高级高三文科数学中档题训练33
- 格式:doc
- 大小:2.36 MB
- 文档页数:29
高考数学精品复习资料2019.5中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z . 故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。
..Word 资料.高三数学中档题训练1班级 姓名1.集合A={1,3,a },B={1,a 2},问是否存在这样的实数a ,使得B ⊆A , 且A ∩B={1,a }?若存在,求出实数a 的值;若不存在,说明理由.2、在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。
(Ⅰ)求角A 的大小: (Ⅱ)若222sin 2sin 122B C+=,判断ABC ∆的形状。
3. 设椭圆的中心在原点,焦点在x 轴上,离心率23=e .已知点)23,0(P 到这个椭圆上的点的最远距离为7,求这个椭圆方程.4.数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n S S S +++<L .高三数学中档题训练2班级 姓名1.已知函数()116-+=x x f 的定义域为集合A ,函数()()m x x x g ++-=2lg 2的定义域为集合 B. ⑴当m=3时,求()B C A R I ;⑵若{}41<<-=x x B A I ,求实数m 的值.2、设向量(cos ,sin )m θθ=u r ,(22sin ,22cos )n θθ=+-r ,),23(ππθ--∈,若1m n •=u r r ,求:(1))4sin(πθ+的值; (2))127cos(πθ+的值.3.在几何体ABCDE 中,∠BAC=2π,DC ⊥平面ABC ,EB ⊥平面ABC ,F 是BC 的中点,AB=AC=BE=2,CD=1(Ⅰ)求证:DC ∥平面ABE ;(Ⅱ)求证:AF ⊥平面BCDE ;(Ⅲ)求证:平面AFD ⊥平面AFE .4. 已知ΔOFQ 的面积为2 6 ,且OF FQ m ⋅=u u u r u u u r.(1)设 6 <m <4 6 ,求向量OF FQ u u u r u u u r与的夹角θ正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),OF c =u u u r ,m=( 6 4-1)c 2,当OQ u u u r 取得最小值时,求此双曲线的方程.ABCDEF..Word 资料.高三数学中档题训练3班级 姓名1. 已知向量a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α),α∈(3π2π2,), 且a ⊥b . (1)求tan α的值; (2)求cos(π23α+)的值.2、某隧道长2150m ,通过隧道的车速不能超过20m/s 。
高三数学天天练(20)班级 姓名 日期1、 已知双曲线22221y x a b-=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是双曲线上一点,且PF 1⊥PF 2,P F 1⋅P F 2 =4ab ,则双曲线的离心率是 .2、在周长为16的PMN ∆中,6MN =,则PM PN ⋅的取值范围是 .3、已知函数1()31f x x a =-+.若对x ∀∈Z 都有()(3)f x f ≥,则实数a 的取值范围是 .4、已知(0,)2πα∈,(,)2πβπ∈,7cos 29β=-,7sin()9αβ+=. (Ⅰ) 求cos β的值; (Ⅱ) 求sin α的值.5、如图,在四棱锥P ABCD-中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA PD AD ==,若E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF ∥平面PAD ; (Ⅱ) 求证:EF ⊥平面PDC .6、已知等差数列{}n a 满足:158,0a a ==。
数列{}n b 的前n 项和为1*12()2n n S n N -=-∈ (1)求数列{}n a 和{}n b 的通项公式;(2)令2n a n c =,试问:是否存在正整数n ,使不等式1n n n n b c b c +>+成立?若存在,求 出相应n 的值;若不存在,请说明理由。
7、如图,已知椭圆C :22221(0)x y a b a b +=>>的长轴AB 长为4,离心率e =O 为坐标原点,过B 的直线l 与x 轴垂直.P 是椭圆上异于A 、B 的任意一点,PH x ⊥轴,H 为垂足, 延长HP 到点Q 使得HP PQ =,连结AQ 延长交直线l 于点M ,N 为MB 的中点. (1)求椭圆C 的方程;(2)证明Q 点在以AB 为直径的圆O 上;(3)试判断直线QN 与圆O 的位置关系.1、[7,16) 3、(]1013, 4、解:(Ⅰ)因为(,)2πβπ∈,cos 0β<…………………………2分又27cos 22cos 19ββ=-=-,所以1cos 3β=-……………6分(Ⅱ)根据(Ⅰ),得sin β== 8分而3(,)22ππαβ+∈,且7sin()9αβ+=,所以42cos()αβ+==分故sin sin[()]sin()cos cos()sin ααββαββαββ=+-=+-+………………………12分=711()(93933⨯---⨯=…………………………………… 5、证明:(Ⅰ)连结AC ,则F 是AC 的中点,在△CPA 中,EF ∥PA且P A ⊂平面P A D ,E F ⊄平面P A D ,∴E F ∥平面P A D(Ⅱ)因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,又CD ⊥AD ,所以CD ⊥平面PAD ,∴CD ⊥PA又,所以△PAD 是等腰直角三角形,且2APD π∠=,即PA ⊥PD而C D ∩P D =D ,∴ P A ⊥平面P D C ,又E F ∥P A ,所以E F ⊥平面P D C6、解:(1)设数列{}n a 的公差为d , 由5114a a d =+,得12d =-,得210n a n =-+.…2分由数列{}n b 的前n 和为()1122n n S n N -*=-∈可知,当1n =时,1112b S ==, 当2n ≥时,212n n n n b S S --=-=, 22n n b -=当1n =时,得112b =, 故数列{}n a 的通项公式为210n a n =-+,{}n b 的通项公式为22n n b -=.………………………6分(2)假设存在正整数n 使不等式1n n n n b c b c +>+成立,即要满足(1)(1)0n n c b -->, 由1025224na n n n c --===,22n nb -=,所以数列{}n c 单调减,数列{}n b 单调增,…………………………8分①当正整数1,2n =时,2210n --≤,所以1n n n n b c b c +>+不成立;……………10分 ②当正整数34n =,时,10,10n n c b ->->,所以1n n n n b c b c +>+成立;………………12分 ③当正整数5n ≥时,10,10n n c b ->-≤, 所以1n n n n b c b c +>+不成立. 综上所述,存在正整数34n =,时,使不等式1n n n n b c b c +>+成立.………………14分7、解:(1)由题设可得24,c a a ==,解得2,a c ==,所以 1b =所以 椭圆C 的方程为2214x y +=. (2)设()00,P x y ,则220014x y +=. 因为 HP PQ =,所以 ()00,2Q x y .所以2OQ =.所以 Q 点在以O 为圆心,2为半径的的圆上.即Q 点在以AB 为直径的圆O 上. (3)设()00,P x y ()02x ≠±,则()00,2Q x y ,且220014x y +=. 又()2,0A -,所以 直线AQ 的方程为()00222y y x x =++.令2x =,得0082,2y M x ⎛⎫ ⎪+⎝⎭.又()2,0B ,N 为MB 的中点,所以 0042,2y N x ⎛⎫⎪+⎝⎭.所以 ()00,2OQ x y = ,000022,2x y NQ x x ⎛⎫=- ⎪+⎝⎭ .所以 ()()()()2200000000000000004242222222x x x y x y OQ NQ x x y x x x x x x x -⋅=-+⋅=-+=-++++ ()()0000220x x x x =-+-=.所以 OQ NQ ⊥.所以 直线QN 与圆O 相切.。
