偏导数的几何意义.doc
- 格式:doc
- 大小:112.00 KB
- 文档页数:6
偏导数的物理几何意义偏导数是多元函数微分学中的重要概念,它描述了函数在其中一点沿着一些坐标轴的变化率。
在物理学中,偏导数有着重要的几何和物理意义。
以下是偏导数的物理几何意义的详细解释:1.变化率:函数的一阶偏导数描述了函数在其中一点的变化率。
在物理学中,这可以理解为物理量在该点的变化率。
例如,在空间中考虑一个以时间t为参数的三维位置矢量函数r(t)=(x(t),y(t),z(t)),其中x、y和z分别是位置矢量在x、y和z轴的分量。
三个分量的一阶偏导数分别是x的速度、y的速度和z的速度,它们描述了位置矢量在每个轴上的变化率。
2.切线和切平面:二元函数的两个偏导数代表了函数图像上的切线和切平面。
在物理学中,这对于描述曲线和曲面的切线和切平面是非常重要的。
例如,在二维平面上考虑一个函数z=f(x,y),其中x和y是平面上的坐标变量。
函数的偏导数∂z/∂x和∂z/∂y分别表示函数图像上的沿着x轴和y轴方向的切线斜率。
这意味着我们可以借助偏导数来找到函数图像上的切线和切平面,从而描述函数在其中一点的局部行为。
3. 法向量:在多元函数的高阶偏导数中,Hessian矩阵的特征向量对应的特征值具有重要的物理和几何意义。
特别地,Hessian矩阵是一个对称矩阵,它描述了函数图像局部的二次曲率信息。
Hessian矩阵的特征向量对应的特征值是曲面在该点法向量的方向和曲率。
例如,在二维平面上考虑一个函数z = f(x, y),其中x和y是平面上的坐标变量。
Hessian矩阵的特征向量对应的特征值描述了曲面在该点的法向量方向和曲率大小,这对于描述曲面的形态和弯曲性质具有重要作用。
4.极值点:在多元函数中,偏导数可以帮助我们找到函数的极值点。
在物理学中,这对于优化和最优化问题的求解是非常重要的。
例如,考虑一个具有多个变量的能量函数E(x,y,z),其中x、y和z是能量函数的自变量。
函数的偏导数∂E/∂x,∂E/∂y和∂E/∂z可以帮助我们找到能量函数的极小值点,这在工程和科学应用中广泛用于优化问题和最优化算法。
偏导数得几何意义ﻫ实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件ﻫ背景知识:一偏导数得定义在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量- ,如果(1)存在,则称此极限为函数=在点处对得偏导数,记做, ,,或例如,极限(1)可以表为=类似得,函数z=在点处对得偏导数定义为记做,,或如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做, ,,或类似得,可以定义函数= 对自变量得偏导函数,记做,,,或由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为=其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题例求得偏导数解= ,=二偏导数得几何意义二元函数= 在点得偏导数得几何意义设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率三偏导数得几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数= ={在点(0,0)对得偏导数为同样有但就是我们在前面得学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数=, =那么在D内,都就是得函数、如果这里两个函数得偏导数也存在,则它们就是函数= 得二阶偏导数,按照对变量求导次序得不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, ,,,从例子中,我们瞧到两个二阶混合偏导数相等,即,=我们再瞧用maple作求得图形第一个图形为第二个图形为从图中我们瞧到两个连续得偏导函数,它们就是相等得这不就是偶然得,事实上我们有下述定理定理如果函数=得两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续得条件下与求导得次序无关。
