八年级数学下册期末复习资料
- 格式:doc
- 大小:2.15 MB
- 文档页数:26
新人教版八年级下册数学知识点总结归纳期末总复习 一、 第十六章 二次根式 【知识回顾】 : 1.二次根式:式子 a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a ≥0,b ≥0); (b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,ab a b b b a a=(>0)(<0) 0 (=0);都适用于二次根式的运算二、第十七章 勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b =,a =)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。
八年级下册数学期末测试题一一、选择题(每题2分,共24分) 1、下列各式中,分式的个数有( )31-x 、12+a b 、、、、、、115- A 、2个 B 、3个 C 、4个 D 、5个 2、假如把中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3、已知正比例函数1x (k 1≠0)及反比例函数2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下局部及地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线相互垂直且相等的四边形是( ) A 、菱形或矩形 B 、正方形或等腰梯形 C 、矩形或等腰梯形 D 、菱形或直角梯形6、把分式方程的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)-2D .1+(1-x)-27、如图,正方形网格中的△,若小方格边长为1,则△是( )DA BCA 、直角三角形B 、锐角三角形C 、钝角三角形D 、 以上答案都不对(第7题) (第8题) (第9题) 8、如图,等腰梯形中,∥,8,10,6,则梯形的面积是 ( ) A 、1516 B 、516 C 、1532 D 、1716 9、如图,一次函数及反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <210、在一次科技学问竞赛中,两组学生成果统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
下列说法:①两组的平均数一样;②甲组学生成果比乙组学生成果稳定;③甲组成果的众数>乙组成果的众数;④两组成果的中位数均为80,但成果≥80的人数甲组比乙组多,从中位数来看,甲组成果总体比乙组好;⑤成果高于或等于90分的人数乙组比甲组多,高分段乙组成果比甲组好。
北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。
判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。
等腰三角形的性质是两个底角相等,即等边对等角。
判定等腰三角形有一个角等于另一个角,即等角对等边。
等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。
等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。
判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。
直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。
直角三角形斜边上的中线等于斜边的一半。
线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。
判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。
三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。
角平分线的性质是角平分线上的点到角的两边距离相等。
判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。
二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。
一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
八年级下册数学复习专题八年级下册数学复资料第一章直角三角形1、直角三角形的性质:①直角三角形的两锐角互余。
②直角三角形斜边上的中线等于斜边上的一半。
例如,在直角三角形ABC中,CD是斜边AB的中线,因此CD等于AB的一半。
③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
例如,在直角三角形ABC中,如果∠A=30°,那么BC等于AB的一半。
例如,在Rt△ABC中,∠C=90°,∠A=30°,则正确的结论是AC²+BC²=AB²。
④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
例如,在直角三角形ABC 中,如果BC等于AB的一半,那么∠A=30°。
例如,如果等腰三角形一腰上的高等于腰长的一半,那么顶角的度数是60°。
⑤勾股定理及其逆定理1)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c²。
求斜边的长度,可以用c=√(a²+b²);求直角边的长度,可以用a=√(c²-b²)或b=√(c²-a²)。
例如,在图中的拉线电线杆示意图中,已知CD⊥AB,∠CAD=60°,那么拉线AC的长度是6m。
例如,如果一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是√136.2)逆定理:如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形。
可以分别计算“a²+b²”和“c²”,如果相等就是直角三角形,不相等就不是直角三角形。
例如,在Rt△ABC中,如果AC=2,BC=7,AB=3,那么正确的结论是∠C=90°。
例如,如果一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,那么这块木板的面积是18.例如,某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?直角三角形性质及勾股定理的应用常见于各种图形中。
八年级下册数学总复知识点一. 代数
1. 代数式的基本性质
2. 代数式的加减法、乘除法
3. 一元多项式及其乘法
4. 因式分解
5. 推广因式定理
6. 分式的加减乘除
7. 二次根式及其运算
8. 平方根与立方根
9. 特殊化运算
二. 几何
1. 平面图形的性质:六类三角形、四边形、圆、等腰梯形
2. 平面图形间的关系
3. 勾股定理及其应用
4. 圆周角和弧度制
5. 直线和平面的交角关系
6. 空间图形:正方体、立方体、金字塔等的计算
三. 线性方程组
1. 同解方程组、不同解方程组、无解方程组
2. 单解公式:三元一次方程组
3. 二元一次方程组的解法:消元法、代入法
4. 实际问题中的线性方程组
四. 函数
1. 函数的定义:自变量、函数值、定义域、值域、图像
2. 常见函数:多项式函数、绝对值函数、一次函数、二次函数
3. 函数的图像和性质
4. 函数的运算:加减乘除、复合、反函数
5. 实际问题中的函数
五. 概率
1. 随机事件和样本空间
2. 概率的基本属性:非负性、规范性、可加性
3. 古典概型、几何概型、条件概率、贝叶斯公式
4. 事件的独立性、互斥性、全面性
6. 离散型随机变量的概率分布、期望、方差
七. 统计
1. 数据的收集、整理、分析
2. 典型数据集的描述、统计量:均值、中位数、众数、四分位数
3. 离均差和标准差的计算
4. 一元统计
5. 相关性的度量:相关系数。
