八年级二次根式复习讲义(非常全面)知识讲解
- 格式:doc
- 大小:683.00 KB
- 文档页数:7
《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b ≥>商的算术平方根化简公式:0,0)a b =≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).≠. 2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a <,化简二次根式3a b -的正确结果是( ).A.a ab --B. a ab -C. a abD.a ab -【答案】A.3.下列二次根式中属于最简二次根式的是( ).1448ab44a +【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.下列计算错误的是( ).A. 14772⨯=B. 60523÷=C. 9258a a a +=D. 3223-= 【答案】 D.【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;选项B :605605123423÷=÷==⨯=,故正确;选项C925358a a a a a +=+=故正确;选项D :32222-= 故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题. 举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)⋅. 【答案与解析】201020102010=(32)32)(32)(32)32)32)132)3 2.⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6 已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)1313331=3x x x xx x x =+∴->∴=--++==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【高清课堂:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11+==-(+)=-=3--ab ab a bb a b a ab∴+原式.。
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
《二次根式》知识全解课标要求1.理解二次根式的概念,了解被开方数必须是非负数的理由.2.了解最简二次根式的概念.3.理解二次根式的性质:()0≥a a 是非负数;()()02≥=a a a ;()02≥=a a a .知识结构内容解析1.二次根式的定义:一般地,我们把形如()0≥a a 的式子叫做二次根式.这里特别要注意的是:对于判断一个代数式是否为二次根式并不需要深究,而应侧重于二次根式有意义的条件——被开方数为非负数.2.二次根式的性质:()0≥a a 是非负数;()()02≥=a a a ;()02≥=a a a . 注意:二次根式的性质不一定非要直接从算术平方根的意义得到,也可以先由特殊到一般归纳出结论,再通过算术平方根的意义来分析证明.重点难点本节的重点是:明确二次根式()0≥a a 具有双重非负性,会确定被开方数中字母的取值范围;会利用二次根式的性质做相关计算.教学重点的解决方法:循序渐进,逐步深入,从学生已有的开方知识点出发,引导学生理解被开方数中字母的取值范围;根据从特殊到一般的数学思想,引导学生从一些特殊的举例中自主总结归纳出二次根式的一般性质.本节的难点是:二次根式的取值范围.教学难点的解决方法:通过合作探究的方式,进行小组讨论学习,容易深入问题本质,掌握透彻.教法导引教学活动的本质是一种合作、一种交流.学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程.为了为后续学习打下坚实的基础(例如在“锐角三角函数”一章中,会遇到很多实际问题),在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯.学法建议学生已学习了平方根、算术平方根以及勾股定理等相关知识,具备了学习二次根式的基础.在教授新课的过程中,注重从特殊到一般数学思考问题方法,发展学生的抽象思维和概括能力,从而得到二次根式的概念,进而深入得出二次根式有意义的条件及性质.新课程标准指出:学生是学习的主体.要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位.本节课主要采用自主学习、合作探究、引领提升的方式,启发式、讲练结合的方法展开教学.先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习.通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生的辩证唯物主义观点得以培养.。
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
二次根式知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是( ) ABCD2______个【例2】有意义,则x 的取值范围是 .举一反三:1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42x 的取值范围是3、如果代数式m nm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=解题思路:式子a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014举一反三: 1、2()x y =+,则x -y 的值为( )A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a1取值最小,并求出这个最小值。
已知ab 是12a b ++的值。
若3的整数部分是a ,小数部分是b ,则=-b a 3 。
若17的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()20 3.a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【典型例题】【例4】若()2240a c -+-=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为 。
