二次根式知识点总结及其应用
- 格式:doc
- 大小:310.01 KB
- 文档页数:5
二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。
在学习二次根式时,常常会涉及到以下几个方面的知识点。
一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。
2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。
3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。
二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。
即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。
2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。
即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。
3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。
即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。
4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。
有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。
三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。
2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。
3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。
二次根式知识点及其应用一、二次根式的概念:(1)形如 的式子叫做二次根式.(2)二次根式有意义的条件:被开方数大于或等于零。
二、二次根式化简:1、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;2、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同, 那么这几个二次根式叫做同类二次根式。
3、分母有理化:(1)有理化因式:两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
(2)分母有理化:在分母含有根号的式子中,把分母中的根号化去。
方法:①分子与分母同乘以分母的有理化因式例如:②分子或分母分解因式,约去分母中含有二次根式的因式例如:三、二次根式的性质:(1) 非负性0()a ≥0 2(2)(0)a = ≥ 0()a ≥0(00)0,0,)a b a b a b ==≥>==≥≥≠ ,0,0)0,0)x y x y ==>>==>>四、二次根式的运算:二次根式乘法法则二次根式除法法则二次根式的加减:(1)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式。
五、二次根式的应用1.对二次根式的认识1.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )(A )1,1a a -+(BCD )221,1a a -+2.若21x +的平方根是5±_____=.3.a 的被开方数相同,则_____ab +=.4.若xy____x =,_____y =.5=,且0x y <<,则满足上式的整数对(),x y 有_____.2、根据二次根式有意义的条件确定未知数的值:1有意义的x 的取值范围=(0,0)a b = ≥ ≥(00)a b = ≥>(0,0)a b = ≥≥(0,0)a b = ≥>2.若2)(11y x x x +=-+-,则y x -=_____________。
二次根式知识点总结二次根式是高中数学中重要的知识点之一,它在解决一元二次方程、求解勾股定理以及图形的面积计算等问题中起到了重要的作用。
本文将对二次根式的定义、性质以及相关的数学运算进行总结,并探讨其在实际问题中的应用。
一、二次根式的定义二次根式是指形如√a的代数式,其中a为非负实数。
它可以表示为一个单独的根号表达式,也可以是两个或多个二次根式之间的运算。
二、二次根式的性质1. 二次根式与有理数的关系:二次根式可以是有理数或无理数。
当根号内的数可以化简为有理数时,二次根式即为有理数;否则,二次根式为无理数。
2. 二次根式的相等性:两个二次根式相等的条件是它们的被开方数相等。
3. 二次根式的大小比较:对于非负实数a和b,若a > b,则有√a >√b。
4. 二次根式的运算性质:对于非负实数a和b,有以下运算性质:- 加法:√a + √b = √(a + b)- 减法:√a - √b = √(a - b),其中a ≥ b- 乘法:√a * √b = √(a * b)- 除法:√a / √b = √(a / b),其中b ≠ 0三、二次根式的化简当二次根式存在可以化简的情况时,可以通过以下方法进行化简:1. 提取因子法:将根号内的数分解为两个数的乘积,其中一个数是完全平方数,并提取出完全平方数的根号作为整体。
2. 有理化分母法:对于含有二次根式的分数,可以通过有理化分母的方法化简,即将分母有理化为一个有理数或二次根式。
