第二节角平分线定理(课资类别)
- 格式:doc
- 大小:146.50 KB
- 文档页数:4
角平分线的性质定理(教案)数学学院07级E班金发权(一)课题:角平分线的性质定理(二)课型:新授课(三)教学目标1、知识与技能:(1)、巩固利用尺规作已知角角的平分线的方法;(2)、掌握角的平分线性质定理的内容及其证明.(3)、能够运用性质定理证明两条线段相等。
2、过程与方法:(1)、通过定理的推导,提高学生的归纳能力;(2)、通过定理的初步应用,提高学生的逻辑推理能力及创新的能力。
3、情感态度价值观:(1)、通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。
(2)、体会知识点之间的紧密联系。
(四)教学重难点重点:角平分线的性质定理及其运用。
难点:角平分线的性质定理的运用。
(注:学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。
)(五)教具:多媒体,直尺,圆规等。
(六) 教学方法:启发探究式作 业:1、已知:如图,△ABC 的角平分线BM 、CN 相交于点P. 那么点P 是否在∠A 的角平分线上,请说明理由。
目的:一例多用,同时为下一节课逆定理的学习服务。
下节课既可以利用作业 指正学生在运用性质定理时的不足之处, 又可以进行逆定理的引入。
(2)、P22习题11.3:第2题。
目的:对本节所学知识进行巩固,同时也是对课堂教学实效的反馈,从而分析原因,改进教学方法。
板书设计:角平分线的性质定理1、演示角平分线的画法;2、定理的猜想及证明;3、角平分线的性质定理及其强调说明4、例题教解5、课后小结A B PNM。
第二节角平分线定理【知识点拨】1、三角形内角平分线的性质定理:三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。
(试证明)2、三角形外角平分线性质定理:三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。
3、常见问题对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。
【赛题精选】例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。
求CD的长。
例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。
求A D·DC的值。
(2001年全国竞赛题)【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。
计算时要注意对应关系,正确书写比例式。
对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。
例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。
求证:BCAC AB ID AI +=。
例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。
试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀请赛题)【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到21x b x a =,再证21x x =,从而得到a =b 。
本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。
例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。
§1.4角平分线(二)授课时间:年月日星期课型:审核:学习目标:1、证明与角的平分线的性质定理和判定定理相关的结论.2、角平分线的性质定理和判定定理的灵活运用.学习重点:1、三角形三个内角的平分线的性质.2、综合运用角平分线的判定和性质定理,解决几何中的问题.学习难点:角平分线的性质定理和判定定理的综合应用.学习过程:一.导学问题l :在习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?你能证明自己发现的结论一定正确吗?问题2:说一说你的证明思路?二.自学问题3:已知:如图,设△ABC的角平分线.BE、CF相交于点P,Array求证:P点在∠B AC的角平分线上.证明:问题4:在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,你还发现什么“附带”的成果呢?由此可得定理:三角形的三条角平分线,并且这一点到的距离相等.三.互学问题6:如图:直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?问题7:如图,在△ABC 中.AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E .(1)已知CD=4 cm ,求AC 的长;(2)求证:AB=AC+CD .四.测学:问题8、已知:如图,P 是∠AOB 平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C 、D . 求证:(1)OC=OD ;(2)OP 是CD 的垂直平分线.五.思学1、在问题8中,图中还哪些相等的线段和角呢?2、本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.你在学习时还有哪些困惑?教学反思:A DB EC l 3l 21l C B A PD AE C O B。
第二节角平分线定理
【知识点拨】
1、三角形内角平分线的性质定理:
三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。
(试证明)
2、三角形外角平分线性质定理:
三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。
3、常见问题
对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。
【赛题精选】
例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。
求CD的长。
例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。
求A D·DC的值。
(2001年全国竞赛题)
【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。
计算时要注意对应关系,正确书写比例式。
对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。
例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。
求证:BC
AC AB ID AI +=。
例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分
∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。
试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀
请赛题)
【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到2
1x b x a =,再证21x x =,从而得到a =b 。
本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。
例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。
求证:AC ∥DF 。