高三数学中档题训练(一)1、已知向量OA=3i-4j,OB=6i-3j,OC=(5-m)I-(3+m)j,其中i、j分别是直角坐标系内x轴与y轴正方向上的单位向量.①若A、B、C能构成三角形,求实数m应满足的条件;②若△ABC为直角三角形,且∠A为直角,求实数m的值.2、已知数列{a n}的前n项之和为S n,且S n=a(a n-1)(a≠0,a≠1,n∈N n)(1)求数列{a n}的通项公式;(2)数列{b n}=2n+b(b是常数),且a1=b1,a2>b2,求a的取值范围.3、如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,△ABC 为正三角形,D 、E 分别是BC 、CA 的中点.(1)证明:平面PBE ⊥平面PAC ; (2)如何在BC 上找一点F ,使AD//平面PEF ?并说明理由; (3)若PA=AB=2,对于(2)中的点F ,求三棱锥B-PEF 的体积.4、某种细菌两小时分裂一次,(每一个细菌分裂成两个,分裂所需的时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y 是研究时间t 的函数,记作y=f(t)(1)写出函数y=f(t)的定义域和值域;(2)在所给坐标系中画出y=f(t);(0≤t<6)的图象;(3)写出研究进行到n 小时(n ≤0,n ∈Z)时细菌的总数有多少个(用关于n 的式子表示).答案在第9页A B D CFP高三数学中档题训练(二)1、求函数x x x f 4131)(3-=的单调区间,并求f(sinx)的最大值.2、数列{a n }共有k 项(k 为定值),它的前n 项和S n =2n 2+n(1≤n ≤k ,n ∈N),现从k 项中抽取一项(不抽首项、末项),余下的k-1项的平均值是79.(1)求数列{a n }的通项.(2)求出k 的值并指出抽取的第几项.3、若一个三棱锥的三个侧面中有两个是等腰直角三角形,另一个是边长为1的正三角形,试求所有的满足上述条件的三棱锥的体积.4、某服装公司生产的衬衫,若每件定价80元,则在某市年销售量为8万件. 若该服装公司在该市设立代理商来销售该衬衫,代理商要收取代销费,代销费是销售额的p%(即每销售100元时收取p 元). 为此,该衬衫每件的价格要提高到%180p 元,而每年销售量将减少0.62p 万件.(1)设该衬衫每年销售额为y 元,试写y 与p 的函数关系式,并指出这个函数的定义域; (2)若代理商对衬衫每年收取的代理费不小于16万元,求p 的取值范围.高三数学中档题训练(三)1、已知:A 、B 是△ABC 的两个内角,j BA i b A m 2sin 252cos ++-=,其中i 、j 为互相垂地的单位向量. 若|m |=423,试求tanA ·tanB 的值.2、如图,直三棱柱ABC-A 1B 1C 1中,AB=AC=4,∠BAC=90°,侧面ABB 1A 1为正方形,D 为正方形ABB 1A 1的中心,E 为BC 的中点.(1)求证:平面DB 1E ⊥平面BCC 1B 1; (2)求异面直线A 1B 与B 1E 所成的角.1A 1C BA C D1B E3、某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为K(K>0),货款的利率为4.8%,又银行吸收的存款能全部放货出去.(1)若存款的利率为x ,x ∈(0,0.048),试写出存款量g(x)及银行应支付给储户的利息(x);(2)存款利率定为多少时,银行可获得最大收益?4、已知函数f(x)=nxx a x a a n 2210a …++++(n ∈N n),且y=f(x)的图象经过点(1,n 2),数列{a n }(n ∈N +)为等差数列.(1)求数列{a n }的通项公式;(2)当n 为奇函数时,设g(x)=)]()([21x f x f --,是否存在自然数m 和M ,使不等式m<g(21)<M 恒成立,若存在,求出M-m 的最小值;若不存在,说明理由.高三数学中档题训练(四)1、已知函数)R (2sin 3cos 2)(2∈++=a a x x x f .(1)若x ∈R ,求f (x )的单调递增区间;(2)若x ∈[0,2π]时,f (x )的最大值为4,求a 的值,并指出这时x 的值.2、设两个向量1e 、2e ,满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2172e te +与向量21te e +的夹角为钝角,求实数t 的取值范围.3、如图,平面VAD ⊥平面ABCD ,△VAD 是等边三角形,ABCD 是矩形,AB ∶AD =2∶1,F 是AB 的中点.(1)求VC 与平面ABCD 所成的角;(2)求二面角V -FC -B 的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.4、已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-=n n a b(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求1)1(+-n nS b n高三数学中档题训练(一)答案1、①当m ≠21时,A 、B 、C 三点能构成三角形; ②当m=47时,三角形ABC 为直角三角形,且∠A=90°.2、(1)n n a a a )1(-= (2))2,1()1,21(⋃3、(1) ∵PA ⊥底面ABC ,∴PA ⊥BE又∵△ABC 是正三角形,且E 为AC 的中点,∴BE ⊥CA又PA A CA =⋂,∴BE ⊥平面PAC ∵BE ⊂平面PBE ,∴平面PBE ⊥平面PAC. (2)取CD 的中点F ,则点F 即为所求. ∵E 、F 分别为CA 、CD 的中点,∴EF//AD 又EF ⊂平面PEF ,AD ⊄平面PEF ,∴AD//平面PEF. (3)43 4、 (1)函数y=f(t)的定义域为[0,+∞);值域为{y|y=2n,n ∈N *} (2)(3)y=⎪⎩⎪⎨⎧⋅⋅-为奇数时当为偶数当n n n,22n ,22212 高三数学中档题训练(二)答案1、f(sinx)有最大值121. 2、(1)a n =4n-1(1≤n ≤k) (2)抽取的是第20项. 3、1 2 3 4 5 6x12 3 4 5 6 78y4、解:(1))31400p (0 )62.08(%180<<--=p p y(2)16100)6.08(%180≥⨯--pp p 10311000100411.32≤≤∴≤+-∴p p p高三数学中档题训练(二)答案1、91 2、(1)证明:延长B 1D 至A ,连结AE∵三棱柱为直三棱柱,∴平面BCC 1B 1⊥平面ABC 又△ABC 中AB=AC ,E 为AB 中点 ∴AE ⊥BC ∴AE ⊥平面BCC 1B 1又∵AC ⊂平面B 1DE ∴平面B 1DE ⊥平面BCC 1B 1 (2)63 3、(1)由题意,存款量g(x)=Kx 2,银行应支付的利息h(x)=x ·g(x)=Kx 36(2)存款利率为3.2%时,银行可获得最大利益4、(1)据题意:f(1)=n 2 即a 0+a 1+a 2+……+a n =n 2令n=1 则a 0+a 1=1,a 1=1-a 0 令n=2 则a 0+a 1+a 2=22,a 2=4-(a 0+a 1)=4-1=3令n=3 则a 0+a 1+a 2+a 3=32,a 3=9-(a 0+a 1+a 2)=9-4=5 ∵{a n }为等差数列 ∴d=a 3-a 2=5-3=2 a 1=3-2=1 a 0=0 a n =1+(n-1)·2=2n-1(2)由(1)f(x)=a 1x 1+a 2x 2+a 3x 3+…+a n x nn 为奇数时,f(-x)=-a 1x 1+a 2x 2-a 3x 3+…+a n-1x n-1-a n x ng(x)=n n n n x a x a x a x a x a x f x f +++++=----22553311)]()([21n n n n g )21)(12()21)(52()21(9)21(5211)21(253-+-++⋅+⋅+⋅=-2753)21)(12()21)(52()21(9)21(5)21(1)21(41+-+-++⋅+⋅+⋅=n n n n g相减得 253)21)(12(])21()21()21[(4211)21(43+--++++⋅=n n n g∴n n n g )21(32)21(913914)21(+-= 令n n n C )21(32= ∵*1N n ,021)21(32∈≤-⋅⋅=-+n C C n n n ∴C n+1≤C n ,C n 随n 增大而减小 又n )21(913⋅随n 增大而减小 ∴g(21)为n 的增函数,当n=1时,g(21)=21 而914)21(32)21(913914<-⋅-n n n 914)21(21<≤∴g ∴使m<g(21)<M 恒成立的自然m 的最大值为0,M 最小值为2. M-m 的最小值为2.高三数学中档题训练(三)答案解析:1、(1)a x a x x x f +++=+++=1)6π2sin(212cos 2sin 3)(. 解不等式2ππ26π22ππ2+≤+≤-k x k . 得)Z (6ππ3ππ∈+≤≤-k k x k∴ f (x )的单调增区间为3ππ[-k ,)Z ](6ππ∈+k k .(2)∵ 0[∈x ,2π], ∴ 6π76π26π≤+≤x .∴ 当2π6π2=+x 即6π=x 时,a x f +=3)(max . ∵ 3+a =4,∴ a =1,此时6π=x . 2、解析:由已知得421=e ,122=e ,160cos 1221=⨯⨯=⋅ e e .∴ 71527)72(2)()72(222212212121++=+++=++⋅t t te e e t te te e e te . 欲使夹角为钝角,需071522<++t t . 得 217-<<-t . 设)0)((722121<+=+λte e i e te . ∴ ⎩⎨⎧==λλt t 72,∴ 722=t .∴ 214-=t ,此时14-=λ. 即214-=t 时,向量2172e te +与21te e +的夹角为π . ∴ 夹角为钝角时,t 的取值范围是(-7,214-) (214-,21-). 3、解析:(甲)取AD 的中点G ,连结VG ,CG .(1)∵ △ADV 为正三角形,∴ VG ⊥AD .又平面VAD ⊥平面ABCD .AD 为交线,∴ VG ⊥平面ABCD ,则∠VCG 为CV 与平面ABCD所成的角.设AD =a ,则a VG 23=,a DC 2=. 在Rt △GDC 中, a a a GD DC GC 23422222=+=+=. 