三相异步电动机连续控制
- 格式:ppt
- 大小:996.50 KB
- 文档页数:19
实验报告三相异步电动机连续控制
本实验是通过对三相异步电动机进行连续控制,来探究其运行特性和控制方法。
实验
过程中,我们使用了三相交流电源、三相异步电动机、控制电路等设备,通过控制电路来
调整电机的转速、运行方向以及运行状态等。
首先,我们对电机进行了正逆转的测试。
在控制电路中设置了正反转开关,通过控制
开关的状态来控制电机的正反转。
实验结果表明,电机能够较为稳定地在正反转状态下运行。
接着,我们进行了电机的转速控制实验。
在控制电路中设置了一个可变电位器,通过
调整电位器的电阻值来改变电机的转速。
实验结果表明,电机的转速显著受到电位器电阻
值的影响,电阻值越大,电机转速越慢,反之亦然。
最后,我们进行了电机的运行状态控制实验。
在控制电路中设置了一个自动控制开关,通过改变自动控制开关的状态来改变电机的运行状态。
实验结果表明,电机的运行状态可
以通过控制电路的设置来实现自动控制,例如实现电机的自动启停等。
总之,通过对三相异步电动机进行连续控制实验,我们深入了解了电机的运行特性和
控制方法,以及控制电路的配置方法和参数调整技巧。
这对于我们今后的工程实践和应用
研究都有着重要的意义。
三相异步电动机连续控制电路一、引言三相异步电动机是工业生产中最常用的电动机之一。
它具有结构简单、使用可靠、运行平稳等特点,被广泛应用于各种机械设备中。
在实际应用中,为了满足不同的工艺要求和实现自动化控制,需要对三相异步电动机进行连续控制。
本文将介绍三相异步电动机连续控制电路的相关知识。
二、三相异步电动机基础知识1. 三相异步电动机的结构和工作原理三相异步电动机由定子和转子两部分组成。
定子上布置着三个对称排列的同心圆形线圈,称为定子绕组。
转子上也布置着类似的线圈,称为转子绕组。
当通过定子绕组通以交流电时,在定子内形成旋转磁场,磁场旋转速度等于供电频率除以极对数。
由于转子中也存在磁场,因此在磁场作用下,转子会受到一个旋转力矩,并随着旋转磁场而旋转。
2. 三相异步电动机的运行特性三相异步电动机具有以下运行特性:(1)起动特性:三相异步电动机的起动需要通过一定的方法来实现,常用的方法有直接启动、降压启动和星-三角启动等。
(2)空载特性:当三相异步电动机处于空载状态时,其转速会略高于额定转速。
(3)负载特性:当三相异步电动机处于负载状态时,其转速会下降,但不会低于额定转速。
三、三相异步电动机连续控制电路1. 三相异步电动机连续控制原理三相异步电动机连续控制是指通过改变电源对电机的供电方式和供电参数,来实现对电机的运行状态进行调节。
常用的控制方式有调速、正反转和制动等。
其中调速是最常见的一种控制方式。
2. 三相异步电动机调速控制原理调速是通过改变供电频率或改变供电电压来实现对三相异步电动机转速进行调节。
常用的调速方法有变频调速和降压调速两种。
(1)变频调速变频调速是指通过将交流供电源经过整流、滤波、逆变等处理后,得到一个可变频率、可变幅值的交流输出,从而实现对电机转速的调节。
变频调速的优点是调速范围大,控制精度高,但成本较高。
(2)降压调速降压调速是指通过改变电源对电机的供电电压来实现对电机转速的调节。
常用的降压调速方法有自耦降压启动、稳压变压器降压启动和可控硅降压启动等。
三相异步电动机点动与连续控制电路总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相异步电动机点动与连续控制电路总结引言在工业领域,三相异步电动机广泛应用于各种机械设备中。
三相异步电动机长动控制原理