对x求偏导几何意义对x求偏导几何意义在微积分学中,偏导数是一个非常重要的概念。
偏导数描述的是一个函数沿着某一个特定的方向的变化速率。
对于二元函数,偏导数指的是函数在某一点处,沿着x轴或y轴方向的变化速率。
那么对x求偏导的几何意义是什么呢?让我们一起来深入探讨一下。
一、对x求偏导数的定义对于一个二元函数z=f(x,y),我们可以分别对x,y分别求导。
其中对x求导得到的结果称为函数z对x的偏导数,记作f_x。
具体而言,偏导数的定义为:$$ f_{x} =\lim_{\Delta x \to 0} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}$$ 二、对x求偏导数的几何意义对于二元函数z=f(x,y),我们可以将它们在三维空间中表示为一个曲面。
而对于z=f(x,y)函数在某个点(x0,y0,z0)处的所有偏导数,其几何意义可以用无数条直线来展示。
这些直线既可以在平面上垂直于x轴,也可以平行于x轴方向。
对于平行于x轴方向的直线,它们的斜率实际上就是对x求偏导数f_x。
也就是说,对x求偏导数f_x代表了函数z=f(x,y)在点(x0,y0,z0)处沿着x轴方向的变化速率。
图1:对x求偏导的几何意义三、应用场景对x求偏导数的几何意义可以在实际应用中得到广泛应用。
具体而言,它们可以用于描述以下场景:1. 曲线求导在图形学中,我们经常需要计算曲线的斜率和曲率。
这些量可以通过求导数来计算。
而对于二元函数z=f(x,y),我们可以将其表示为一个曲面。
如果我们需要计算z=f(x,y)在某一点处的切线的斜率,就需要对x求偏导数。
2. 优化问题在优化问题中,我们常常需要求解目标函数的最优解。
而对x求偏导数可以帮助我们寻找最优解。
对于一个函数f(x),如果f'(x)<0,那么当前点的增长率为负,说明在当前点左侧的函数值更大,应该向左移动;反之,如果f'(x)>0,那么当前点的增长率为正,说明在当前点右侧的函数值更大,应该向右移动。
偏导数几何意义偏导数是多元函数微积分中的一个重要概念,它用来描述函数在某个方向上的变化率。
偏导数的几何意义主要包括以下几个方面:1. 偏导数的定义偏导数是指在多元函数中,固定其他变量不变,仅对某个变量进行微小的变化时,函数的变化率。
如果函数$f(x_1,x_2,...,x_n)$在$x_i$处的偏导数存在,那么它的偏导数可以表示为$f_{x_i}(x_1,x_2,...,x_n)$。
对于二元函数$f(x,y)$,$f_x$表示函数在$x$轴方向上的变化率,$f_y$表示函数在$y$轴方向上的变化率。
2. 偏导数与方向导数偏导数描述了函数在某个方向上的变化率,因此它与方向导数密切相关。
方向导数是指函数在某个方向上的变化率,可以表示为$\frac{\partial f}{\partial\boldsymbol{u}}$,其中$\boldsymbol{u}$是方向向量。
在某个点上,如果函数在所有方向上的变化率都存在,那么这些变化率就构成了一个向量,称之为梯度向量。
3. 偏导数与曲面偏导数可以用来描述曲面的性质。
对于任意的曲面,如果它在某个点处的偏导数存在,那么这个曲面在这个点处有一个唯一的切平面。
这个切平面与$x_i$轴的夹角就是$f_{x_i}$的值,它描述了曲面在这个方向上的变化率。
使用偏导数可以求解曲面的最大值和最小值。
对于一个具有偏导数的函数$f(x_1,x_2,...,x_n)$,可以使用偏导数方法求得$f$的最值点,即令所有$n$个偏导数都等于零,然后求解方程组。
最大值和最小值点就是$f$的极值点。
偏导数还可以用来描述曲线的性质。
考虑一个函数$f(x,y)$和一条曲线$C$,如果曲线$C$落在$f=0$的等高线上,那么曲线$C$在这个点处的斜率等于$f$在这个点处的梯度向量在曲线$C$方向的投影,即$\nabla f(x,y)\cdot\frac{d\boldsymbol{x}}{dt}$。
函数偏导数的几何意义
x方向的偏导
把y固定在y0而让x在x0偏导数有增量△x,相应地函数z=f(x,y)有增量△z=f(x0+△x,y0)-f(x0,y0).当△x→0时的极限存在那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数.记作f'x(x0,y0).