在Rt △VGC 中,33tan ==∠GC VG VCG . ∴ 30=∠VCG . 即VC 与平面ABCD 成30°.(2)连结GF ,则a AF AG GF 2322=+=. 而 a BC FB FC 2622=+=. 在△GFC 中,222FC GF GC +=. ∴ GF ⊥FC .连结VF ,由VG ⊥平面ABCD 知VF ⊥FC ,则∠VFG 即为二面角V -FC -D 的平面角. 在Rt △VFG 中,a GF VG 23==. ∴ ∠VFG =45°. 二面角V -FC -B 的度数为135°.(3)设B 到平面VFC 的距离为h ,当V 到平面ABCD 的距离是3时,即VG =3. 此时32==BC AD ,6=FB ,23=FC ,23=VF . ∴ 921==⋅∆FC VF S VFC , 2321==⋅∆BC FB S BFC . ∵ VCF B FCB V V V --=, ∴ VFC FBC S h S VG ∆∆⋅⋅⋅⋅=3131. ∴ 93123331⋅⋅=⨯⨯h . ∴ 2=h 即B 到面VCF 的距离为2解析:(1)4、4、 4、1112111111-=--=-=---n n n n n a a a a b , 而 1111-=--n n a b , ∴ 11111111=-=-=-----n n n n n a a a b b .)(+∈N n ∴ {n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有n n b a 11=-,而5.31)1(25-=-+-=⋅n n b n , ∴ 5.311-=-n a n . 对于函数5.31-=x y ,在x >3.5时,y >0,0<y',在(3.5,∞+)上为减函数. 故当n =4时,5.311-+=n a n 取最大值3 而函数5.31-=x y 在x <3.5时,y <0,0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)2)5)(1(2)25225)(1(1-+=-+-+=+n n n n S n ,5.3-=n b n ,∴ ∞→+∞→=-+--=-n n n n n n n n S b n 2)5)(1()5.3)(1(2lim )1(lim 1.。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考模拟复习试卷试题模拟卷【考情解读】1.了解集合的含义、元素与集合的属于关系;2.理解集合之间包含与相等的含义,能识别给定集合的子集;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合的关系及运算.【重点知识梳理】1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A.【高频考点突破】考点一 集合的含义【例1】 (1)若集合A ={x ∈R|ax2+ax +1=0}中只有一个元素,则a =( ) A .4 B .2 C .0 D .0或4(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a2,a +b ,0},则a2 016+b2 016=________.【答案】(1)A (2)1【规律方法】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【变式探究】 (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m2+m},若3∈A ,则m 的值为________.【答案】(1)C (2)-32 考点二 集合间的基本关系【例2】 (1)已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,则实数m 的取值范围为__________.(2)设U =R ,集合A ={x|x2+3x +2=0},B ={x|x2+(m +1)x +m =0},若(∁UA)∩B =∅,则m =__________.【答案】(1)(-∞,4](2)1或2【规律方法】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图来直观解决这类问题.【变式探究】 (1)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅ C.A⊆B D.B⊆A(2)已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是__________.【答案】(1)D(2)(4,+∞)考点三集合的基本运算【例3】 (1)(·四川卷)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}(2)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}【答案】(1)A(2)B【规律方法】(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.【变式探究】 (1)(·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅ B.{2}C .{5}D .{2,5}(2)设集合M ={x|-1≤x <2},N ={y|y <a},若M∩N≠∅,则实数a 的取值范围一定是( ) A .[-1,2) B .(-∞,2] C .[-1,+∞) D .(-1,+∞)【答案】(1)B (2)D考点四 集合背景下的新定义问题以集合为背景的新定义问题,集合只是一种表述形式,实质上考查的是考生接受新信息、理解新情境、解决新问题的数学能力.解决此类问题,要从以下两点入手:(1)正确理解创新定义.分析新定义的表述意义,把新定义所表达的数学本质弄清楚,进而转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.【例4】设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪m≤x≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x≤n ,且M ,N 都是集合{0|0≤x≤1}的子集,如果把b -a 叫作集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是( )A.13B.23C.112D.512【答案】C 【真题感悟】1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =() (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C3.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A4.【高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A UB ()()(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B5.【高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( ) (A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A6.【高考山东,文1】已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3()(B )1,4()(C )(2,3()(D )2,4())【答案】C7.【高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞8.【高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B9.【高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C1.(·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B =( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C2.(·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B .{x|3<x<4} C .{x|2≤x<3} D .{x|2≤x≤3} 【答案】A3.(·福建卷) 已知集合{a ,b ,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a +10b +c 等于________.【答案】2014.(·广东卷) 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}【答案】B5.(·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C6.(·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C7.(·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.【答案】{3,5,13}8.(·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}9.