四、二次根式的应用1. 解一元二次方程:一元二次方程的形如ax^2 + bx + c = 0,其中a ≠ 0。
通过二次根式的求解方法,可以求得方程的解,并通过图像分析得到方程的根的性质。
2. 求解勾股定理:在平面几何中,勾股定理是指在直角三角形中,直角边的平方等于两个其他边的平方之和。
通过二次根式的运算,可以准确计算出直角三角形的边长。
3. 计算图形的面积:在几何问题中,经常需要计算图形的面积,而某些图形的面积计算涉及到二次根式。
数学中的二次根式知识点一、定义与性质二次根式是指具有以下形式的数:√a,其中a为非负实数。
其中,√a被称为二次根式的根号形式,a被称为二次根式的被开方数。
二次根式的一些重要性质如下:1. 非负性质:对于任意非负实数a和b,如果a<b,则√a<√b。
2. 非负完全平方值:对于任意非负实数a,若存在非负实数b满足b^2=a,则称b为a的平方根,记作√a=b。
3. 非负根式相等:对于任意非负实数a和b,如果a≥0,b≥0且√a=√b,则a=b。
4. 非负根式与绝对值:对于任意实数a,有√(a^2)=|a|。
二、化简与运算1. 化简(1)合并同类项:对于形如√a±√b的二次根式,可以根据运算规则合并同类项。
(2)有理化分母:对于形如1/√a的二次根式,可以通过有理化分母的方法,将分母中的二次根式消去。
(3)去除分母内的二次根式:对于形如a/√b的二次根式,可以通过有理化分母的方法,去除分母内的二次根式。
2. 运算(1)加减运算:对于形如√a±√b的二次根式,可以根据运算规则进行加减运算。
(2)乘法运算:对于形如√a*√b的二次根式,可以根据运算规则进行乘法运算。
(3)除法运算:对于形如√a/√b的二次根式,可以根据运算规则进行除法运算。
(4)幂运算:对于形如(√a)^n的二次根式,可以根据运算规则进行幂运算。
三、应用与解题思路1. 求解二次根式的值:根据给定的被开方数,利用二次根式的定义和运算规则,可以求解二次根式的值。
2. 化简二次根式:根据给定的二次根式,利用化简的方法,将其化简为最简形式,以便于进行运算或比较大小。
3. 比较大小:根据二次根式的性质,可以通过比较被开方数的大小,来比较二次根式的大小关系。
4. 解方程与不等式:在数学中的各种问题中,经常会涉及到二次根式的方程或不等式,可以利用二次根式的性质以及运算规则,对方程或不等式进行求解。
综上所述,二次根式是数学中重要的知识点之一。
二次根式知识点总结及其应用二次根式是指形如√a的数,其中a为一个非负实数。
在学习二次根式的过程中,我们需要掌握以下几个重要的知识点。
1.二次根式的定义和性质二次根式是数学中的一种运算符号,表示一个非负实数的算术平方根。
如果a≥0,则√a是一个实数;如果a<0,则√a是一个虚数。
二次根式的性质有以下几点:(1)非负数的非负平方根是一个实数,记作√a,其中a≥0;(2)非负实数a的平方根必须满足:如果x是a的平方根,则-x也是a的平方根;(3)二次根式的运算规律:√ab=√a·√b,√(a/b)=√a/√b。
2.简化二次根式简化二次根式是指将一个二次根式写成最简形式。
其中的关键是将根号下的数分解成若干个因数的平方。
一般地,对于一个非负实数a,我们可以将其分解为质因数的乘积,然后将其中的每个质因数的平方提取出来写成一个二次根式。
例如,对于√12,我们可以将12分解为2×2×3,然后将2和3的平方根提取出来,得到√12=2√33.二次根式的四则运算对于二次根式的加、减、乘、除,我们需要根据运算规律来进行计算。
(1)加减:对于两个二次根式的加减,可以先化简,然后将其中的同类项合并。
例如,计算√3+2√3,可以化简得到3√3,再将3√3与2√3相加,得到5√3(2)乘法:对于两个二次根式的乘法,使用运算法则√ab=√a·√b,将根号下的数分解后相乘。
例如,计算(√2+√3)(√2-√3),可以用分配律展开,得到2-3=-1(3)除法:对于两个二次根式的除法,也使用运算法则√(a/b)=√a/√b,将根号下的数分解后相除。
例如,计算(√8)/(√2),可以化简得到√2,即(√8)/(√2)=√24.二次根式的应用二次根式在数学和实际生活中有广泛的应用。
(1)几何应用:二次根式常用于计算几何图形的面积和边长。
例如,计算正方形的对角线长度、矩形的对角线长度等。
(2)物理应用:二次根式常用于计算一些物理问题。
二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
初中二次根式知识点总结二次根式是初中数学的一个重要内容,它涉及到实数的非负数平方根、根式的性质、根式的乘除法、根式的加减法等内容。
以下是关于二次根式的重要知识点总结:1. 二次根式的定义:形如√a(a≥0)的式子叫做二次根式。
其中,a是实数。
2. 非负数的平方根:对于任何非负数a,都有实数平方根,记作√a。
3. 根式的性质:√a² = a(a表示a的绝对值)。
√ab = √a × √b(当a≥0,b≥0时)。
√(a/b) = √a / √b(当a≥0,b>0时)。
4. 根式的乘除法:当两个根式相乘或相除时,可以直接对它们的被开方数进行乘除运算。
例如:√a × √b = √(a×b),√a / √b = √(a/b)。
5. 根式的加减法:当两个根式相加或相减时,需要先将它们化为最简二次根式,然后再对被开方数进行加减运算。
例如:√a + √b 和√a - √b 不能直接合并,除非它们有相同的被开方数。
6. 最简二次根式:满足以下三个条件的二次根式被称为最简二次根式:被开方数的因数是整数,因式没有重复;被开方数中不含有分母;根号内没有剩余的被开方数。
7. 负数的平方根:负数没有实数平方根。
