气象统计方法之气象资料及其表示方法
- 格式:ppt
- 大小:4.99 MB
- 文档页数:124
气象资料及其表示方法 选择最大信息的预报因子 气候稳定性检验 气候趋势分析 一元线性回归 多元线性回归 逐步回归 气象变量场时空结构分离 复习题:1、 气象统计预报是利用 统计学方法对气象(气候)样本进行 分析来估计和推测 总体 的规律性。
2、 突变可分为: 均值突变、变率突变、趋势突变 。
3、 气候统计诊断分析与天气统计诊断分析的不同点是研究对象不同, 一个是(气候特征),一个是(天气特征)。
相同点是数据资料都 必须是(长时间)的观测数据。
4、 ()需要对结论进行一系列的推断,分析结论的可信程度以及 是否为因果关系。
A 统计分析;B 统计诊断;5、 采用统计诊断的方法研究天气、气候现象,可以用于哪些方面( )<多选>。
A 了解区域性或者全球性天气、 气候现象的时空分布特征、 变化规律 及异常程度;B 探索气候变量及其与其它物理因素之间的联系;学习内容:Chapter 1-Chapter 2-Chapter 3-Chapter 4-Chapter 5-Chapter 6-Chapter 7-Chapter-8-C 对数值模拟结果与实际变化状况之间的差异进行统计诊断,为改进模式提供线索和指导;6、对天气、气候现象进行统计诊断分析,一般分为四步。
首先,();其次,();再次,();最后,()。
A科学综合和诊断;B选择诊断方法;C资料预处理;D收集资料;7、气候统计预测,一般分为四步。
首先,();其次,();再次,();最后,()。
A建立统计模型;B统计检验;C预测结论;D收集资料;8、统计预测模型在利用大量()观测资料对气候系统内部或与其它变量之间关系的变化规律及特征分析基础上建立的,用于对()状态进行估计。
在这一预测过程中,假设气候变化的成因和物理机制至少在()期间与()期间一致;气候系统保持稳定。
A过去;B未来;C预测;D观测;9、气候统计预测过程主要由以下4 个要素构成:1、(),例如:夏季降水量,8 月份高温日数、暴雨日数;2、(),通常为从某些统计上显著相关的预报因子群提取的有效信息;3、(),根据数据性质、预测对象和预测因子特点,选择合适的统计预测模型;4、(),对未来气候变化状态时间、空间、数量、性质等方面的预测。
《气象资料的统计降尺度方法综述》篇一一、引言随着全球气候变化日益显著,气象资料的重要性愈发凸显。
统计降尺度方法作为气象学领域的一种重要技术手段,在气候模式模拟、气象预报、灾害预警等方面具有广泛的应用。
本文旨在综述气象资料的统计降尺度方法,为相关研究提供参考。
二、统计降尺度方法概述统计降尺度方法是一种基于大尺度气象资料与小尺度气象要素之间统计关系的技术手段,通过分析大尺度气象场与小尺度气象要素之间的关联性,实现从大尺度资料到小尺度气象要素的预测和推算。
该方法主要包括以下几种类型:1. 回归分析方法:利用历史气象数据,建立大尺度气象场与小尺度气象要素之间的回归模型,实现降尺度预测。
2. 插值方法:根据已知的观测点数据,采用空间插值方法推算未知区域的气象要素值。
常见的插值方法包括克里金插值法、反距离加权法等。
3. 模式模拟与降尺度相结合的方法:通过将大尺度的气候模式输出与局部尺度的地理、生态等信息相结合,建立更精确的降尺度模型。
三、各类统计降尺度方法的比较分析各类统计降尺度方法在应用中各有优劣。
回归分析方法适用于具有明显线性关系的变量之间,但需要大量的历史数据支持;插值方法简单易行,但需要考虑空间异质性和地形因素的影响;模式模拟与降尺度相结合的方法可以更好地考虑多种影响因素,但模型构建相对复杂。