(·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=() A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C10.(·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D11.(·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2 B.3C.5 D.7【答案】B12.(·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=() A.∅ B.{2}C.{0} D.{-2}【答案】B13.(·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B14.(·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C15.(·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D16.(·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D17.(·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.18.(·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D19.(·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.16【答案】C20.(·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B21.(·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A22.(·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D23.(·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B24.(·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C25.(·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B26.(·江苏卷) 集合{-1,0,1}共有________个子集.【答案】827.(·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B=________.【答案】{6,8}28.(·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁UA)=() A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B29.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A30.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A31.(·新课标全国卷Ⅰ) 已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A32.(·浙江卷) 设集合S ={x|x>-2},T ={x|-4≤x≤1},则S∩T =( ) A .[-4,+∞) B .(-2,+∞) C .[-4,1] D .(-2,1] 【答案】D33.(·重庆卷) 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U(A ∪B)=( ) A .{1,3,4} B .{3,4} C .{3} D .{4} 【答案】D【押题专练】1.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5【答案】C2.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】D3.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是() A.0 B.1C.2 D.3【答案】C4.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2C.3 D.4【答案】C5.已知A ={0,m,2},B ={x|x3-4x =0},若A =B ,则m =________.【答案】-26.若集合A ={x|x2-9x <0,x ∈N*},B =⎩⎨⎧⎭⎬⎫y ⎪⎪4y ∈N*,y ∈N*,则A∩B 中元素的个数为________.【答案】37.已知集合A ={x|4≤2x≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是________.【答案】(-∞,-2]8.已知集合A ={-4,2a -1,a2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A∩B); (2){9}=A∩B.9.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.高考模拟复习试卷试题模拟卷高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32B .155C .105D .3312. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
2024届高三10月大联考(全国乙卷)文科数学一、单选题(共36 分)1已知集合A={x∈Z∣x2+1<5},B={−1,1,3}则A∪B中元素的个数为()A3B4C5D6【答案】B【分析】化简集合A即可求出A∪B中元素的个数【详解】由题意因为A={x∈Z∣x2+1<5}={x∈Z∣x2<4}={−1,0,1},B={−1,1,3}所以A∪B={−1,0,1,3}有4个元素故选:B2已知命题p:∃x0≥0,√x0>x02则命题p的否定为()A∃x0<0,√x0≤x02B∀x≥0,√x<x2C∀x<0,√x>x2D∀x≥0,√x≤x2【答案】D【分析】利用含有一个量词的命题的否定的定义求解【详解】解:因为命题p:∃x0≥0,√x0>x02是特称命题所以其否定为全称命题即“∀x≥0,√x≤x2”故选:D3若不等式x2−5ax+1<0的解集为(1a,a)则a=()A−12B12C−14D14【答案】A 【分析】根据给定的解集结合一元二次方程根与系数的关系求解即得 【详解】由不等式x 2−5ax +1<0的解集为(1a ,a)得1a ,a 是方程x 2−5ax +1=0的两个根且1a <a 于是a +1a =5a 解得a =±12由a >1a 得−1<a <0或a >1因此a =−12且当a =−12时(−5a)2−4>0所以a =−12 故选:A4若函数f (x )={e x −x,x ≤3lnx −2,x >3则f(f (e 2))=( )A −1B −2 C1 D ln2−2【答案】C 【分析】先计算出f (e 2)=0进而求出f(f (e 2))=f (0)=1 【详解】因为e 2>3所以f (e 2)=lne 2−2=0所以f(f (e 2))=f (0)=e 0−0=1 故选:C5已知p:1<a <53,q:log a 43>2(a >0且a ≠1)则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件【答案】B 【分析】对于q :利用对数函数单调性解得1<a <2√33再根据包含关系结合充分、必要条件分析判断 【详解】对于q :因为log a 43>2=log a a 2(a >0且a ≠1)当0<a <1时y =log a x 在定义域内单调递减则a 2>43无解; 当a >1时y =log a x 在定义域内单调递增则a 2<43可得1<a <2√33;综上所述:不等式log a 43>2的解集为(1,2√33) 又因为(1,2√33)是(1,53)的真子集所以p 是q 的必要不充分条件 故选:B6函数f (x )=x 2log 42+x2−x 的大致图象是( )A B C D【答案】D 【分析】方法一:根据函数的奇偶性及函数值的符号排除即可判断;方法二:根据函数的奇偶性及某个函数值的符号排除即可判断 【详解】方法一:因为2+x2−x >0即(x +2)⋅(x −2)<0所以−2<x <2 所以函数f (x )=x 2log 42+x2−x 的定义域为(−2,2)关于原点对称又f (−x )=(−x)2log 42−x 2+x =−f (x )所以函数f (x )是奇函数其图象关于原点对称 故排除B,C ;当x ∈(0,2)时2+x2−x >1即log 42+x2−x >0因此f (x )>0故排除A 故选D方法二:由方法一知函数f (x )是奇函数其图象关于原点对称故排除B,C ; 又f (1)=12log 23>0所以排除A 故选:D7白色污染是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓经过长期研究一种全生物可降解塑料(简称PBAT )逐渐被应用于超市购物袋、外卖包装盒等产品研究表明在微生物的作用下PBAT 最终可被完全分解为二氧化碳和水进入大自然当其分解率(分解率=已分解质量总质量×100%)超过60%时就会成为对环境无害的物质为研究总质量为100g 