三相异步电动机长动控制原理主要基于电磁感应和电机结构。
三相异步电动机由定子和转子两部分组成。
定子由三个相位的绕组构成,每个绕组由若干个线圈组成。
转子由导体构成,这些导体被分割成若干个段,每个段由若干个小块组成。
当三相异步电动机通电时,定子绕组中会产生旋转磁场。
这个磁场会作用于转子导体上,导致转子导体中的电流产生电磁场。
这个电磁场会和定子旋转磁场相互作用,使得转子导体中的电流和磁场的相对运动发生变化,从而产生电磁感应力。
在长动控制中,按下按钮SB2后,交流接触器的线圈KM得电,从而使接
触器的主触点闭合,使三相电进入电动机的绕组,驱动电动机转动。
当松开按钮SB2时,交流接触器的线圈失电,使接触器的主触点断开,电动机的
绕组断电而停止转动。
但是,如果接在按钮SB2两端的KM常开辅助触头闭合自锁,控制回路仍
保持通路,电动机M继续运转。
这种控制应用在长时连续工作的电动机中,如车床、砂轮机等。
以上信息仅供参考,如有需要,建议咨询专业技术人员。
一、概述三相异步电动机是工业生产中常用的一种电动机,它具有结构简单、可靠性高、效率高等优点,在很多领域都有广泛的应用。
而对于三相异步电动机的控制,连续控制电路是一种常见的控制方法,它通过对电动机的供电电压进行调节,实现对电动机转速的连续控制,是一种有效的控制手段。
本文将介绍三相异步电动机连续控制电路的原理,包括其基本原理、实现方式和应用。
二、三相异步电动机基本原理1. 三相异步电动机的结构和工作原理三相异步电动机是一种感应电动机,由定子和转子组成。
当通过定子绕组通入三相交流电时,会在定子绕组中产生一个旋转磁场。
转子由感应电动机的工作原理可知,在这旋转磁场的作用下,转子内也会产生感应电动势,从而使转子产生转动运动。
通过控制定子绕组中的电流或转子上的电流,可以实现对三相异步电动机的控制。
2. 三相异步电动机的控制原理三相异步电动机的控制原理主要是通过改变电动机的供电电压和频率来实现。
其中,改变电动机的供电电压可以实现对电动机转矩和转速的控制;而改变电动机的供电频率,则可以实现对电动机转速的控制。
在连续控制电路中,通常采用改变电动机的供电电压来进行控制。
三、三相异步电动机连续控制电路原理1. 连续控制电路的基本结构连续控制电路的基本结构包括电源模块、控制模块和输出模块。
电源模块负责将输入的交流电转换为可供电动机使用的直流电;控制模块负责对输出电压进行调节,实现对电动机的控制;输出模块将调节后的电压提供给电动机使用。
2. 连续控制电路的工作原理连续控制电路通过控制控制模块中的电路来改变输出电压,从而实现对电动机的控制。
一般来说,控制模块中会采用脉宽调制(PWM)或者调压变压器来实现对输出电压的调节。
通过改变控制模块中的控制信号,可以精确地调节输出电压,从而实现对电动机转速的连续控制。
四、三相异步电动机连续控制电路的实现方式1. 脉宽调制(PWM)控制方式脉宽调制是一种常用的连续控制方式,它通过改变输出脉冲的宽度来实现对输出电压的调节。
实验课学案课题三相异步电动机连续控制线路一、实验目的1、熟悉控制电路中各元件的结构,工作原理,使用方法。
2、掌握三相异步电动机连续控制电路的原理,加深对自锁的了解。
3、掌握三相异步电动机的接线方法。
4、检测同学们的协作意识,团队合作精神。
二、实验装置及实验工具三相异步电动机1台断路器(QF) 1 个接触器(KM)1个热继电器(FR)1个三相熔断器1个按钮 3 个剥线钳或剪线钳1把实验导线若三、实验原理图下图为三相异步电动机连续控制电路,左边部分为主回路,右边部分为控制回路。
主电路控制电路图三相异步电动机连续控制电路四、实验步骤1、熟悉,检查电器元件。
2、按图接线。