在实际应用中,应根据具体需求和资料条件选择合适的降尺度方法。
四、统计降尺度方法的应用领域统计降尺度方法在气象学领域的应用十分广泛,主要包括以下几个方面:1. 气候模式模拟:通过建立大尺度的气候模式与小尺度的地理、生态等信息之间的联系,实现气候模式的精细化和区域化。
2. 气象预报和灾害预警:利用统计降尺度方法对大尺度的气象信息进行预测和推算,为气象预报和灾害预警提供支持。
3. 农业、林业等领域的决策支持:通过分析气象要素与农作物、森林等的关系,为农业、林业等领域的决策提供科学依据。
五、未来发展趋势及展望随着大数据、人工智能等技术的发展,未来的统计降尺度方法将更加精细化和智能化。
现代气象统计方法一、EOF1、寻找Vk特征向量的原则:使得这些空间型为基向量展开该场时,场的总误差方差达最小,或使空间型和时间系数表示出场的总方差最小。
2、场的总方差:用特征值表示方差贡献率计算公式:Vk的方差贡献率:,前K个空间型的累积方差贡献率3、特征向量性质:相互正交,各自归一时间系数性质:相互正交,各自的方差等于对应的特征值,方差自大到小排列。
4、写出标准化距平场EOF主要结果(特征向量、时间系数)的两种表达式:对于场的EOF展开,分量形式:,i=1,2,3.....m,t=1,2,3.....n矩阵形式:对于空间型的表示,1、Vk图,采用距平为分析对象,只给出分布形式,其分量值大小没有意义。
2、图,取为新的空间型,如果分析对象是标准化的这时的图又是每个格点上的原变量与第k个主成分的相关系数分布图,值在-1到+1之间,所以,图也称特征向量图或EOF 图,它的空间分布形式与Vk图完全一样,但包含了更多的数量信息。
5、时空转换技术:当空间格点m远大于样本数n时,计算矩阵的特征根很困难,使用时空转换技术。
6、求特征值、特征向量、方差贡献率、相关系数二、主成分分析(PCA)1、概念:对于反映某现象的所有变量(设为m个,m≥2),构成k个新变量,一则要求k 各新变量相互相关,二则要求k个新变量在反映现象的信息尽可能保持原有信息的原则下,使k<m,"信息"的大小用离差平方和或方差来衡量。
这种方法称为主成分分析或主分量分析。
2、主成分的定义和性质:在EOF展开中,把m个格点上给定值的气象变量场看作PCA里的m维随机变量,则EOF 展开的时间序列完全满足PC的定义,就死这里要寻求的新变量,就是第k个主成分。
性质1:主成分的协方差矩阵是对角矩阵性质2:所有原变量方差之和等于所有主成分方差之和性质3:第k个主成分与第i个原变量之间的相关系数性质4:性质5:3、EOF和PCA的功能。
EOF:经验正交函数,从气象变量场的资料集中识别出主要的相互正交的空间分布。
51气象中的统计方法总结2、判别分析;广东省徐闻气象局[20]用二级判别做台风登陆地段;3、相关分析;近20年来在气象统计中用得较多的主要有典型相关(;奇异值分解(SVD)也是提取两个场的最大线性相关;4、气象场的分解及其应用;50年代中期由Loreng引入到大气科学研究中的;4.1经验正交函数(EOF)分解;章基嘉等[30]应用经验正交函数对亚洲500hP;4.2主成份(主分量)2、判别分析广东省徐闻气象局[20]用二级判别做台风登陆地段的预报。
Fisher、Bayes以及逐步判别等虽然在气象实际中广泛应用,但严格地说,这些方法仅当变量为正态分布时才可应用, Logistic判别对变量的基本假设条件较宽,对未经正态检验的变量应用本方法是可行的,且可用于既有连续变量又有多值离散变量的情形。
