ,()0,A ,()10,0,1A ,所以()11BB AA ==1,设平面1OBB 的法向量为n 因为()1,0,0OB =,11,OB =所以0,0.x x z =⎧⎪⎨+=⎪⎩令1=y ,得(0,1,=n .…………………………………………………………9分 同理可求得平面1OCB 的法向量为()1,0,1=-m .………………………………10分所以cos ,4<>==n m .…………………………………………………11分 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为4-.……………………………………12分解法二:由(Ⅰ)知平面连接11A C 与11B D 交于点O 连接1CO ,1OO ,因为11AA CC =,1//AA 所以11CAAC 因为O ,1O 分别是AC ,11所以11OA O C 为平行四边形.且111O C OA ==. 因为平面1ACO 平面11BB D D 1OO =,过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,11122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1A O ⊥11A B ,所以1OB == 因为11A B CD =,11//A B CD , 所以11B C A D ===.因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分所以11CB OC CK OB ===⨯9分所以KH =.…………………………………………………10分所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4-.……………………………………12分【知识点五:★★★重点考察面面垂直、线面垂直、面面角(含折叠问题)答案】1、 解析(1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥. 又因为AB CD ∥,所以PD AB ⊥,又因为PD PA P =,PD 、PA ⊂平面PAD 所以AB ⊥平面PAD ,又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD (2)取AD 中点O ,BC 中点E ,联结PO ,OE ,因为AB CD ∥,所以四边形ABCD 为平行四边形,所以OE AB ∥. 由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD , 又PO 、AD ⊂平面PAD ,所以OE PO ⊥,OE AD ⊥.又因为PA PD =,所以PO AD ⊥,所以PO 、OE 、AD 两两垂直, 所以以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -设2PA =,所以()00D ,,)20B ,,(00P,()20C ,,所以(0PD =-,,(22PB =,,()00BC =-,设()x y z =n ,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得20y +=-=⎪⎩.令1y =,则z ,0x =,可得平面PBC 的一个法向量(01=n ,.因为90APD ∠=︒,所以PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD , 所以PD AB ⊥,又PA AB A =,所以PD ⊥平面PAB , 即PD 是平面PAB的一个法向量,(0PD =-,,所以cos PD PD PD ⋅===⋅n n n,. 由图知二面角A PB C --为钝角,所以它的余弦值为2、 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分 因为AB ⊂平面ABD ,所以DC ⊥AB . …………………………………2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, …………………………………3分所以AB ⊥平面ADC . ……………………………………………4分(Ⅱ) 由(Ⅰ)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为∠CAD . ……5分又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC ⊥AD .依题意6tan ==∠ADCDCAD . ……………………………………………………6分 因为1AD =,所以6=CD .设()0AB x x =>,则12+=x BD .依题意△ABD ~△BDC ,所以AB CDAD BD =,即1612+=x x .………………7分解得x =3AB BD BC ====. ………………8分法1:如图所示,建立空间直角坐标系D xyz -,则)0,0,0(D ,)0,0,3(B ,)0,6,0(C,E⎫⎪⎪⎝⎭,A ⎝⎭, 所以3DE ⎛⎫= ⎪ ⎪⎝⎭,3DA ⎛=⎝⎭.由(Ⅰ)知平面BAD 的法向量)0,1,0(=.……………………………………………9分 设平面ADE 的法向量),,(z y x m =由0,0,m DE m DA ⎧⋅=⎪⎨⋅=⎪⎩得0,0.x y x z +=+= 令6=x ,得y z ==所以)3,3,6(--=. ………………………………………………10分G F EDCBA所以21,cos -=>=<m n . ………………………………………………11分由图可知二面角B AD E --的平面角为锐角, 所以二面角B AD E --的余弦值为12. ……………………………………………12分 法2 :因为DC ⊥平面ABD , 过点E 作EF //DC 交BD 于F , 则EF ⊥平面ABD . 因为AD ⊂平面ABD ,所以EF ⊥AD . …… ……………………………………… 9分过点F 作FG ⊥AD 于G ,连接GE ,所以AD ⊥平面EFG ,因此AD ⊥GE .所以二面角B AD E --的平面角为EGF ∠. ………………………………………10分由平面几何知识求得2621==CD EF ,2221==AB FG ,所以EG ==所以cos ∠EGF =21=EG FG . ………………………………………………11分 所以二面角B AD E --的余弦值为12. ………………………………………………12分【知识点六:线面平行、线面角、线线角答案】1、【答案】解:(I )由已知得. 取的中点,连接,由为中点知,. 又,故,四边形为平行四边形,于是.因为平面,平面,所以平面. (II )取的中点,连结.由得,从而,且. 以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,,,,, 232==AD AM BP T TN AT ,N PC BC TN //221==BC TN BC AD //=TN AM ∥AMNT MNAT ⊂AT PAB ⊄MN PAB //MN PAB BC E AE AC AB =BC AE ⊥AD AE ⊥5)2(2222=-=-=BC AB BE AB AE A AE x xyz A -)4,0,0(P )0,2,0(M )0,2,5(C )2,1,25(N,,. 设为平面的一个法向量,则即 可取. 于是.2、答案C ,提示,转化成三个基底表示,或者建立空间直角坐标系。