生理止血机制与凝血详解
- 格式:ppt
- 大小:1.72 MB
- 文档页数:9
医学基础知识:生理止血、血液凝固与纤维蛋白溶解 -生理学一、血小板的止血功能
生理性止血:正常情况下, 小血管破损后引起的出血在几分钟内就会自行停止, 这种现象称为生理性止血。
出血时间:用小针刺破耳垂或指尖使血液自然流出, 然后测定出血延续的时间, 这段时间就叫做出血时间。
正常为 1-3分钟。
生理性止血过程:
血管挛缩→血小板血栓的形成→纤维蛋白凝块的形成与维持。
1. 血小板的生理特性
(1粘附
(2聚集
① ADP
②血栓烷 A2
③胶原
④凝血酶
(3释放
2. 血小板的生理功能
(1生理性止血功能
(2参与凝血
(3维持血管内皮的完整性
(4参与纤维蛋白的溶解
二、血液凝固
血液凝固:指血液由流动的液体状态变成不能流动的凝胶状态的过程。
1. 凝血因子
2. 凝血过程
(1凝血酶原激活物的生成
①内源性途径
②外源性途径
(2凝血酶的生成
(3纤维蛋白的生成
三、抗凝系统
1. 细胞抗凝系统
2. 体液抗凝系统
(1丝氨酸蛋白酶抑制物
(2蛋白质 C 系统
(3组织因子途径抑制物 (TFPI
(4肝素
四、纤维蛋白溶解与抗纤溶 1. 纤维蛋白溶解系统
(1纤维蛋白溶解
(2纤溶系统的作用
(3纤溶系统的组成
(4纤溶的基本过程
①纤溶酶原的激活
②纤维蛋白与纤维蛋白原的降解 2. 纤溶抑制物及其作用(1纤溶酶原激活物抑制剂 -1
(2补体 C1抑制物
(3α2-抗纤溶酶
来源:合肥人事考试网。
凝血与止血知识点总结一、凝血机制凝血是机体对血管损伤后的一种生理性反应,通过一系列复杂的生物化学过程来形成凝块,将血管损伤处的出血停止,达到止血的目的。
凝血机制包括血小板黏附、凝血因子激活、纤维蛋白形成、以及纤维蛋白降解等多个过程。
1. 血小板黏附:血小板是粘附在损伤血管内皮细胞表面的细胞片段,损伤后,血小板黏附在血管壁上,形成稳定的血小板血栓。
2. 凝血因子激活:凝血因子是血液中一类能够在出血时参与凝血的蛋白质。
当血管受损时,一系列凝血因子会相互激活,形成凝血酶,进而引发血栓形成。
3. 纤维蛋白形成:当凝血酶形成后,会激活纤维蛋白原,使其转变成不溶性的纤维蛋白,形成网状结构,将血小板和红细胞一起固定在损伤处,形成凝血块。
4. 纤维蛋白降解:凝血过程后,需要启动纤溶系统将血栓降解,以避免血栓形成过度,引起血管阻塞。
以上凝血机制过程是一个复杂的生物化学过程,需要细胞、蛋白质、激酶、酶等各种因素共同作用,才能有效地实现止血。
二、凝血与止血的常见问题1. 凝血功能异常:凝血功能异常包括原发性凝血功能障碍和继发性凝血功能障碍。
原发性凝血功能障碍是指由于先天遗传而导致凝血因子缺乏或功能异常,如血友病等;而继发性凝血功能障碍则是由于其他疾病或外界因素导致的凝血功能异常,如肝病、维生素K缺乏等。
2. 凝血功能过度:过度的凝血功能会导致血栓形成,引发心肌梗死、中风等心血管疾病,甚至导致血栓栓塞症。
过度的凝血功能多与高脂血症、高血压、糖尿病等代谢性疾病相关。
3. 凝血与肿瘤:一些肿瘤会导致体内凝血功能异常,形成微血栓,导致微循环障碍,进而促进肿瘤生长和转移。
4. 凝血与妊娠:妊娠期间女性体内血液凝血性增强,以应对分娩过程中可能出现的大出血。
然而,这也会增加罹患孕产期血栓栓塞症的风险。
以上问题提示了凝血功能的平衡对于机体的重要性,一旦凝血功能出现异常,就可能会导致严重的健康问题。
三、止血方法止血过程是医护人员在面对创伤或手术后迅速采取的一系列措施,目的是迅速减轻或停止出血。
生理止血、血液凝固与纤维蛋白溶解(血凝,凝血过程,抗凝,纤溶,血小板,止血功能( 关键词:生理止血;血液凝固;血凝;凝血过程;抗凝;纤维蛋白溶解;纤溶;血小板;止血功能)小血管损伤后血液将从血管流出,但在正常人,数分钟后出血将自行停止,称为生理止血。