吕纯濂等[21] 将Logistic判别引入中国气象界,并研究了二次Logistic判别[22]分析及逐步判别[23]在气象中的应用。
3、相关分析近20年来在气象统计中用得较多的主要有典型相关(CCA)分析和奇异值分解(SVD)方法。
CCA是提取两个气象场的最大线性相关摸态的方法。
朱盛明、祝浩敏[24]在数值预报的解释应用中用典型相关分析提取有物理意义的预报因子作预报方程。
陈嘉玲、谢炯光[25]用典型相关分析作中期冷空气预报。
黄嘉佑[26]用典型相关分析作副高的统计动力预报。
近年来发展了一种新的CCA改进方法,称为典型相关分析的BP(Barnert 和Preisendorfer)方法,在气象统计中也得到了应用[27]。
奇异值分解(SVD)也是提取两个场的最大线性相关摸态的方法,SVD 方法可以变成是两个要素场关系的扩大EOF分析。
谢炯光等[28]用奇异值分解方法,求出了广东省前汛期(4-6月)西太平洋场海温与广东省降水场的6对奇异向量,来作汛期降水趋势预报。
江志红等[29]用SVD方法讨论了中国夏半年降水与北太平洋海温异常的关系。
气象预测中的统计学方法气象预测是人类生产生活中非常重要的一项工作,它的准确性关系到许多方面的生产生活,包括交通、旅游、农业等多个领域。
其中,统计学方法在气象预测中起着重要作用。
一、统计学方法在气象预测中的应用气象预测的主要目的是根据已知的气象数据预测将来的天气情况。
而气象数据的采集和分析中,统计学方法是关键。
常用的方法包括:1.时间序列分析时间序列分析是根据历史气象数据来预测未来的天气情况。
这种方法是基于假设历史数据中的模式在未来也是适用的。
在时间序列分析中,常用的方法包括指数平滑法、ARIMA模型等。
2.回归分析回归分析是根据一些因素来预测天气情况。
这些因素可以是气象数据,也可以是其他因素,比如地理位置、海拔高度、风向等。
通过选择适当的因素,回归分析可以得出更加准确的预测结果。
3.聚类分析聚类分析是将历史气象数据按照某种规律分成若干类。
通过比较不同类之间的差异,可以得出不同类和天气情况之间的关系。
这种方法在比较复杂的气象数据分析中比较有效。
以上三种统计学方法在气象预测中被广泛应用,可以帮助气象工作者更加准确地预测天气情况。
但是,这些方法的准确性也取决于数据的质量和分析的方法。
二、气象预测中统计学方法存在的问题虽然统计学方法在气象预测中得到了广泛应用,但是也存在着一些局限性。
1.历史数据滞后统计学方法是通过历史数据来预测未来情况。
但是,气象数据的采集通常都有一定的时间滞后性,也就是说,当我们采集到某一气象数据时,可能已经过去了一段时间。
这就导致了历史数据和未来情况之间的差异。
2.不可控性因素气象数据虽然是通过测量得到的,但是与天气情况相关的因素非常多,而这些因素往往是不可控的。
比如,气象数据不可能测量到受大气污染影响而产生的变化。
这就导致了统计学方法的局限性。
三、气象预测中统计学方法的未来发展方向为了提高气象预测的准确性,应用更加先进的统计学方法是必要的。
1.机器学习方法机器学习是一种可以根据数据自动学习和优化模型的方法。
第一章气象资料及其表示方法一、数据资料的统计特征要素样本中资料分布的特点----用一些统计量表征。
1、平均值含义:平均值是要素总体数学期望的一个估计。
反映了该要素的平均(气候)状况。
2、距平含义:反映数据偏离平均值的状况,也是通常所说的异常。
**中心化**概念:把资料处理为距平的方法叫中心化特性:距平值的平均值为0,使用方便;直接作为预报值,比较直观(偏高/偏低)。
3、方差和均方差(标准差)含义:是均方差,描述样本中资料与平均值差异的平均状况,反映变量围绕平均值的平均变化程度(离散程度),是方差。