的PBAT 的已分解质量y (单位:g )与时间x (单位:月)之间的关系某研究所人员每隔1个月测量1次PBAT 的已分解质量对通过实验获取的数据做计算处理研究得出已分解质量y 与时间x 的函数关系式为y =100−e 4.6−0.1x 据此研究结果可以推测总质量为100g 的PBAT 被分解为对环境无害的物质的时间至少为( )(参考数据:ln40≈3.7) A8个月 B9个月 C10个月 D11个月【答案】C 【分析】根据题意令y =100−e 4.6−0.1x >60求解即可 【详解】令y =100−e 4.6−0.1x >60得0.1x >4.6−ln40≈0.9解得x >9故至少需要10个月总质量为100g 的PBAT 才会被分解为对环境无害的物质 故选:C8已知α,β∈(0,π2),α>β且cosα(cosα−cosβ)+sinα(sinα−sinβ)=15,sinαcosβ=710则sin (α+β)=( ) A 45 B 35C 25D 310【答案】A 【分析】利用两角和与差的正弦公式和余弦公式化简即可 【详解】因为cosα(cosα−cosβ)+sinα(sinα−sinβ)=15cos 2α−cosαcosβ+sin 2α−sinαsinβ=15即1−cos (α−β)=15所以cos (α−β)=45因为α,β∈(0,π2),α>β所以0<α−β<π2所以sin (α−β)=35即sinαcosβ−cosαsinβ=35又sinαcosβ=710所以cosαsinβ=110所以sin (α+β)=sinαcosβ+cosαsinβ=710+110=45 故选:A9已知O 是△ABC 所在平面内一点若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ ,MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ ,x,y 均为正数则xy 的最小值为( ) A 12 B 49C1D 43【答案】B 【分析】由题设O 是△ABC 的重心应用向量加法、数乘几何意义可得AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN ⃗⃗⃗⃗⃗⃗ 根据MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ 得13x +13y =1最后应用基本不等式求xy 最小值注意等号成立条件 【详解】因为OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ 所以点O 是△ABC 的重心 所以AO ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) 因为AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ 所以AB ⃗⃗⃗⃗⃗ =1x AM ⃗⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =1yAN⃗⃗⃗⃗⃗⃗ 综上AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN⃗⃗⃗⃗⃗⃗ 因为MO ⃗⃗⃗⃗⃗⃗ =λON⃗⃗⃗⃗⃗⃗ 所以M,O,N 三点共线则13x +13y =1即1x +1y =3 因为x,y 均为正数所以1x +1y ≥2√1xy 则√1xy ≤32所以xy ≥49(当且仅当1x =1y =32即x =y =23时取等号) 所以xy 的最小值为49 故选:B10若函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示则下列说法正确的个数为( )①ω=2;②φ=−π6;③f (x )在(π2,5π6)上单调递减;④f (−π2)=√3 A1B2C3D4【答案】C 【分析】由图像经过的特殊点(5π12,2)和(π6,0)逐项判断即可 【详解】由题图得A =2最小正周期T =4×(5π12−π6)=π 又T =2πω=π所以ω=2故①正确;f (x )=2sin (2x +φ)又f (x )的图象过点(5π12,2) 所以2×5π12+φ=2kπ+π2,k ∈Z 所以φ=2kπ−π3,k ∈Z又|φ|<π2所以φ=−π3故②错误; f (x )=2sin (2x −π3)令t =2x −π3当π2<x <5π6时2π3<t <4π3函数y =sint 在(2π3,4π3)上单调递减故③正确;f (−π2)=2sin (−π−π3)=√3故④正确 故选:C11已知函数f (x )是偶函数当x >0时f (x )=|log 2x |−1则不等式x−1f (−x )−2f (x )≥0的解集是( ) A (−12,0)∪(0,12) B (−2,−1]∪[1,2)C (−2,−12)∪(0,12) D (−∞,−2)∪(−12,0)∪(0,12)∪[1,2)【答案】D 【分析】根据已知画出y =f (x )的图象并将不等式化为{f(x)(x −1)≤0f(x)≠0数形结合求不等式解集【详解】根据题意作偶函数y =f (x )的图象如下图示由f(−x)=f(x)不等式可化为x−1−f(x)≥0则{f(x)(x−1)≤0f(x)≠0所以{x−1≥0f(x)<0或{x−1≤0f(x)>0由图知:1≤x<2或0<x<12或−12<x<0或x<−2所以不等式解集为(−∞,−2)∪(−12,0)∪(0,12)∪[1,2)故选:D12已知函数f(x)=a x+a−x+cosx+x2(a>1)则f(√2),f(−e1e),f(π1π)的大小关系为()A f(π1π)<f(−e 1e)<f(√2)B f(√2)<f(π1π)<f(−e1e)C f(π1π)<f(√2)<f(−e1e)D f(−e1e)<f(π1π)<f(√2)【答案】B【分析】根据函数的奇偶性只需要考虑x>0时的情况利用导数求解函数单调性构造函数φ(x)=2x−sinx,g(x)=lnxx即可由导数求解单调性利用函数单调性即可比较大小【详解】易知f(x)=a x+a−x+cosx+x2(a>1)是偶函数f′(x)=(a x−a−x)lna+2x−sinx当x>0时因为a>1所以lna>0,a x−a−x>0令φ(x)=2x−sinx,x>0则φ′(x)=2−cosx>0所以φ(x)单调递增所以φ(x)>φ(0)=0所以f′(x)>0,f(x)在(0,+∞)上单调递增构造函数g(x)=lnxx 则g′(x)=1−lnxx2令g′(x)>0得0<x<e令g′(x)<0得x>e所以g(x)在区间(0,e)上单调递增在区间(e,+∞)上单调递减又ln22=ln44所以g(4)<g(π)<g(e)所以ln22=ln44<lnππ<lnee所以212<π1π<e1e所以f(√2)<f(π1π)<f(e 1e)=f(−e1e)即f(√2)<f(π1π)<f(−e1e)故选:B【点睛】方法点睛:利用导数比较大小的基本步骤:(1)作差或变形;(2)构造新的函数ℎ(x);(3)利用导数研究ℎ(x)的单调性或最值;(4)根据单调性及最值得到所证不等式.二、填空题(共12 分)13已知向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则实数λ的值为___________【答案】1【分析】根据向量垂直的坐标表示由题中条件列出方程即可求出结果【详解】因为向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则a⋅b⃗=2−2λ=0解得λ=1故答案为:114请写出一个满足对任意的x1,x2∈(0,+∞);都有f(x1x2)=f(x1)f(x2)的函数__________【答案】f(x)=x−12(答案不唯一)【分析】取幂函数f(x)=x−12验证得到答案【详解】任意定义域为(0,+∞)的幂函数均可例如f(x)=x−12f(x1x2)=(x1x2)−12,f(x1)f(x2)=x1−12⋅x2−12=(x1x2)−12即f(x1x2)=f(x1)f(x2)成立故答案为:f(x)=x−12(答案不唯一)15《海岛算经》是魏晋时期数学家刘徽所著的测量学著作书中有一道测量山上松树高度的题目受此题启发小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度如图把塔底与塔顶分别看作点CDCD 与地面垂直小李先在地面上选取点AB (点A,B 在建筑物的同一侧且点A,B,C,D 位于同一个平面内)测得AB =20√3m 在点A 处测得点C,D 的仰角分别为30∘,67∘在点B 处测得点D 的仰角为33.5∘则塔高CD 为__________m (参考数据:sin37∘≈35)【答案】24 【分析】在△ACD 中求出AD =20√3∠CAD =37∘,∠ACD =120∘利用正弦定理求解即可 【详解】如图延长DC 与BA 的延长线交于点E 则∠DAE =67∘,∠CAE =30∘,∠DBA =33.5∘所以∠ADB =67∘−33.5∘=33.5∘,∠CAE =90∘−30∘=60∘ 所以AD =AB =20√3在△ACD 中∠CAD =67∘−30∘=37∘,∠ACD =180∘−60∘=120∘ 由正弦定理得CD =ADsin37∘sin120∘≈20√3×35√32=24(m )故答案为:2416已知函数f (x )=(x +a )lnx −2x 在定义域上单调递增则实数a 的取值范围为______ 【答案】[1,+∞) 【分析】把原函数在区间上单调递增问题转化为a ≥x −xlnx 在(0,+∞)上恒成立构造函数g (x )=x −xlnx(x>0)利用导数求解函数的最值即可求解【详解】f(x)=(x+a)lnx−2x的定义域为(0,+∞)由f(x)=(x+a)lnx−2x在定义域上单调递增得f′(x)=lnx+ax−1≥0在(0,+∞)上恒成立即a≥x−xlnx在(0,+∞)上恒成立设g(x)=x−xlnx(x>0)所以只需a≥g(x)max又g′(x)=−lnx当0<x<1时g′(x)>0当x>1时g′(x)<0所以g(x)在(0,1)上单调递增在(1,+∞)上单调递减所以g(x)max=g(1)=1所以a≥1所以实数a的取值范围为[1,+∞)故答案为:[1,+∞)【点睛】方法点睛:已知函数在区间上单调递增(递减)求参数范围解决这类问题的一般方法是:利用导数转化为不等式恒成立问题然后参变分离根据分离后的式子结构构造函数利用导数求解函数最值即可解决三、问答题(共12 分)已知向量a=(sinx+cosx,1),b⃗=(2cosx,−1)函数f(x)=a⋅b⃗将函数f(x)的图象向右平移π6个单位长度得到函数g(x)的图象17 求函数f(x)的最小正周期和单调递增区间;18 解方程g(x)=0【答案】17 T=π单调递增区间为[kπ−3π8,kπ+π8],k∈Z18 {x|x=kπ2+π24,k∈Z}【分析】(1)利用向量数量积求出f(x)利用正弦函数的周期性与单调性即可求得f(x)的最小正周期和单调递增区间(2)先求出g(x)表达式根据正弦函数零点取值得到g(x)=0的解集【17题详解】由已知得f(x)=a⋅b⃗=2cosx(sinx+cosx)−1=sin2x +cos2x=√2sin (2x +π4)所以函数f (x )的最小正周期T =2πω=2π2=π由2kπ−π2≤2x +π4≤2kπ+π2,k ∈Z 解得kπ−3π8≤x ≤kπ+π8,k ∈Z所以函数f (x )的单调递增区间为[kπ−3π8,kπ+π8],k ∈Z【18题详解】将函数f (x )的图象向右平移π6个单位长度得到函数g (x )=√2sin [2(x −π6)+π4]=√2sin (2x −π12)的图象令g (x )=√2sin (2x −π12)=0得2x −π12=kπ,k ∈Z 解得x =kπ2+π24,k ∈Z所以方程g (x )=0的解集为{x |x =kπ2+π24,k ∈Z }如图在平行四边形ABCD 中AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ 令AB ⃗⃗⃗⃗⃗ =a AC⃗⃗⃗⃗⃗ =b ⃗19用a ,b ⃗ 表示AM ⃗⃗⃗⃗⃗⃗ BM ⃗⃗⃗⃗⃗⃗ CM⃗⃗⃗⃗⃗⃗ ; 20若AB =AM =2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10求cos⟨a ,b⃗ ⟩ 【答案】19 AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a )BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a CM ⃗⃗⃗⃗⃗⃗ =−13a −23b⃗ 20√3468【分析】(1)利用平面向量的四则运算法则求解即可; (2)利用平面向量数量积的公式和运算律求解即可 【19题详解】因为AB ⃗⃗⃗⃗⃗ =a AC ⃗⃗⃗⃗⃗ =b ⃗ 且ABCD 是平行四边形 所以BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a所以AM ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ =13(b ⃗ −a ) 所以BM ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =13(b ⃗ −a )−a =13b ⃗ −43a所以CM ⃗⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =13b ⃗ −43a −(b ⃗ −a )=−13a −23b ⃗ 【20题详解】方法一:由(1)知AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a ),BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a又AC ⃗⃗⃗⃗⃗ =b ⃗ ,AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10,AB =AM =2所以b ⃗ ⋅(13b ⃗ −43a )=10,|13(b ⃗ −a )|=2,|a |=2即b ⃗ 2−4a ⋅b ⃗ =30,b ⃗ 2+a 2−2a ⋅b ⃗ =36 解得a ⋅b⃗ =1,|b ⃗ |=√34 所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468方法二:因为AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ ,AM =2所以AD =BC =6因为AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )⋅(BA ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ 2+23BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ 2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10所以−22+23×6×2×cos∠ABC +13×62=10 解得cos∠ABC =14所以a ⋅b ⃗ =(−BA ⃗⃗⃗⃗⃗ )⋅(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=−2×6×14+22=1又|a |=2,|b ⃗ |=√(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )2=√BC ⃗⃗⃗⃗⃗ 2−2BC ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=√34所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468四、应用题(共 6 分)某公园池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系如下表所示:现有以下三种函数模型可供选择:①y =kt +b ②y =p ⋅a t +q ③y =m ⋅log a t +n 其中k,b,p,q,m,n,a 均为常数a >0且a ≠121 直接选出你认为最符合题意的函数模型并求出y 关于t 的函数解析式;22 若该公园池塘里浮萍的面积蔓延到15m 2,31m 2,211m 2所经过的时间分别为t 1,t 2,t 3写出一种t 1,t 2,t 3满足的等量关系式并说明理由【答案】21 模型②y=2t+122 t1+t2=t3+1理由见解析【分析】(1)根据表格数据选择函数模型然后求解析式;(2)根据指数幂运算公式计算【21题详解】应选择函数模型②y=p⋅a t+q依题意得{p×a1+q=3p×a2+q=5 p×a3+q=9解得{p=1 a=2 q=1所以y关于t的函数解析式为y=2t+1【22题详解】t1+t2=t3+1理由:依题意得2t1+1=152t2+1=312t3+1=211所以2t1=142t2=302t3=210所以2t1⋅2t2=420所以2t1⋅2t2=2t1+t2=420=2×2t3=2t3+1所以t1+t2=t3+1五、问答题(共12 分)在△ABC中内角A,B,C所对的边分别为a,b,c且__________在①√3a =1−cosCsinA;②sinAbc−sinCab=sinA−sinBac两个条件中任选一个填入上面横线处并解决下列问题注:若选择不同的条件分别解答则按第一个解答计分23 求C;24 若△ABC外接圆的半径为2√3,△ABC的面积为√3求△ABC的周长【答案】23 C=π324 4√3+6【分析】(1)选①先利用正弦定理化边为角再利用和差角公式结合角的取值范围即得选②先用正弦定理化边为角再有余弦定理和角的范围即得(2)由正弦定理和外接圆半径求出c再利用余弦定理即可求出答案【23题详解】若选①:由√3a =1−cosCsinA及正弦定理得sinCsinA=√3sinA(1−cosC)∵sinA≠0,∴sinC+√3cosC=√3∴sin(C+π3)=√32又0<C<π,∴π3<C+π3<4π3∴C+π3=2π3,∴C=π3若选②:由sinAbc −sinCab=sinA−sinBac得asinA−csinC=bsinA−bsinB由正弦定理得a2+b2−c2=ab由余弦定理得cosC=a 2+b2−c22ab=ab2ab=12因为C∈(0,π)所以C=π3【24题详解】设△ABC外接圆的半径为R由正弦定理得c=2RsinC=2×2√3×sinπ3=6又S△ABC=12absinC=12ab×√32=√3所以ab=4由c2=a2+b2−2abcosC=(a+b)2−2ab−2ab×12可得36=(a+b)2−12解得a+b=4√3所以△ABC的周长为a+b+c=4√3+6已知函数f(x)=e x−ax2+x−125 当a=1时求曲线y=f(x)在x=1处的切线方程;26 若f(x)=0有两个不等的实根求实数a的取值范围【答案】25 (e−1)x−y=026 (−∞,0)∪{e2+14}【分析】(1)求导得到f(1)=e−1,f′(1)=e−1,进而求出切线方程;(2)f(0)=0故只需当x≠0时f(x)=0有且仅有一个实根参变分离转化为两函数只有1个交点求导得到g(x)=e