在实数范围内,只有非负数有实数平方根。
8. 无理数:无法表示为两个整数的比的数被称为无理数。
常见的无理数包括π和√2等。
9. 代数运算:在二次根式的运算中,经常需要使用代数的基本运算规则,如分配律、结合律等。
以上是关于二次根式的重要知识点总结。
在学习二次根式时,需要理解并掌握这些知识点,以便能够正确地进行二次根式的运算和化简。
二次根式知识点一:二次根式的定义二次根式:一般地,式子√a (a ≥0)叫做二次根式,a 叫做被开方数。
1)二次根式的定义必须包含二次根号“√”,尽管√9的结果为3,但由于√9满足二次根式的特征,所以√9是二次根式; 2)二次根式的被开方数可以使数字,亦可以是一代数式,但必须满足被开方数≥0,如√-x 2-1,由于被开方数<0,所以它不是二次根式; 3) 根指数是2,此处的2可以省略不写; 4)形如b √a (a ≥0)的式子也是二次根式;知识点二:二次根式有意义的条件(被开方数是非负数) 知识点三:二次根式的性质性质1:双重非负性 性质2:(a )2=a (a ≥0)性质3:a a a a a a 200==≥-<⎧⎨⎩||()()知识点四:同类二次根式与最简二次根式例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y +、x y +(x ≥0,y •≥0).例2. 求下列各式有意义的所有x 的取值范围。
();();();();();()13221312411521645332-++-++-----x x x x x xx x x x例3.已知x,y 为实数,且335y x x =-+-+,求22x xy y -+的值。
例4. 已知y=2x -+2x -+5,求x y的值例5. 当a 取什么值时,代数式211a ++取值最小,并求出这个最小值例6. 已知2310x x -+=,求2212x x +-的值例7. 已知:,x y 为实数,且113y x x -+-+,化简:23816y y y ---+例8. 实数a 在数轴上的位置如图所示,化简:()2|1|2a a -+-例9.已知a 、b、c 满足2(8)5320a b c -+-+-=(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由巩固练习: 一、选择题1 2-1a1、函数13x y x +=-中,自变量x 的取值范围是( ) A. 1x ≥- B. 3x ≠ C. 13x x ≥-≠且 D. 1x <- 2、()a a -=-112成立的条件是:A .a ≠1B .a ≥1C .a <1D .a ≤1 3、下列根式中,最简二次根式为: A .4x B .x 24- C .x 4D .()x +424、已知t <1,化简1212---+t t t 得:A .22-tB .2tC .2D .0 5、下列各式中,正确的是:A .()-=-772B .()-=07072..C .()-=7722D .()-=07072..6、下列命题中假命题是:A .设()x x x <-=-02,则 B .设x x x<=-012,则C .设x x x <=02,则 D .设()x xx <=0222,则7、与23是同类根式的是:A .50B .32C .18D .75二、解决问题 1、已知:x y =+=-123123, 求:x xy y 225-+2、若5的整数部分为a ,小数部分是b 求:a b-1的值。
二次根式的知识点的总结二次根式是高中数学中重要的一个内容,也是学习代数的基础。
在学习二次根式时,需要了解其定义、性质、运算法则等知识点。
下面是对二次根式知识的总结:一、二次根式的定义和性质:1. 定义:对于非负实数a,b,如果存在非负实数x使得$x^2=a$,则称x为a的平方根,记作$x=\sqrt{a}$。
简记作$\sqrt{a}$,a称为二次根式的被开方数。
2.性质:(1)非负实数的平方根是唯一的。
即对于非负实数a,其平方根也是非负实数且唯一(2)非负实数a的平方根如果记作±$\sqrt{a}$,则规定非负实数a的平方根仅指称为非负实数$\sqrt{a}$。
(3)非负实数a的平方根的平方等于a。
即$(\sqrt{a})^2=a$。
(4)非负实数的平方根存在且非负。
即对于非负实数a,总是存在非负实数x使得$x^2=a$,且x唯一(5)相等的二次根式具有相等的平方根。
即如果$\sqrt{a}=\sqrt{b}$,则有a=b。
(6)平方根的运算:$\sqrt{ab}=\sqrt{a}\sqrt{b}$、$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
二、二次根式的化简:1. 因式分解法:将二次根式的被开方数进行因式分解,然后利用性质$\sqrt{ab}=\sqrt{a}\sqrt{b}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$对二次根式进行简化,最后利用性质$\sqrt{a^2}=,a,$化简。
2. 合并同类项法:对于同根号的二次根式,可以合并同类项进行简化。
如$\sqrt{2}+\sqrt{3}+\sqrt{2}=\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{2}+\sqrt{3}$。
3.有理化法:对于含有分母的二次根式,可以通过有理化的方法将其化简为一个无理数。
三、二次根式的比大小:1. 利用性质$\sqrt{a^2}=,a,$,我们可以对二次根式的大小进行比较。
二次根式知识总结
一、基本知识点
1.二次根式的有关概念:
(1)形如 的 式子叫做二次根式.