标准差大-----变化幅度大;均方差小的要素预报比大容易,变化幅度小;变量减去某常数后均方差相同。
累积频率:变量小于某上限的次数与总次数之比。
二、总体和样本1、总体(母体):统计分析对象的全体。
2、样本:总体中的一部分。
三、数据的标准化各要素单位不同、平均值和标准差也不同。
为使它们在同一水平上比较,采用标准化方法,使它们变成同一水平的无单位的变量----标准化变量(消除单位量纲的影响)。
证明:(1)标准化变量的平均值为0。
(2)标准化变量的方差为1。
峰度系数与偏度系数是用来衡量随机变量分布密度曲线形状的数字特征,描述了气候变量的分布特征。
偏度系数:表征曲线峰点对期望值(平均值)偏离的程度。
峰度系数:表征分布形态图形顶峰的凸平度(即渐进于横轴的陡度)。
三、状态资料和统计特征1.状态资料(离散型随机变量)表征气象要素的各种状态,观测结果无法用数据表示。
2.频率表、分布列----------列出各个状态出现的频率。
对样本而言是频率表,总体而言就是分布列。
四、多要素的气象资料两个方面来研究问题:“R型分析”:研究不同变量(要素)或同一要素不同格点之间的关系。
(行)“Q型分析”:研究样本之间的关系(列)。
五、统计量---协方差和协方差矩阵1.协方差衡量任意两个气象要素(变量)之间关系的统计量(正、负相关关系)(另外一个统计量叫相关系数)(距平的内积)反映了两个气象要素异常关系的平均状况,或者两个变量的正、负相关关系。
大气科学中的气象数据分析方法在大气科学领域,气象数据分析是理解和预测天气现象的关键环节。
通过对各种气象数据的收集、处理和解读,我们能够更好地掌握大气的变化规律,为天气预报、气候研究以及应对气象灾害等提供有力的支持。
气象数据的来源多种多样,包括地面气象观测站、气象卫星、雷达、探空仪等。
这些设备和系统收集到的数据涵盖了温度、湿度、气压、风速、风向、降水等众多气象要素。
然而,要从这些海量的数据中提取有价值的信息,就需要运用一系列科学有效的数据分析方法。
首先,统计分析是气象数据处理中最基础也最常用的方法之一。
通过计算均值、方差、标准差等统计量,我们可以了解气象要素的一般特征和变化范围。
例如,通过计算某地区多年的平均气温,我们能够判断该地区的气候类型;而通过分析气温的方差,我们可以了解气温的年际变化程度。
此外,相关分析和回归分析在气象研究中也具有重要作用。
相关分析可以帮助我们确定不同气象要素之间的关联程度,比如研究气温与降水之间的相关性。
回归分析则可以建立气象要素之间的数学模型,从而进行预测和估计。
时间序列分析在气象数据分析中也占有一席之地。
气象数据往往具有明显的时间特征,例如气温、降水等随季节和年份的变化。
时间序列分析方法,如移动平均、指数平滑和自回归移动平均(ARMA)模型等,可以用来平滑数据、去除噪声,并预测未来的气象变化趋势。
以气温为例,我们可以利用时间序列分析方法,基于过去几十年的气温数据,对未来几年的气温进行预测。
在气象数据分析中,聚类分析也有其应用场景。
聚类分析可以将具有相似气象特征的地区或时间段进行分类。
比如,我们可以根据不同地区的降水和温度模式,将全球气候划分为不同的气候带。
这有助于我们更好地理解不同地区的气候特点,并为农业生产、城市规划等提供参考。
另外,主成分分析和因子分析在处理多变量气象数据时非常有用。
当我们面对多个相互关联的气象要素时,主成分分析可以将这些变量转化为一组互不相关的综合变量,即主成分。