同理Y方向
偏导数几何意义是:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数,二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
偏导数在向量分析和微分几何中是很有用的。
偏导数的几何意义偏导数是多元函数的一种导数形式,常用于描述函数在一些特定方向上的变化率。
对于具有多个自变量的函数而言,偏导数表示在其中一特定自变量方向上的函数变化率,而其他自变量则被视为常量。
在几何上,偏导数可以用来描述函数在其中一方向上的切线斜率。
为了更好地理解偏导数的几何意义,我们可以先来回顾一元函数的导数概念。
对于函数y=f(x),导数f'(x)表示在x点处函数的切线斜率,也可以理解为函数y=f(x)的变化率,即对于微小自变量变化Δx,函数值的变化Δy≈f'(x)Δx。
对于一元函数而言,变化率可以用直线的斜率来描述。
然而,在多元函数的情况下,我们需要考虑多个自变量对函数值的影响。
偏导数的概念就是在这种情况下产生的。
对于函数z=f(x,y),其偏导数∂f/∂x表示在x点处自变量x的变化对函数z的影响,而y则被视为常量。
类似地,∂f/∂y表示在x点处自变量y的变化对函数z的影响,而x则被视为常量。
因此,偏导数可以理解为函数在其中一特定方向上的变化率。
偏导数的几何意义可以通过几何图形来直观地解释。
考虑一个二元函数z=f(x,y),可以将其绘制为一个三维空间中的曲面。
在这个曲面上的每个点,其坐标(x,y,z)表示函数在该点的取值。
例如,对于函数z=x^2+y^2,其曲面是一个旋转抛物面。
现在,我们研究曲面上的一点P(x,y,z),其中x和y是函数的自变量,z是函数的因变量。
我们希望理解函数在该点的变化率。
首先,我们可以考虑函数沿x方向的变化率。
通过将点P的y坐标固定为常数y0,得到曲线Cx,该曲线在曲面上描绘了函数在x方向的变化。
函数沿Cx的切线的斜率就是函数在点P处关于x的偏导数∂f/∂x。
换句话说,∂f/∂x表示了在曲面上关于x方向(在y坐标固定的情况下)的切线斜率。
同样地,我们可以考虑函数沿y方向的变化率。
通过将点P的x坐标固定为常数x0,得到曲线Cy,该曲线在曲面上描绘了函数在y方向的变化。
三维函数偏导的几何意义摘要:一、偏导数的定义和意义二、三维函数偏导数的几何意义1.偏导数与梯度2.偏导数与切线3.偏导数与光滑性三、偏导数的应用正文:一、偏导数的定义和意义偏导数是多元函数中的一个重要概念,它表示函数在某一点的变化率。
对于三维函数f(x,y,z),其在x、y、z方向的偏导数分别表示函数在x、y、z方向上的变化率。
偏导数的存在和连续性是多元函数微积分的基础,它们与函数的性质和图像密切相关。
二、三维函数偏导数的几何意义1.偏导数与梯度梯度是多元函数的一个矢量,表示函数在空间中的变化方向和速度。
三维函数的梯度等于其三个偏导数的向量之和。
梯度在空间中的方向表示函数增长或减少的最快方向,其大小表示函数变化的速度。
2.偏导数与切线在二维平面上,偏导数表示函数在某一点处的切线斜率。
同样,在三维空间中,偏导数表示函数在某一点处的切线斜率。
这意味着,三维函数在某个点的偏导数可以告诉我们该点处曲面的倾斜程度。
3.偏导数与光滑性导函数连续是用来刻画光滑性的。
在多元函数中,偏导数的连续性表示曲面的平滑程度。
偏导数在某个点的连续性可以用该点附近的切线斜率的一致性来描述。
如果偏导数在某点连续,那么该点处的切线斜率就有一致性,这意味着曲面在该点附近是平滑的。
三、偏导数的应用偏导数在数学、物理、工程等领域有广泛的应用。
例如,在计算机图形学中,偏导数用于渲染算法,如光线追踪和光栅化;在机器学习和计算机视觉中,偏导数在梯度下降算法和卷积神经网络中起着关键作用;在物理学中,偏导数用于描述物质的性质和运动规律。
120 实验14 偏导数与方向导数多元函数的偏导数刻画了函数沿坐标轴方向的变化率.设函数(,)z f x y =在点()00,x y 的某一邻域内有定义,该函数在点()00,x y 处关于自变量x 的偏导数()()00000000,,(,)lim lim x x x x f x x y f x y z f x y x x∆→∆→+∆-∆'==∆∆, 同样可定义函数(,)z f x y =在点()00,x y 处关于自变量y 的偏导数00(,)y f x y '.因为定义中考虑的是函数沿x 或y 方向的变化量,所以偏导数反映的是函数沿坐标轴变化的快慢程度.方向导数作为偏导数的推广,它可以刻画函数沿不同方向变化的快慢程度.以二元函数(,)z f x y =为例,设00(,)P x y 和(cos ,cos )αβ=u 为给定点和给定方向,则称极限000000(cos ,cos )(,)lim lim h h f x h y h f x y z h hαβ→→++-∆= 为函数(,)z f x y =在点00(,)P x y 处沿方向u 的方向导数,记为0P fu ∂∂.我们知道,如果函数(,)z f x y =在点00(,)P x y 处可微,则在该点处沿任何方向的方向导数存在,且沿梯度00grad (,)P P f f f x y∂∂=∂∂ 的方向导数最大,并且该点的梯度方向与经过该点的等值线:(,)l f x y C =在该点的切线方向互相垂直.假设一光滑坡面可由二元函数(,)z f x y =来描述,现在坡面某处有一物体,假设该物体沿最陡的路线向下滑落,由于最陡方向即为高度z 减少最快的方向,即函数(,)z f x y =的梯度相反方向,由此可确定物体向下滑动的路径.本实验以实验形式考虑、分析了曲面与平面的交线及在坐标平面上的投影、等值线与隐函数的图形、曲面与平面交线的切线以及最速下降曲线。