3、检查电路。
4、{1}:通电检查:电动机连续运行,停止控制,合上电源开关QS,接通电源,按下按钮SB2,观察接触器KM的动作情况以及电动机运作情况,放开按钮SB2,接触器KM的动合辅助触点闭合,实现自锁,电动机仍继续运行。
{2}:热继电器的触点动作对电路的影响,可用手动断开热继电器FR 的动断触点,观察电动机停转情况。
{3}:故障的分析及排除,实验过程中若出现异常现象,应立即切断电源,并记录下故障现象,分析并排除故障,在通电实验。
{4}:结束实验,实验完成后,先切断电源在拆线并清点整理电器元件和实验器材。
五、布线工艺{1}:按连续控制接线图确定的走线方向进行布线,可先布主路线,然后控制电路。
{2}:工作台上各电器元件接线端子引出的导线必须进入元件上面的行线槽,且完全置于行线槽内,。
{3}:各电器元件与行线槽之间的外露导线,应走线合理,并尽可能的做到横平竖直,尽可能的避免交叉。
{4}:一个接线端子一般只能连接一根导线,电器元件接线桩一般只能连接两根导线,每根导线的两端都必须套上线号。
六、注意事项:{1}把电路接好后,先进行自检,经老师检查无误后在通电实验。
{2}实验中如发现有接触器振动,有噪声,主触点燃弧严重,电动机不能正常起动等异常现象,应立即切断电源,分析原因,排除故障后在通电试验。
三相异步机单向连续运行控制工作原理一、异步电动机概述异步电动机是广泛应用于各类电机驱动系统的一种电动机,在工业、农业、交通、家用电器等领域都得到了广泛的应用。
它的特点是结构简单、体积小、重量轻、维护方便,且具有良好的起动性能和调速性能。
异步电动机的核心部件是转子和定子,其中定子安装在电机的架子上,转子可以转动并在磁场的作用下旋转。
在工作时,定子上的三组交流电源输出的电流形成了不同相位的磁场,这些磁场通过磁力作用传递给转子,使得转子能够产生旋转力。
二、基本原理1.相位差原理异步电动机的转子旋转力的产生是依赖于转子和定子之间的磁场作用力来实现的。
在运转时,定子上的3组电源各自产生一个互相垂直的磁场,但仅有一个磁场能够得到充分利用,这是因为电动机中的旋转力只能被单向地施加到转子上,而不能回传到定子上。
电动机必须通过控制输入电流的相位差来选择其中一个磁场来实现旋转,需要满足输入电流的相位差的要求,使得电机能够在正确的方向上旋转。
2. 磁滞原理另一个可以影响异步电动机旋转力产生的影响因素是转子的磁滞现象。
当电动机转子的旋转速度增加时,由于电动机的磁力会随着磨损而减弱,使得电动机的输出功率也会减少,转子的旋转速度也会逐渐降低。
在控制电动机输入电流的相位差时,需要考虑转子磁滞现象的影响,并进行调整以保证电动机能够持续地以稳定的方式旋转。
三、控制策略1. 三相异步电机结构三相异步电动机通常由一个转子和一个定子组成。
定子上的三个绕组通过外部电源进行连接,分别经过120°、240°和360°的角度,这些绕组产生的磁场会沿着定子内部的铁芯顺时针或逆时针方向转动。
应用外界励磁后,转子会被电场势力转动,并产生所需的旋转力。
在控制三相异步电动机运转时,需要考虑输入电流相位差和转子磁滞现象对电动机运转的影响。
控制电动机不仅需要控制输入电流的相位差,还需要采用适当的电流反馈控制和转子转速反馈控制策略。
叙述三相异步电动机连续控制的工作原理一、什么是三相异步电动机三相异步电动机,别看名字一堆复杂的字,听起来有点高大上,其实它就是我们生活中那些用来做机械驱动的电动机,像洗衣机、电风扇,甚至有些大楼里的空调都在用。
它跟我们常见的单相电动机不太一样,三相电动机的电源是三相电,这样的电源更稳定,也能带动大功率的设备。
你可以把它想象成一个看起来比较“沉稳”的家伙。