x+x−1x2(x≠0)的单调性画出其图象数形结合得到参数的取值范围【25题详解】当a=1时f(x)=e x−x2+x−1,f′(x)=e x−2x+1f(1)=e−1,f′(1)=e−1,所以曲线y=f(x)在x=1处的切线方程为y−(e−1)=(e−1)(x−1)即(e−1)x−y=0【26题详解】显然f(0)=0要使方程f(x)=0有两个不等的实根只需当x≠0时f(x)=0有且仅有一个实根当x≠0时由方程f(x)=0得a=e x+x−1 x2令g(x)=e x+x−1x2(x≠0)则直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点g′(x)=(e x+1)x2−2x(e x+x−1)x4=(x−2)(e x−1)x3又当x<0时g′(x)<0,g(x)单调递减当0<x<2时g′(x)<0,g(x)单调递减当x>2时g′(x)>0,g(x)单调递增所以当x=2时g(x)取得极小值g(2)=e 2+1 4又当x<0时e x<1所以e x+x−1<0即g(x)<0当x>0时e x>1,e x+x−1>0即g(x)>0所以作出g(x)的大致图象如图所示由图象知要使直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点只需a<0或a=e 2+1 4综上若f(x)=0有两个不等的实根则a的取值范围为(−∞,0)∪{e 2+1 4}六、其它(共6 分)已知函数f(x)=x−alnx−4,a∈R27 讨论函数f(x)的单调性;28 当a=1时令F(x)=(x−2)e x−f(x)若x=x0为F(x)的极大值点证明:0<F(x0)<1【答案】27 答案见解析;28 证明见解析【分析】(1)对参数a分类讨论根据不同情况下导函数函数值的正负即可判断单调性;(2)利用导数判断F(x)的单调性求得x0的范围满足的条件以及F(x0)根据x0的范围夹逼F(x0)的范围即可【27题详解】函数f(x)的定义域为(0,+∞),f′(x)=1−ax =x−ax①当a≤0时f′(x)>0函数f(x)在(0,+∞)上单调递增;②当a>0时由f′(x)>0得x>a由f′(x)<0得0<x<a所以函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减综上当a≤0时函数f(x)在(0,+∞)上单调递增;当a>0时函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减【28题详解】当a=1时F(x)=(x−2)e x−x+lnx+4,F′(x)=(x−1)e x−1+1x =(x−1)(e x−1x)设g(x)=e x−1x 则g′(x)=e x+1x2当x>0时g′(x)>0所以g(x)在(0,+∞)上单调递增又g(12)=√e−2<0,g(1)=e−1>0所以存在x1∈(12,1)使得g(x1)=0且当x∈(0,x1),g(x)<0,x∈(x1,+∞),g(x)>0;又当x∈(0,1),y=x−1<0;x∈(1,+∞),y=x−1>0;故当x∈(0,x1)F′(x)>0;当x∈(x1,1)F′(x)<0;当x∈(1,+∞)F′(x)>0所以F(x)在(0,x1)上单调递增在(x1,1)上单调递减在(1,+∞)上单调递增所以当x=x1时F(x)取得极大值故x0=x1且e x0−1x0=0所以e x0=1x0,lnx0=−x0F(x0)=(x0−2)e x0−x0+lnx0+4=x0−2x0−x0−x0+4=5−2(x0+1x0)又y=x+1x 在(12,1)单调递减所以0<F(x0)<1【点睛】关键点点睛:本题考察含参函数单调性的讨论以及导数中的隐零点问题;处理问题的关键是能够准确分析F(x)的单调性以及求得隐零点的范围以及满足的条件属综合中档题。
1. 已知函数$f(x)=ax^2+bx+c$($a\neq 0$)的图象的对称轴为$x=1$,且$f(0)=1$,$f(2)=9$,则下列选项中正确的是()A. $a=1$,$b=0$,$c=1$B. $a=1$,$b=-2$,$c=1$C. $a=-1$,$b=2$,$c=1$D. $a=-1$,$b=-2$,$c=1$2. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,且$S_3=9$,$S_5=25$,则$a_1$的值为()A. 1B. 2C. 3D. 43. 已知函数$f(x)=\sqrt{x^2+1}$,则下列选项中正确的是()A. $f(x)$在$(-\infty,0)$上单调递减B. $f(x)$在$(0,+\infty)$上单调递增C. $f(x)$在$(-\infty,0)$上单调递增D. $f(x)$在$(0,+\infty)$上单调递减4. 若$\log_2(3a-2)+\log_2(2a-1)=1$,则实数$a$的值为()A. $\frac{3}{2}$B. $\frac{5}{2}$C. $\frac{7}{2}$D. $\frac{9}{2}$5. 若$a>0$,$b>0$,则下列选项中正确的是()A. $\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}$B. $\sqrt{a}+\sqrt{b}\leq \sqrt{a+b}$C. $\sqrt{a}-\sqrt{b}\geq \sqrt{a-b}$D. $\sqrt{a}-\sqrt{b}\leq \sqrt{a-b}$6. 已知函数$f(x)=\frac{1}{x-1}$,则下列选项中正确的是()A. $f(x)$在$(-\infty,1)$上单调递增B. $f(x)$在$(1,+\infty)$上单调递减C. $f(x)$在$(-\infty,1)$上单调递减D. $f(x)$在$(1,+\infty)$上单调递增7. 已知等比数列$\{a_n\}$的公比为$q$,若$a_1=2$,$a_4=16$,则$q$的值为()A. $2$B. $4$C. $\frac{1}{2}$D. $\frac{1}{4}$8. 若$\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}$,则$\sin^2\alpha+\cos^2\alpha$的值为()A. $\frac{1}{2}$B. $\frac{3}{4}$C. $\frac{5}{4}$D. $\frac{7}{4}$9. 已知函数$f(x)=x^3-3x^2+4x-1$,则$f'(x)$的零点个数为()A. 1B. 2C. 3D. 410. 若$a>0$,$b>0$,则下列选项中正确的是()A. $\ln(a+b)\geq \ln a+\ln b$B. $\ln(a+b)\leq \ln a+\ln b$C. $\ln\frac{a}{b}\geq \ln a-\ln b$D. $\ln\frac{a}{b}\leq \ln a-\ln b$二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列$\{a_n\}$的公差为$d$,若$a_1=3$,$a_4=15$,则$a_7$的值为______。
高三数学中档练习题推荐高三是学生们最为紧张和重要的一年,而数学作为一门重要的学科,占据着整个高考的很大比重。
为了帮助高三学生们更好地备考数学,我精心挑选了一些中档练习题,希望能给同学们提供有针对性的练习,提高数学解题能力。
1. 函数(1)已知函数f(x) = x^2 - 2x + 1,求f(3)的值。
(2)已知函数g(x) = 2^x,求g(0)的值。
2. 三角函数(1)已知直角三角形中的一条锐角的正弦值为1/2,求该角的大小。
(2)已知sin(a) = 3/5,cos(b) = 4/5,且a和b为锐角,求sin(a+b)的值。
3. 数列与数列求和(1)已知等差数列的首项为3,公差为4,求该数列的第5项。
(2)已知等比数列的首项为2,公比为3,求该数列的前6项的和。
4. 三角函数与解析几何(1)已知平面直角坐标系中有一条直线L,其斜率为-2,经过点(3, 4),求直线L的方程。
(2)已知平面直角坐标系中有一个圆心在原点,半径为3的圆,求该圆上的一点P(x, y),使得点P与直线y = 2x之间的距离最短。
5. 概率与统计(1)甲、乙、丙三个人依次从一副扑克牌中抽取一张纸牌,不放回,求出甲乙丙三个人抽到的纸牌分别为黑桃、红心、梅花的概率。
(2)某班级60名同学中,有20人擅长数学,30人擅长英语,并且既擅长数学又擅长英语的有10人。
从该班级中任意选出一名学生,求他既不擅长数学也不擅长英语的概率。
这些练习题涵盖了高三数学中的各个知识点,通过解答这些题目,可以加深对数学知识的理解和掌握,提高解题能力和应试水平。
希望同学们在备考中能够认真对待每一道题目,多思考、多总结,相信付出努力一定会有收获。
祝愿大家高考顺利!。
文科高考数学中档题系列( 6 )
1. 已知向量a =(cos 23x ,sin 23x ),b =(2
sin 2cos x x ,-),且x ∈[0,2π]. (1)求b a +
(2)设函数b a x f +=)(+b a ⋅,求函数)(x f 的最值及相应的x 的值。
2. 如下的三个图中,别离是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm )
(1)依照画三视图的要求画出该多面体的俯视图;
(2)依照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC ',证明:BC '∥面EFG .