偏导数的几何意义概述说明以及解释1. 引言1.1 概述在数学分析和微积分中,偏导数是一个重要的概念。
它们被广泛应用于各个领域,如优化问题、几何体参数化与曲线拟合以及物理学中的场和流动问题等。
偏导数的几何意义不仅能帮助我们理解函数在给定点处的变化率,还能揭示函数曲面切平面方向和法线方向上的斜率。
1.2 文章结构本文将首先介绍偏导数的定义,然后深入探讨偏导数在几何上的含义。
接着,我们将讨论偏导数在实际问题中的应用场景,并对其进行详细说明。
最后,我们将解释常见的偏导数计算方法并推导其中涉及到的公式。
1.3 目的本文旨在帮助读者全面理解偏导数在几何上的意义,并能够应用于实际问题中。
通过阐述偏导数计算方法和公式推导过程,读者将获得更深入和全面的知识。
此外,本文还将总结关键观点并提出未来可能研究方向,为读者进一步探索奠定基础。
以上就是本文“1. 引言”部分的详细内容。
2. 偏导数的几何意义:2.1 偏导数的定义:在多元函数中,偏导数是指对于一个变量求导时,其他变量保持不变。
对于一个函数$f(x_1, x_2,...,x_n)$,它关于第$i$个自变量$x_i$的偏导数表示为$\frac{\partial f}{\partial x_i}$。
2.2 几何意义一: 曲面切平面方向的斜率:偏导数的一种几何意义是描述曲面在某一点处切平面的斜率。
具体来说,考虑一个二元函数$f(x,y)$,我们可以将其看作是一个曲面。
在这个曲面上取一点$(x_0,y_0,f(x_0,y_0))$,此时$x$轴和$y$轴为该点的坐标轴,而斜率为偏导数$\frac{\partial f}{\partial x}(x_0,y_0)$和$\frac{\partial f}{\partial y}(x_0,y_0)$所组成的向量就是切平面在该点上的法向量。
2.3 几何意义二: 曲面上某点法线方向的斜率:另一种几何意义是描述曲面上任意一点处法线方向(垂直于曲面)的斜率。
Ax
偏导数的儿何意义
实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二 阶混合偏导数相等的条件
背景知识:
一偏导数的定义
在研究一无函数吐我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论 它的变化率.但多元函数的变化量不只一个,因变量与自变最的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一-个自变量的变化率,以二元函数z= /(了疗)为例, 如果只有自变量工变化,而自变量y 固定(即看作常量),这时它就是X 的一元函数,这函数 对X 的导数,就称为二元函数Z 对于才的偏导数,即有如下定义
定义设函数z= *')在点的某一•邻域内有定义,当y 固定在V 。
,而工在工。
处有增量• A*时,相应的函数有增量
/(x 0 4-Ax,^) _ /(x 0,^0)
f(x 0 +Ax,y 0)-f(x 0,y 0) lim ---------------------------------
如果 Ax (1)
存在,则称此极限为函数z=在点”°疗°)处对汗的偏导数,记做
例如,极限(1)可以表为 f(x 0 +Ax,y 0)-f(x 0,y 0) hgy°)蚣。
类似的,函数z= ,(兀、)在点(冲疗°)处对歹的偏导数定义为
尚 栈尚九(%必)
dz
lim 敏T O Rxo,Vo +Ay)・地,
dz
记做分5 X■命
如果函数2= 了3疗)在区域D内每一点(&')处对工的偏导数都存在,那么这个偏导数就是工溜的函数,它就称为函数Z = /(工1)对自变量式的偏导函数,记做 & 堂
凯瓦,气或九(")类似的,可以定义函数z= /(兀力对自变量W的偏导函数,记做dz
山偏导数的概念可知,/3'力在点(如儿)处对工的偏导数九成。
/)显然就是偏导函数九3',)在点成°疗°)处的函数值,就像-•元函数的导函数-•样,以后在不至于混淆的地方也把偏导函数简称为偏导数.
至于求z=的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外
dz
一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求欲时,只要把*暂时看
作常最而对工求导;求莎时,则只要把式智时看作是常量,而对V求导数.