你知道电动机就像是一部发动机,能量转化成动力,让机器运转。
而三相异步电动机就是这种发动机里的“大块头”,效率高、耐用、稳定,简直是“钢铁侠”一样的存在。
异步电动机有一个很特别的地方——它的转速不完全由电源频率决定,它的转速比电流的旋转速度要慢一些。
你问为什么?简单点说,就是电动机的“马力”总是稍微跟不上电源的节奏,这样一来,它就有了点儿“偷懒”的空间。
所以说它叫“异步”,其实就是它比电流的“心跳”慢一点儿,但又能稳定运作。
二、三相异步电动机的工作原理说到工作原理,你可能会想,电动机怎么就这么神奇了呢?它到底是怎么把电能变成动力的呢?别急,接着听。
三相电源一来,电动机的定子(就是电动机外圈那个部分)就开始工作了。
电源的三相电流形成旋转磁场,这个磁场就是电动机的“心脏”。
而这个旋转磁场,就像一只大手,推着电动机的转子(就是中间那部分)转起来。
说得简单点,定子发出了磁场的“指令”,转子收到信号后就跟着一起转。
但是,注意了!这里就有个“偷懒”的技巧。
转子的速度并没有达到定子电流旋转的速度,它总是稍微慢一点儿。
所以定子的磁场一转,转子就不甘示弱地跟着慢慢旋转,虽然它的速度不一样,但这正好让电动机能够持续稳定地工作。
我们再看看控制部分。
电动机在运行的时候,可以通过调整电流的频率来调节转速,电动机的转速并不是死板的,完全可以根据需要来调节。
比如如果你想让电动机转得快一点,给它加点电压或者调整频率;如果你想让它慢下来,那就反过来减小频率。
反正通过这些控制手段,电动机的“速度”完全是由你来“掌控”的,简直就是“随心所欲”。
第二单元PLC应用基础任务一三相异步电动机连续运行控制电路一、任务提出如图5是三相异步电动机连续运行电路,KM为交流接触器,SB1起动按钮,SB2停止按钮,FR过载保护热继电器。
当按下SB1时,KM的线圈通电吸合,KM主触点闭合,电动机开始运行,同时KM的辅助常开触点闭合而使KM线圈保持吸合,实现了电机的连续运行直到按下停止按钮SB2。
本任务研究用PLC来实现如图5所示的控制电路。
图5 三相异步电动机连续运行电路二、原理分析为了将图5b)的控制电路用PLC控制器来实现,PLC需要三个输入点,一个输出点,输入输出点分配如表2-1。
表2-1 输入输出点分配表根据输入输出点分配,画出PLC的接线图,接线不同时,设计出的梯形图也是不同的。
这里用三种方案实现任务。
1.PLC控制系统中的触点类型沿用继电器控制系统中的触点类型,即:SB1起动按钮在继电器系统中使用常开触点,PLC系统中仍使用常开触点;SB2停止按钮和FR过载保护热继电器原来使用常闭触点,PLC系统中仍使用常闭触点,如图7a)为PLC的接线图,由此设计的梯形图如图7b),当SB2、FR不动作时,X1、X2接通,X1、X2的常开触点闭合,常开触点断开,所以在梯形图中X1、X2要使用常开触点,确保X1、X2的外接器件不动作时,X1、X2接通,为起动做好准备,只要按下SB1,X0接通,X0的常开触点闭合,驱动Y0动作,使Y0外接的KM线圈吸合,KM的主触点闭合,主电路接通,电机M运行。
梯形图中Y0的常开触点接通,使得Y0的输出保持,维持电机M的连续运行,直到按下SB2,此时X1不通,常开触点断开,使Y0断开,Y0外接的KM线圈释放,KM的主触点断开,主电路断开,电机M 停止运行。
图7 PLC实现三相异步电动机连续运行电路方案一2.PLC 控制系统中的所有输入触点类型全部采用常开触点。
