第六章 芳烃 芳香性
- 格式:ppt
- 大小:4.76 MB
- 文档页数:67
第六章芳香性第一节芳香性的一般讨论芳香化合物的特点1.较高的C/H比苯C6H6,萘C10H8,蒽C14H102.共平面、键长均等化3.分子共平面组成芳香环的原子都在一个平面或接近一个平面里。
4.芳香性分子稳定程度—共轭能(离域能)大小例如苯的共轭能为150.7kJ/mol ,可以借助氢化热或燃烧热来求得。
比较1mol苯和3mol环已烯的氢化热,计算得苯的共轭能约为(3×119.7-208.5)= 150.7kJ/mol 。
对离域能定量计算REPE(每一个电子的离域能)=离域能/NREPE ﹥0 化合物有芳香性REPE =0 化合物非芳香性REPE ﹤0 化合物反芳香性REPE计算:1)求出离域能离域能=E非定域—E定域2)REPE计算REPE =离域能/nREPE(每一个电子的离域能)的正值越大,则相应的化合物的芳香性越强。
用REPE与这些化合物的性质进行联系、比较后得出结论:REPE可以作为判断环状多烯是否具有芳香性的指标。
5.化学性质特征芳香化合物与一般高度不饱和的脂肪族化合物不同,不易发生加成反应,较难发生氧化反应,易于发生取代反应,尤其是芳烃易发生亲电取代反应。
6.π电子数目:4n+2在环状多烯体系中,当π电子数为4n+2时,为芳香性分子;当π电子数为4n时,体系若比相应的多烯模型化合物稳定性降低,则具有反芳香性;体系若与相应的多烯模型化合物稳定性相近,则为非芳香性。
如:苯是典型的芳香性,环辛四烯为非芳香性体系,环丁二烯则为反芳香性,其化学性质很活泼,甚至比环丁烷还活泼。
芳香性是不是是是是是4n+2规则只能作为环状多烯的体系是否具有芳香性的定性依据,要描述芳香性分子稳定到什么程度,即芳香性强度,必须按HMO法对离域能进行定量的计算。
7.波谱特征芳香性化合物大多都具有特征的光谱。
NMR:芳环呈现反磁环流,环平面上下有屏蔽效应,环内有去屏蔽效应。
第二节带电荷环的芳香性环上带有电荷而具有芳香性的物质很多,它们是一类重要的非苯芳烃。
第六章芳烃芳烃是芳香族碳氢化合物的简称。
一般情况下,把苯及其衍生物称为芳香族化合物。
其中分子中只含一个苯环的芳烃叫做单环芳烃。
芳香二字的来由最初是指从天然树脂(香精油)中提取而得、具有芳香气的物质。
现代芳烃的概念是指具有芳香性的一类环状化合物,它们不一定具有香味,也不一定含有苯环结构。
芳香烃具有其特征性质——芳香性(易取代,难加成,难氧化)。
第一节单环芳烃的结构、异构和命名一、单环芳烃的结构苯是单环芳烃中最简单最重要的化合物,也是所有芳香族化合物的母体。
1. 凯库勒构造式根据元素分析得知苯的分子式为C6H6。
仅从苯的分子式判断,苯应具有很高的不饱和度,显示不饱和烃的典型反应—加成、氧化、聚合,然而苯却是一个十分稳定的化合物。
通常情况下,苯很难发生加成反应,也难被氧化,在一定条件下,能发生取代反应,称为“芳香性”。
1865年凯库勒从苯的分子式出发,根据苯的一元取代物只有一种,说明六个氢原子是等同的事实,提出了苯的环状结构。
这个式子虽然可以说明苯分子的组成以及原子间连接的次序,但这个式子仍存在着缺点,它不能说明苯既然含有三个双键,为什么苯不起类似烯烃的加成反应?环己烯的氢化热为119.6kJ/mol,如果苯的构造式用凯库勒式表示的话,苯的氢化热为环己烯氢化热的三倍。
119.6×3=358.8KJ/mol 。
实际上苯的氢化热是208.4KJ/mol,比预计的数值低150.4KJ/mol。
2.闭合共轭体系根据现代物理方法(如X射线法,光谱法等)证明了苯分子是一个平面正六边形构型,键角都是120℃ ,碳碳键的键长都是0.1397nm。
按照轨道杂化理论,苯分子中六个碳原子都以sp2杂化轨道互相沿对称轴的方向重叠形成六个C-C σ键,组成一个正六边形。
每个碳原子各以一个sp2杂化轨道分别与氢原子1s轨道沿对称轴方向重叠形成六个C-H σ键。
由于是sp2杂化,所以键角都是120℃,所有碳原子和氢原子都在同一平面上。