用一个小撞针或注射针刺破耳垂或指尖使血液流出,然后测定出血延续的时间,这一段时间称为出血时间(bleeding tim e)。
出血时间的长短可以反映生理止血功能的状态。
正常出血时间为1-3分钟。
血小板减少,出血时间即相应延长,这说明血小板在生理止血过程中有重要作用;但是血浆中一些蛋白质因子所完成的血液凝固过程也十分重要。
凝血有缺陷时常可出血不止。
生理止血过程包括三部分功能活动。
首先是小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。
其次,更重要的是血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。
接着,在局部又迅速出现血凝块,即血浆中可溶的纤维蛋白源转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。
与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。
显然,生理止血主要由血小板和某些血浆成分共同完成。
一、血凝、抗凝与纤维蛋白溶解血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。
在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。
血纤维交织成网,将很多血细胞网罗在内,形成血凝块。
血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。
血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。
血液的凝固和止血机制血液的凝固和止血机制是人体中至关重要的生理过程。
当血管受损时,血液必须迅速凝固并形成血栓,以防止过多的失血。
本文将详细阐述血液凝固过程和止血机制,并探讨这些过程中所涉及的主要生物分子和细胞组分。
【前言】血液循环体系是人体内最重要的系统之一,它不断输送氧气和营养物质到组织器官,并承担代谢废物的排泄。
血液具有特殊的流动性质,然而当血管发生损伤而遭受破裂时,血液也具备了凝结和止血的特性。
下面将重点介绍血液的凝固和止血机制。
【血液的凝固机制】血液的凝固是一种复杂的过程,它涉及多种生物分子和细胞组分的相互作用。
凝血过程的启动通常是由于血管损伤,血液中的血小板和凝血因子被激活,从而触发凝血级联反应。
1. 血小板的活化血小板是血液中最重要的细胞组分之一,它们在血管损伤处迅速聚集,形成血小板栓子(platelet plug)。
当血管受损时,损伤部位的内皮细胞会释放一种叫做“内皮素”的信号分子,它能够吸引血小板靠近损伤区域。
同时,损伤部位的胶原蛋白也能结合血小板表面的受体,激活血小板的黏附和聚集,形成初步的凝固结构。
2. 凝血级联反应的启动除了血小板的活化外,血液中的一系列凝血因子也会被激活,从而引发凝血级联反应。
凝血级联反应包括一系列复杂的酶促反应和蛋白质相互转化的过程。
从激活因子到凝血酶的形成,这个过程中涉及到多种血浆蛋白的活化和降解,例如凝血因子Ⅶ、Ⅸ、Ⅹ和Ⅱ等。
3. 凝血酶的形成在凝血级联反应的过程中,凝血酶是至关重要的一个酶。
它能够将血液中的溶血蛋白原转化为溶血蛋白,进而促进纤维蛋白的聚集和交联。
凝血酶形成后,它会进一步加速凝血级联反应的进行,并最终导致纤维蛋白的形成。
4. 纤维蛋白的形成和稳定凝血酶作用下,纤维蛋白原转化为可溶的纤维蛋白单体,然后这些单体会聚集成为纤维蛋白多聚体。
这种多聚体的形成和稳定使得凝血血栓得以形成。
同时,这个过程还涉及到其他凝血因子的参与,例如凝血因子Ⅷ和凝血因子ⅩIII等。