即:SB1起动按钮、SB2停止按钮和FR过载保护热继电器全部接入常开触点,如图6a)为PLC的接线图,由此设计的梯形图如图6b),当SB2、FR不动作时,X1、X2不接通,X1、X2的常开触点断开,常闭触点闭合,所以在梯形图中X1、X2要使用常闭触点,确保X1、X2的外接器件不动作时,X1、X2接通,为起动做好准备,只要按下SB1,X0接通,X0的常开触点闭合,驱动Y0动作,使Y0外接的KM线圈吸合,KM的主触点闭合,主电路接通,电机M运行。
三相异步电动机是工业中常用的电动机之一,其具有结构简单,维护成本低,运行可靠等特点。
在实际工业生产中,对于三相异步电动机的精细控制是非常重要的,点动连续控制是其中的一种重要控制方式。
本文将从三相异步电动机的基本原理、点动连续控制的概念、应用场景和控制方法等方面进行详细介绍。
1. 三相异步电动机的基本原理三相异步电动机是利用交流电的三相电流产生旋转磁场,从而驱动电机转动。
其基本原理可以简述为:当三相电源施加到电动机的定子绕组上时,由于三相电流的相位差,产生一个旋转的磁场。
这个旋转的磁场会感应出转子导体中感应电动势,从而在转子中产生电流,根据洛伦兹力的作用,电机开始转动。
三相异步电动机具有结构简单、使用可靠、成本低等优点,因此在工业生产中得到广泛应用。
2. 点动连续控制的概念点动连续控制是对三相异步电动机进行精细控制的一种方式,它主要应用于需要电机进行间歇性工作的场合。
点动控制是指通过控制电机的启动、停止和正反转等动作,实现对电机的简单控制。
而连续控制则是指在点动控制的基础上,通过对电机的转速、转矩等参数进行精细调节,实现对电机动作的连续稳定控制。
点动连续控制不仅可以提高电机的工作效率,还可以延长电机的使用寿命,因此在实际工业应用中得到广泛运用。
3. 点动连续控制的应用场景点动连续控制主要应用于需要电机进行间歇性工作的场合,例如:起重设备、输送带、挖掘机、冲床等。
在这些设备中,电机需要根据工艺要求进行启停、正反转以及精细的转速和转矩控制。
通过点动连续控制,可以实现这些设备的灵活操作,提高生产效率,减少能耗,降低设备损耗,从而达到节能减排的目的。
点动连续控制在现代工业生产中具有重要意义。
4. 点动连续控制的方法点动连续控制的方法主要包括硬件控制和软件控制两种。
硬件控制是指通过对电机的电气结构进行改造,增加启动、停止、正反转等控制装置,同时配合传感器和执行器,实现对电机的精细控制。
软件控制则是指通过对电机控制系统的软件进行优化和调整,利用现代控制理论和方法,对电机进行精准的控制。
三相异步电动机的单向连续控制线路分析
三相异步电动机的单向连续控制原理图如图1所示。
图1 三相异步电动机的单向连续控制原理图
1、启动控制
先合上电源开关QF, 按下启动按钮SB1→KM线圈得电→KM主触头闭合(辅助常开触头同时闭合)→电动机M启动并单向连续运行。
当松开SB1时,SB1复位断开, 但由于KM的辅助常开触头与SB1并联,且已闭合, 因此KM线圈仍保持通电。
这种利用接触器本身的常开触头使接触器线圈继续保持通电的控制称为自锁或自保, 该辅助常开触头就叫自锁(或自保)触头。
正是由于自锁触头的作用, 在松开SB1时, 电动机仍能继续运转, 而不是点动运转。
2、停止控制
按下停止按钮SB2→KM线圈失电→KM主触头断开(KM自锁触头也断开)→电动机M停止运转。
接触器自锁控制线路不但能使电动机连续运行,还具有欠压和失压(或零压)保护作用。
(1)欠压保护
欠压是指线路电压低于电动机应加的额定电压。
欠压保护是指当线路电压下降到某一数
值时,电动机能自动脱离电源停转,避免电动机在欠压下运行的一种保护。
(2)失压(或零压)保护
失压保护是指电动机在正常运行中,由于外界某种原因引起突然断电时,能自动切断电动机电源;当重新供电时,保证电动机不能自行启动的一种保护。
接触器自锁控制线路也可以实现失压保护作用。