3. 设函数()b f x ax x
=-,曲线()y f x =在点()()2 2f ,处的切线方程为74120x y --=. (Ⅰ)求()y f x =的解析式;
(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角
形面积为定值,并求此定值.
4. 某集团预备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地域教育市场进行调查,得出一组数据列表(以班为单位)如下:
E D
A B
C F G
B '
C '
D '
按照有关规定,除书本费、办公费外,初中生每一年可收取学费600元,高中生每一年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.按照以上情形,请你合理计划办学规模使年利润最大,最大利润多少万元?(利润=学费收入-年薪支出)。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32B .155C .105D .3312. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是. 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:1.设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;2.填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.841 6.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角MABD 的余弦值20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2ef x --<<.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修45:不等式选讲](10分)已知330,0,2a b a b >>+=,证明: (1)33()()4a b a b ++≥; (2)2a b +≤.参考答案1.D【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上5.A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.6.D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,= 得224c a =,24e =,2e =.10.C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知112MN AB =,1122NP BC ==, 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,=AC则MQ =MQP △中,MP = 则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅222+-== 又异面线所成角为π02⎛⎤ ⎥⎝⎦,.11.A 【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.12.B【解析】几何法:如图,2PB PC PD +=(D 为BC 中点), 则()2PA PB PC PD PA ⋅+=⋅,要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又323PA PD AD +==⨯=, 则223324PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭≤, 则min 332242PD PA ⋅=-⨯=-. 解析法:建立如图坐标系,以BC 中点为坐标原点,PD CBA∴()03A ,,()10B -,,()10C ,. 设()P x y ,, ()3PA x y=--,,()1PB x y =---,,()1PC x y =--,,∴()222222PA PB PC x y y ⋅+=-+223324x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.13.1.96【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,()231cos 3cos 4f x x x =-+-令cos x t =且[]01t ∈, 2134y t t =-++231t ⎛⎫=--+ ⎪ ⎪⎝⎭则当3t =时,()f x 取最大值1. 15.2+1n n 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+= 414610S a d =+=求得11a =,1d =,则n a n =,()12n n n S +=()()112222122311nk kSn n n n ==++++⨯⨯-+∑11111112122311n n n n ⎛⎫=-+-++-+- ⎪-+⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭16.6【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=17.【解析】(1)依题得:21cos sin 8sin84(1cos )22B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15cos 17B =, (2)由⑴可知8sin 17B =. ∵2ABC S =△, ∴1sin 22ac B ⋅=, ∴182217ac ⋅=, ∴172ac =, ∵15cos 17B =, l FN M C B AOyx∴22215217a cb ac +-=,∴22215a c b +-=, ∴22()215a c ac b +--=, ∴2361715b --=, ∴2b =.18.【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B“新养殖法的箱产量不低于50kg ”为事件C而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=()()()0.4092P A P B P C ==(2)由计算可得2K 的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯∵15.705 6.635> ∴()2 6.6350.001P K ≈≥∴有99%以上的把握产量的养殖方法有关.(3)150.2÷=,()0.20.0040.0200.0440.032-++=80.0320.06817÷=,85 2.3517⨯≈ 50 2.3552.35+=,∴中位数为52.35.19.【解析】zyxM 'MOFPABCDE(1)令PA 中点为F ,连结EF ,BF ,CE .∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴12EF AD ∥.又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==,∴12BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,, (00P ,.M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,∴MBM '△为等腰直角三角形. ∵POC △为直角三角形,OC =,∴60PCO ∠=︒.设MM a '=,CM '=,1OM '=.∴100M ⎛⎫' ⎪ ⎪⎝⎭,,.BM a a '==⇒=.∴11OM'==. ∴100M ⎛⎫'⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭2611AM ⎛⎫=- ⎪ ⎪⎝⎭,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,. 1160y z +=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,(001)n =,,.∴10cos ,m n m n m n⋅<>==⋅. ∴二面角M AB D --的余弦值为10. 20.【解析】 ⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022NM NP ⎛== ⎪⎝⎭,∴12M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122x += ⎪⎝⎭,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠,由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-,13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+, ∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.21.【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.令()ln g x ax a x =--,则()10g =,()11ax g x a x x-'=-=, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1x a=. 当10x a <<时,()0g x '<,()g x 单调减;当1x a>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫<= ⎪⎝⎭;若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭;若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =.⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.令()22ln h x x x =--,则()1212x h x x x-'=-=,0x >. 令()0h x '=得12x =, 当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增. 所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,,所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点.设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.所以,()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <. 因此,()201e 4f x -<<. 22.【解析】⑴设()()00M P ρθρθ,,, 则0||OM OP ρρ==,. 000016cos 4ρρρθθθ=⎧⎪=⎨⎪=⎩解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠⑵连接AC ,易知AOC △为正三角形.||OA 为定值.∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大max 1||||2S AO HB =⋅ ()1||||||2AO HC BC =+2=23.【解析】⑴由柯西不等式得:()()()2255334a b a b a b ++=+=≥1a b ==时取等号. ⑵∵332a b +=∴()()222a b a ab b +-+=∴()()232a b b ab α⎡⎤++-=⎣⎦∴()()332a b ab a b +-+=∴()()323a b aba b +-=+由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤ ∴()()32232a b a b a b +-+⎛⎫ ⎪+⎝⎭≤ ∴()()33324a b a b ++-≤∴()3124a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.高考模拟复习试卷试题模拟卷【考情解读】1.以量词为载体,判断命题的真假;2.考查基本逻辑联结词的含义,在与其他知识交汇处命题.【重点知识梳理】1.命题能判断真假的语句叫做命题.2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量词.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示形如“对M中所有x,p(x)”的命题,可用符号简记为“∀x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词。