专题01 二次根式及其运算知识讲义【相关概念】二次根式:a≥0)的式子叫做二次根式.a为被开方数,a可以是数字或代数式.代数式:含有字母的数学表达式称为代数式.整式、分式均为代数式.最简二次根式:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【二次根式运算】乘法=a≥0,b≥0)除法=(a≥0,b >0)加(减)法先把各根式化成最简根式,再合并同类根式分母有理化====【二次根式性质】,a≥0非负数:|a|,a 2n()()00a a a a ≥⎧=⎨-≤⎩2a =【二次根式应用】因式的内移和外移:(1)负号不能移到根号下;(2)根号下的负号不能移到根号外.【题型一】二次根式有意义条件例1. (2020·m 能取的最小整数值是()A .m = 0B .m = 1C .m = 2D .m = 3【答案】B.3m -1≥0,解得:m≥13, 所以,m 能取的最小整数值是1.故答案为:B .例2. (2020·=-,那么x 的取值范围是_______. 【答案】-3≤x≤0.【解析】解:∵233x x +-∴x≤0,且x+3≥0,解得:-3≤x≤0,故答案为:-3≤x≤0.例3.(2019·=x 的取值范围是______. 【答案】x≥2.=∴x≥0,x−2≥0,∴x≥2.故答案为:x≥2.【题型二】同类二次根式例4. (2020·是同类二次根式,那么满足条件的m 中最小正整数是________.【答案】4.【解析】解:当5m+8=7时,m=-15,不合题意,,即5m+8=28时,m=4,是同类二次根式,那么m 的最小正整数是4,故答案为:4.例5. mn =_________.【答案】10.∴n=2,2m-5=5,∴m=5,n=2∴mn=10故答案为:10.例6. mn=________.【答案】21.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴mn=21故答案为:21.【题型三】变式考查例7. (2020·浙江宁波市期中)我们把形如b(a,b为最简二次根式)32是()A型无理数B C型无理数D型无理数【答案】B.【解析】解:2故答案为:B.例8. (1n所有可能的值;(2是整数,求正整数n的最小值.【答案】(1)自然数n 的值为2、9、14、17、18;(2)正整数n 的最小值为6.【解析】解:(1是整数,∴18-n=0或1或4或9或16,解得:n=18或17或14或9或2,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.例9.(2020·21x =-,则x=__________. 【答案】12或1.21x =-,∴2x -1=0或2x -1=1,解得:x=12或x=1. 故答案为12或1. 【题型四】二次根式运算例10.(2020·周长为( )A .B .C .D .无法确定【答案】A.若,,则周长为若,∴,此三角形不存在,∴个三角形的周长为故答案为:A .例11)2211-.)2211--1313=--+-=例12.(2020·福建省泉州月考)已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值..【解析】解:∵3,∴+1<4,故a=3,-2,∴)3232274a b ====-. 例13.(2020·广东佛山市月考)先阅读,再解答:由222=-= 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==,请完成下列问题:1的有理化因式是;(2)= .(直接写结果)>或<)(4)利用你发现的规律计算下列式子的值:)1+【答案】(1+1;(2);(3)<;(4)2017.【解析】解:(11+1;(2333==+;(3=>(4)原式=)120181+=)11=2018-1=2017.例14. 若a,b都是正整数,且a<b是可以合并的二次根式,是否存在a,b,=a,b的值;若不存在,请说明理由.【答案】当a=3,b=48;当a=12,b=27.,m、n为正整数,m<n,∴m=1,n=4或m=2,n=3故a=3,b=48或a=12,b=27.例15.(2019·辽宁大连市期中)[观察]请你观察下列式子的特点,并直接写出结果:11112=+-=;11123=+-=;11134=+-=;……[发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:=(n为正整数);(2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:11n++=.【答案】[观察]32,76,1312;[发现](1)1111n n+-+或221n nn n+++;(2)证明见解析;[应用]221n nn++.【解析】[观察]32,76,1312,[发现](1)1111n n+-+或221n nn n+++(2)左边=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左边=右边[应用11n +++111111111111223341n n =+-++-++-+++-+…… 1111n n =⨯+-+ 1n n n =++ 22=1n n n ++. 【题型五】化简求值例16. (2021·江苏南通市期末)化简2+的结果是( ) A .152x -B .1-C .27x -D .1 【答案】A.【解析】解:∵二次根式被开方数为非负数,∴7-x≥0,则x≤7∴x -8<0, 原式=7-x+8-x=15-2x故答案为:A .例17.(2020·浙江杭州期中)实数a ,b 在数轴上的位置如图,||a b -的结果为( )A .2aB .2a -C .2bD .2b -【答案】B.【解析】解:由题意得:a >b ,|a |<|b |,a >0,b <0,∴a -b >0,a +b <0,∴原式=-a -b -a +b =-2a ,故答案为:B .例18.若数轴上表示数x 的点在原点的左边,则化简3x + ) A .4x - B .4x C .2x - D .2x【答案】C.【解析】解:∵数x 的点在原点的左边,∴x <0,∴原式=|3x +|x ||=|3x -x |=|2x |=-2x .故答案为:C .例19.(2020·温州月考)下列四个式子中,与(a -的值相等的是() AB .CD .【答案】D.【解析】解:由题意得:2021-a>0,得:a<2021,∴a -2021<0,∴原式=(2021a --== 故答案为:D . 例20.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=其中是真命题是【答案】②.【解析】解:①当a=-1,b=1时,命题不成立,是假命题,②a 2=5a -5,∴5a -5≥0,即a≥1,-1,是真命题;③(a -==,是假命题, 故答案为:②.【题型六】阅读材料例21.(2021·北京延庆区期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”.例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13;(3)1 ;(4)16或6.【解析】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,= ∴y=13;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), 1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=,综上所述,16ab =或6ab =. 例22. 阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式..11==. 