12999数学网 初二下学期数学期末复习串讲 北师大实验中学 费志良考试范围第十六章 分式(分式方程部分) 第十七章 反比例函数 第十八章 勾股定理 第十九章 四边形第二十章 数据的分析 第二十一章 二次根式第二十二章 一元二次方程(概念与解法部分)一、本单元 知识结构图:二、例题与习题: 1.解方程: (1)233x x =- (2)1222x x x +=-- (3)263111x x -=-- (4)012142=---x x7.2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度。
8.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?10.某人往返于A 、B 两地,去时先步行2千米,再乘汽车行10千米,回来时骑自行车,来回所用时间恰好相等.已知汽车每小时比这人步行多走16千米,步行又比骑车每小时少走8千米. 若来回完全乘汽车能节约多少时间?11.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.第十七章 反比例函数一、本章知识结构图:二、例题与习题:1.下面的函数是反比例函数的是 ( ) A . 13+=x y B .x x y 22+= C . 2x y =D .xy 2=5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = . 6.点(231)P m -,在反比例函数1y x=的图象上,则m = . 7.点(3,-4)在反比例函数ky x=的图象上, 则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限. 12.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是( ) A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. 每个象限内,y 随x 的增大而增大14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <216.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-318.设反比例函数)0(≠-=k xky 中,在每一象限内,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c <C .b c =D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数12my x-=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,( 第 15 题 )2有12y y <,则m 的取值范围是( ) A 、0m < B 、0m > C 、12m < D 、12m > 24. 已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <-31.已知反比例函数2y x=,下列结论中,不正确...A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________. 34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( ) A .2B .-2C .4D .-436.如图,若点A 在反比例函数(0)ky k x=≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = .37.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D . 42.已知反比例函数102)2(--=mx m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.第34题图 -12 -12 xy ABO 第33题图第36题图45.已知一次函数y kx b=+的图象与反比例函数myx=的图象相交于A(-6,-2)、B(4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y=x+1与双曲线x2y=交于A、B两点,其中A点在第一象限.C为x轴正半轴上一点,且S△ABC=3.(1)求A、B、C三点的坐标;(2)在坐标平面内.....,是否存在点P,使以A、B、C、P为顶点的四边形为平行四边形?若存在,请直接..写出点P的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为tay=(a为常数),如图所示.据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?51.如图,一次函数y=kx+b的图象经过第一、二、三象限,且与反比例函数图象相交于A,B两点,与y轴交于点C,与x轴交于点D,5=OB.且点B横坐标是点B纵坐标的2倍.(1)求反比例函数的解析式;(2)设点A横坐标为m,ABO△面积为S,求S与m的函数关系式,并求出自变量的取值范围.AOCxyBOyACDB第十八章 勾股定理一、本章知识结构图:二、例题与习题:1. 在△ABC 中,∠A=90°,则下列式子中不成立的是( ). A.222AC AB BC += B. 222BC AC AB +=C. 222AC BC AB -= D.222AB BC AC -=.3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( ) (A )如果∠C -∠B=∠A ,则△ABC 是直角三角形(B )如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90° (C )如果(c +a )(c -a )=b 2,则△ABC 是直角三角形(D )如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形4. 适合下列条件的三角形ABC 中,直角三角形的个数为( ).①;51,41,31===c b a ②a=b,∠A=45°;③∠A=32°,∠B=58°; ④a=7,b=24,c=25; ⑤a=2.5,b=2,c=3.A.2个B.3个C.4个D.5个6.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .实际问题(判定直角三角形)实际问题(直角三角形边长计算)勾股定理勾股定理的逆定理AB C 图7-1 图7-2第6题图7.图7-1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图7-2所示的“数学风车”,则这个风车的外围周长是 . 12.直角三角形的两条直角边的长分别为5,12,则其斜边上的高为( ).A.cm 1380 B.13cm C.6cm D.cm 13608.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示).13.边长为a 的正三角形的面积等于____________. 14.已知等边三角形ABC 的边长为33+,则ABC △的周长是_________,面积是___________.16.如图,矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.18.如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为 .21.如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________。
26.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD . (2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由. (结果精确到0.1.参考数据:3取1.73,2取1.41)B 1B 2A 1AOB第21题图C ’A F DBC第16题图E第18题图北 C东a D CB A M c N E Fb G H (第8题)28.一块四边形的草地ABCD ,其中∠A =60°,∠B =∠D =90°,AB =20m,CD =10m,求这块草地的面积.30.在ΔABC 中,AB=15,AC=13,高AD=12,求ΔABC 的周长。