偏导数的概念还可以推广导二元以上的函数,例如三元函数〃 = /(兀MZ)在点(、,yz)处对式的偏导数定义为
岫Rx +Ax, y ,z)・Rx ,y ,z)
九(X'V’z) = A XT O A X
其中(X'W'Z)是函数〃 = /3,V,z)的定义域的内点,它们的求法也仍旧是一元函数的微分法问题
例求z = / sin 2y的偏导数
dz
解瓦=2xsin 2〉,
dz
dy _ 2/COS2〉
二偏导数的几何意义
二元函数z= '3,)在点3o,Wo)的偏导数的几何意义
疗° J3o,〉o)) u o77*(工疗)[心r、』y-y^\耳口
设为曲面z = J、…上的一点,过°点作平面/ 气截此
曲面得•曲线,此曲线在平面^=^0上的方程为Z = /(X,%),则导数小/3'")"・命即偏导数兀(%必),就是这曲线在"。
点处的切线M。
乌对式轴的斜率.同样,偏导数)的几何意义是曲而被平面x = x°所截得的曲线在点"。
处的切线"。
弓对 *的斜率
三偏导数的几何意义
我们知道,如果•无函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P 沿着平行于坐标轴的方向趋于P0时,函数值 E 趋于/(%),但不能保证点P按任何方式趋于P 0时,函数值都趋于/(*).例如,函数
X +y
z= /(") = { =0
在点(0,0)对才的偏导数为
£(。
,。
)=岫/(0+&'01(0'°)=蜘=。
八AiO & M T O
4 (0,0) = Inn /(0,0 +皈K0,0)=蜘=0
同样有Ay
但是我们在前而的学习中知道这函数在点(0,0)并不连续
四二阶混合偏导数
设函数z= /3痹)在区域D内具有偏导数
dz &
态_ 九(")逾 _ fyk^y)— 5 —
那么在D内力5), Jy{x,y)都是工淑的函数.如果这里两个函数的偏导数也存在, 则它们是函数z=的二阶偏导数,按照对变量求导次序的不同有下列四个二阶偏导数:
d dz d2z 3 /初、d2z
—(—)=-r = J XK("))= 'o ct ~ =扃(")
& dx 源逾冰dxdy
9 必、_ 3"z d dz _
云(云)=心■ = A(工、)H (亲)=TT = 扃(兀、)
ox dy dydx cy dy dy
J
其中第二,第三个偏导数称为混合偏导数
击Z 导 8七一z
例2 设z = _3寸3_勺;+ 1,求奇,泌X , dxdy , M
^ = 3x2y2 -3y3-y CtV
—=2x3y- 9xy2 -x
d2z莉
d2z d2z
从例子中,我们看到两个二阶混合偏导数相等,即,机 =次分'
我们再看用maple作求的图形
d2z
第一个图形为办莎
d2z
第二个图形为泌x 从图中我们看到两个连续的偏导函数,它们是相等的这不是偶然的,事实上我们有下述定理
d2z d2z
定理如果函数z= /(工痹)的两个二阶混合偏导数泌x及dxdy在区域D里连续, 那么在该区域内这两个二阶混合偏导数必定相等
换句话说,二阶混合偏导数在连续的条件下与求导的次序无关
□ Untitled (1) ■ (Server H 「■、:11 J FWIFTHn Jj也富!
• Ui< 心” Swrt Pp.t X»l> IsUw g.
D e n,金 6 t> <r T【> E3 n > o <t» 3 3, %
厂------ S ..1小—q土er^J
|C Maple lnp4H jj [Monb^pacri ▼[ B / U IE M 3 Iff I {/)伞X
------------------------------------------------------------------------------------------------------------------------------------------------- 3
□o o
.
> diff(x>x>;
a 2 2 2 2
3x y・3y・y
> diff(»t y);
6x y ・9y - I
> lapHci tplot3d(q«6*i*2ty 6>y92-I f 1»*4> - 4> y»-4・. 4. q^4・. 4. “IS [25. 25. 25], a
les^lORIIL):
Q Untitled (I) - (Server I) Ei" T,♦' f mTFHn ;(V(• E4i< !>•* 1M"Q r«CB<t Z M I,Y(f«lw Bal>
举X0③ t> C T i> n n 伊彳O o 3 %
[c Maple input 三]|Monosp»ced < pT^J B Z U E > 31 99 ! 0华X
> vi<h(piot«): m > x:*x'3»y*2-3<i<y*S-My*l;
r w x / • 3x> i
> difftx.y);
-3 益 2 2x y-9xy -x
,
> dlff(S. i);
z 2 益 2 .
6x /• 9x • 1
> iBpltci tplof 3d((r r Mi,2*jr-6*y ^1, !=■,.. 4> . 4> ♦=■,.• 4> grid-[25, 25. 25], a >es*IOKlAL):。