类比应用:(1= ; (29++=+ . 拓展延伸:的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE ,则点D 到线段AE 的距离为 .【答案】类比应用:(1);(2)2;拓展延伸:(1)12;(2)矩形DCEF为黄金矩形,理由见解析;(3 【解析】解:类比应用:(1)根据题意可得:== (2)根据题意可得:9++(9+++19-+-1=2;拓展延伸:(1的矩形叫黄金矩形, 若黄金矩形ABCD 的宽AB =1,则黄金矩形ABCD 的长BC; (2)矩形DCEF 为黄金矩形,理由是:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可得:AD=BC=1=∴FD=EC=AD -AF=112-=12,∴DF EF =11122÷=,故矩形DCEF 为黄金矩形;(3)连接AE ,DE ,过D 作DG ⊥AE 于点G ,∵AB=EF=1,,∴=在△AED 中,S △AED =1122AD EF AE DG ⨯⨯=⨯⨯,即AD EF AE DG ⨯=⨯1DG =,解得∴点D 到线段AE 的距离为4+. 例23. (2019·四川月考)阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一步化简:====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1...+(2)已知m 是正整数,ab且2a2+ 1823ab + 2b2=2019 .求m.(31 =【答案】(1)12;(2)2;(3)9.【解析】解:(1)原式12019+2222 =+++2019++==(2)∵ab∴=2(2m+1),=1∵2a2+ 1823ab + 2b2= 2019∴2(a2+b2)+1823=2019∴a2+b2=98∴4(2m+1)2=100∴m=2或m=-3∵m是正整数∴m=2.(31=,得:21=20=2281=-+=0≥≥.例24.(2020·湖南怀化市期末)同学们,我们以前学过完全平方公式222)2(a ab b a b ±+=±,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如23=,25=,下面我们观察:)2221211213=-⨯=-=-23211)-=-=,∴231)-=1= 求:(1;(2(3=,则m 、n 与a 、b 的关系是什么?并说明理由.【答案】(11;(21;(3)m+n=a ,mn=b ,理由见解析.【解析】解:(11;(21==;(3)m+n =a ,mn =b.=∴2a =+,∴,∴m+n =a ,mn =b.例25.(2020·安徽安庆市)阅读理解题,下面我们观察:2221)211213=-⨯=-=-反之23211)-=-=,所以231)-=1= 完成下列各题:(1)在实数范围内因式分解:(2(3.【答案】(1)2(1+;(21;(3【解析】解:(1)22231(1+=+=+(21==(3==。
二次根式知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1- 其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是( ) AD2______个【例2】有意义,则x 的取值范围是 . 举一反三:1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=解题思路:式子a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014举一反三: 1、2()x y =+,则x -y 的值为( )A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a1取值最小,并求出这个最小值。
已知ab 是12a b ++的值。
若3的整数部分是a ,小数部分是b ,则=-b a 3 。
若17的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()2240a c --=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为 。
八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。
本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。
1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。
例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。
2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。
即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。
(2)二次根式的值域为非负实数。
即,对于任意非负实数a,有$\sqrt{a}≥0$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。
(3)二次根式可以转化为分数形式。
即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。
3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。
(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。
(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。
八年级二次根式复习讲义(非常全面)二次根式知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 举一反三:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子3x -有意义,则x 的取值范围是 .举一反三:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x -+-有意义的x 的取值范围是 3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014举一反三: 1、11x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 211a +取值最小,并求出这个最小值。
已知a 5b 是5的小数部分,求12a b ++的值。
若3的整数部分是a ,小数部分是b ,则=-b a 3 。
若17的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外. 4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()2240a c --=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为 。
