引入
设 V1,V2为线性空间V的两个子空间,由维数公式 dimV1 dimV2 dim(V1 V2 ) dim(V1 V2 )
有两种情形: 1) dim(V1 V2 ) dimV1 dimV2 此时 dim(V1 V2 ) 0, 即,V1 V2 必含非零向量.
2023/9/15§6.7 子空间的直和
2023/9/15§6.7 子空间的直和
而在和 V1 V3 中,向量 (2,2,2)的分解式是唯一的, (2,2,2) (2,2,0) (0,0,2)
事实上,对 (a1,a2 ,a3 ) V1 V3 , 都只有唯一分解式: (a1,a2 ,0) (0,0,a3 ).
故 V1 V2是直和.
j 1
i 1,2, , s
2023/9/15§6.7 子空间的直和
" " 假若V1 V2 Vs不是直和, 则零向量还有一个分解式
0 1 2 s , j Vj , j 1,2, , s (*)
在(*)式中,设最后一个不为0的向量是 i , (i s)
则(*)式变为 0 1 2 i ,
V1 V2 0
所以 Pn V1 V2 .
2023/9/15§6.7 子空间的直和
练习 1 设V1 、V2分别是齐次线性方程组① 与②的
解空间:
x1 x2
xn 0
①
x1 x2
xn
②
证明: Pn V1 V2
证:解齐次线性方程组①,得其一个基础解系
1 (1,0, ,0,1) 2 (0,1, ,0, 1)
1 2 , 1 V1,2 V
是唯一的,和 V1 V2就称为直和,记作 V1 V2 .
注: ① 分解式 1 2 唯一的,意即