(即一个 的算术平方根叫做二次根式
二次根式有意义的条件:被开方数大于或等于零
(2)满足下列两个条件的二次根式,叫做最简二次根式:
①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;
(3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
2.二次根式的性质:
(1) 非负性
3.二次根式的运算:
二次根式乘法法则
二次根式除法法则
二次根式的加减: (一化,二找,三合并 )
(1)将每个二次根式化为最简二次根式;
(2)找出其中的同类二次根式;
(
3)合并同类二次根式。
Ps:类似于合并同类项,关键是把同类二次根式合并。
二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用
0()a ≥0 2(2)(0)
a = ≥ =
(0,0)a b = ≥ ≥
(0
0)a b = ≥> (0,0)a b = ≥≥ (0,0)a b = ≥>
二、二次根式的应用
1、非负性的运用
例:1.已知:0+=,求x-y 的值.
2、根据二次根式有意义的条件确定未知数的值
例1
有意义的x 的取值范围
例2.若2)(11y x x x +=-+-,则y x -=_____________。
3、运用数形结合,进行二次根式化简
例:.已知x,y 都是实数,且满足5.011+-+-<x x y ,化简
11--y y .
4、二次根式的大小比较 例:设25,3223-=-=-=c ,b a ,比较a 、b 、c 的大小关系
5、与二次根式有关的规律探究
例:见习题册
二次根式提高测试题
一、选择题
1
有意义的x 的取值范围是( ) 2.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )
(A )1,1a a -+(B C (D )221,1a a -+
3.若0x <x 等于( )
(A )0 (B )2x - (C )2x (D )0或2x
4.若0,0a b <> )
(A )- (B )- (C ) (D )a
5m
=,则2
1y y +的结果为( )
(A )22m + (B )22m - (C )2 (D 2
6.已知,a b b a =-,则a 与b 的大小关系是( )
(A )a b < (B )a b > (C )a b ≥ (D )a b ≤
7.已知下列命题:
2= 36π-=;
③()()()22333a a a +-=+-; a b =+.
其中正确的有( )
(A )0个 (B )1个 (C )2个 (D )3个
8.若与m 的值为( )
(A )203 (B )5126 (C )138 (D )158
9.当12a ≤21a -等于( ) (A )2 (B )24a - (C )a (D )0
102
得( )
(A )2 (B )44x -+ (C )2- (D )44x -
二、填空题
11.若21x +的平方根是5±_____=.
12.当_____x 时,式子4
x -有意义.
13与a 的被开方数相同,则_____a b +=.
14.若x y ____x =,_____y =.
150x y <<,则满足上式的整数对(),x y 有_____.
16.若11x -<<1_____x +=.
17.若0xy ≠=-_____.
18.若01x <<等于_____. 三、解答题
1 9.计算下列各题:(1⎛ ⎝;
(23a
20.已知())2006200702222a =-+,求24a a +的值 .
21.已知y x ,是实数,且3
29922+--+-=x x x y ,求y x 65+的值. 22.若42--y x 与()212+-y x 互为相反数,求代数式32341y y x x +
+的值.
23.若a b S 、、满足7,S ==S 的最大值和最小值.。