2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( )A .3B .– 3C .1D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______. 4、若1a b -+互为相反数,则()2005_____________a b -=。
(公式)0()(2≥=a a a 的运用)【例5】化简:21a -+的结果为( )A 、4—2aB 、0C 、2a —4D 、4 举一反三:1在实数范围内分解因式: 23x -= ;4244m m -+=429__________,2__________x x -=-+=2化简:13(公式⎩⎨⎧<-≥==)0a (a )0a (a a a 2的应用)【例6】已知2x <,A 、2x -B 、2x +C 、2x --D 、2x -举一反三:1、根式( )A .-3B .3或-3C .3D .92、已知a<02a │可化简为( )A .-aB .aC .-3aD .3a3、若23a p p)A. 52a -B. 12a -C. 25a -D. 21a - 4、若a -3<0,则化简aa a -++-4962的结果是( )(A) -1 (B) 1 (C) 2a -7 (D) 7-2a5、2得( )(A ) 2 (B )44x -+ (C )-2 (D )44x -6、当a <l 且a ≠0时,化简a a a a -+-2212= . 7、已知0a<【例7】如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a-b │ 的结果等于( )A .-2bB .2bC .-2aD .2a 举一反三:实数a在数轴上的位置如图所示:化简:1______a -=.【例8】化简1x -2x -5,则x 的取值范围是()(A )x 为任意实数 (B )1≤x ≤4 (C ) x ≥1 (D )x≤1举一反三:若代数式2,则a 的取值范围是( ) A.4a ≥B.2a ≤C.24a ≤≤D.2a =或4a =【例9】如果11a 2a a 2=+-+,那么a 的取值范围是( )A. a=0B. a=1C. a=0或a=1D. a ≤1 举一反三:1、如果3a =成立,那么实数a 的取值范围是( ).0.3;.3;.3A a B a C a D a ≤≤≥-≥2、若03)3(2=-+-x x ,则x 的取值范围是( ) (A )3>x (B )3<x (C )3≥x (D )3≤x 【例10】化简二次根式22a a a +-的结果是 (A )2--a (B)2---a (C)2-a (D)2--a1、把二次根式a a-1化简,正确的结果是( ) A. -aB. --aC. -aD. a2、把根号外的因式移到根号内:当b >0时,x xb= ;a a --11)1(= 。
0 ob a知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
【典型例题】【例11】在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 解题思路:掌握最简二次根式的条件。
举一反三:1、)b a (17,54,b 40,212,30,a 45222+中的最简二次根式是 。
2、下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .23、下列根式不是最简二次根式的是( )21a + 21x + C.24b0.1y 4、下列各式中哪些是最简二次根式,哪些不是?为什么?(1)b a 23 (2)23ab(3)22y x + (4))(b a b a >- (5)5 (6)xy 85、把下列各式化为最简二次根式:(1)12 (2)b a 245 (3)x y x 2【例12】下列根式中能与3是合并的是( )A.8B. 27C.25D. 21举一反三:1、下列各组根式中,是可以合并的根式是( )A 、318和133和22a b ab 和11a a +-和2、在二次根式:①12;② 32;③ 32;④27中,能与3合并的二次根式是 。
3、如果最简二次根式83-a 与a 217-能够合并为一个二次根式, 则a=__________.知识点四:二次根式计算——分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:a a a =a a 与ab a b ++与b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a b 与a b -a b a b 与a x b y a x b y 与 3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
【典型例题】【例13】 把下列各式分母有理化(148 (24337(311212 (4)13550【例14】把下列各式分母有理化(1328xx y(2a b -(3)38x (4)2525a b b a【例15】把下列各式分母有理化:(1221- (25353+-(3333223-举一反三: 1、已知323x =+,323y =-,求下列各式的值:(1)x y x y +-(2)223x xy y -+2、把下列各式分母有理化:(1)()a b a b a b -≠+ (2)2222a a a a +--++- (3)2222b a b b a b-+++小结:一般常见的互为有理化因式有如下几类: ①与; ②与;③与; ④与.知识点五:二次根式计算——二次根式的乘除【知识要点】1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
ab =a ·b (a ≥0,b ≥0)2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a ·b =ab .(a ≥0,b ≥0)3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a b =ab(a ≥0,b>0) 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a b=a b (a ≥0,b>0) 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.【典型例题】【例16】化简(1)916⨯ (2)1681⨯ (3) 1525⋅ (4)229x y (0,0≥≥y x ) (5) 12×632⨯【例17】计算(1)(2)(3)(4)(5)(6)(7)(8)【例18】化简:36422649b a)0,0(≥>b a 2964x y )0,0(>≥y x 25169xy )0,0(>≥y x【例19】计算:123312811416÷(4648【例20】22xxx x =--x 的取值范围是( )A 、2x >B 、0x ≥C 、02x ≤≤D 、无解知识点六:二次根式计算——二次根式的加减【知识要点】需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。