四种命题的概念
- 格式:ppt
- 大小:286.50 KB
- 文档页数:10
四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
四种命题112四种命题学习目标四种命题的内在联系,能根据一个命题构造它的逆命题、否命题和逆否命题学习过程四种命题的概念(1)对两个命题,如果一个命题的条和结论分别是另一个命题的结论和条,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若,则”,则逆命题为:“ ”(2) 一个命题的条和结论恰好是另一个命题的条的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”(3)一个命题的条和结论恰好是另一个命题的结论的否定和条的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”练习:下列四个命题:(1)若是正弦函数,则是周期函数;(2)若是周期函数,则是正弦函数;(3)若不是正弦函数,则不是周期函数;(4)若不是周期函数,则不是正弦函数(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知、、、是实数,若子,则”写出逆命题、否命题、逆否命题变式:设原命题为“已知、是实数,若是无理数,则、都是无理数”,写出它的逆命题、否命题、逆否命题动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称小结这节你学到了一些什么?你想进一步探究的问题是什么?后作业1写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若都是偶数,则是偶数;(2)若,则方程有实数根2把下列命题改写成“若,则”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等6命题“如果,那么”的逆否命题是()A如果,那么B如果,那么如果,那么D如果,那么7若ab=0则a=0或b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:8若则a=0且b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:四种命题二时学习目标1四种命题关系图;2四种命题真假关系3,命题的否定与原命题真假关系,否命题及命题的否定形式区别。
《四种命题》的教学设计任何一种教学都要从设计开始。
教学设计是一种按照指示去实施、完成短期任务的活动,它是一个系统、有秩序并且依据科学原理和方法的活动,它的目的是发挥教学的有效性,通过一定的步骤,逐渐实现预定的教学目标。
和其它教学一样,四种命题也需要一定的教学设计,实现教学目标。
一、四种命题的定义:1、问句陈述命题:这是一种最基本的命题,也称为“否定题”,是指在问句中提出的疑问,要求考生按照是非正误选择。
2、直接表达命题:这种命题只要求考生选择相应的答案,无需写出任何理由。
3、简答命题:这种命题要求考生简单地回答问题,可以有简短的解释,也可以有理由,但也不能过长。
4、分析命题:这种命题要求考生在答题的基础上,进一步分析问题,提出解决方法。
二、四种命题教学设计:1、针对问句陈述命题:在本教学设计上,首先在课前对问句陈述命题进行讲解,介绍此类命题的特点,如果是否定题,要求考生正确选择“正确”或“错误”,如果是肯定题,考生应正确选择是的答案。
接着让考生实践,根据讲解的内容,解答问句陈述命题。
2、针对直接表达命题:首先老师对学生进行直接表达命题的讲解,引导学生正确理解命题的内容,然后在根据老师提出的问题,理解命题的语义,并进行实践,反复锻炼。
3、针对简答命题:在教学中,老师首先对简答命题进行讲解,然后让学生充分利用自己的知识,有理有据地回答问题。
最后,让学生总结和归纳出学习要点,加深印象。
4、针对分析命题:教学活动中,老师首先对分析命题进行讲解,在讲解的过程中,要教会学生弄清问题的细节和特点,然后在根据问题的特点,提出解决方案,最后让学生对解决方案进行综合考虑,给出自己的解决方案。
三、四种命题教学反馈:教学中,学生从听课到实践过程中要及时进行反馈,及时调整学习策略,完善有关教学内容。
1、问句陈述命题:在教学反馈的过程中,要让学生及时反思,对自己掌握了解的情况进行评估,对未理解的地方思考、猜测,课堂上反馈口化,实践层面上利用简单的自测题进行反馈,并及时矫正向正确的方向前进。
命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。
命题可以是直言命题、条件命题、模态命题和复合命题。
下面分别介绍这四种形式的命题,并给出相应的例子。
1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。
例如:“所有猫都是哺乳动物。
”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。
2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。
条件命题通常由两个部分组成:前件和后件。
前件是条件,后件是结果。
例如:“如果天下雨,那么地会湿。
”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。
3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。
例如:“明天可能会下雨。
”这个命题就是一个模态命题,表达了明天下雨的可能性。
4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。
复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。
例如:“如果天下雨,那么地会湿,但是今天没下雨。
”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。
以上就是四种形式的命题及其举例。
在逻辑学中,这些命题形式被广泛用于推理和论证。