量子物理基础1
- 格式:ppt
- 大小:1.94 MB
- 文档页数:34
量子物理知识归纳总结高中量子物理是自然科学中一门基础且复杂的学科,它研究微观世界的行为和性质。
在高中物理学习过程中,学生通常会接触到一些基本的量子物理知识。
本文将对高中学习阶段中所学到的一些量子物理知识进行归纳总结。
一、光的粒子性与波动性1. 波粒二象性根据量子理论,光既可以表现出粒子性,也可以表现出波动性。
这一现象被称为波粒二象性。
在某些实验中,光会呈现出波动性,如干涉和衍射现象;而在其他实验中,光又会表现为光子,即粒子。
2. 光电效应光电效应是指当光照射到金属表面时,光子与金属表面的电子相互作用,使电子脱离金属表面并产生电流的现象。
根据经典物理的观点,预测的光电效应与实际观察到的现象不一致,而量子物理的波粒二象性解释了这一现象。
3. 康普顿散射康普顿散射是指光子与电子发生非弹性碰撞后散射的现象。
康普顿散射的结果表明,光子也具有粒子性,而电子的散射角度与入射光子的能量有关。
这一实验结果进一步验证了光的波粒二象性。
二、原子结构与波尔模型1. 波尔理论根据波尔的提议,原子是由带电粒子组成的。
这些带电粒子分别位于原子的核心和外层。
电子围绕着原子核做一个分立的、稳定的运动轨道,电子沿着这些轨道进行运动,并且只能在特定的轨道上存在。
2. 能级与光谱原子的电子在不同的能级上存在,而每个能级对应着不同的能量。
当电子从高能级跃迁至低能级时,会释放出能量。
这种电子跃迁所释放出的能量以光子的形式传播出去,形成光谱。
通过光谱的分析,可以了解到原子的能级结构和组成。
3. 不确定性原理不确定性原理是量子物理的基本原理之一,它指出了在某些实验条件下,无法同时确定一个粒子的位置和动量。
这表明在微观尺度下,我们不能精确地预测和测量粒子的行为,只能通过概率的方式来描述。
三、量子力学的基本概念与应用1. 波函数与概率密度在量子力学中,波函数是描述微观粒子所处状态的数学函数。
波函数的模的平方称为概率密度,它描述了在某一给定位置找到粒子的可能性。
《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ D]1. 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)解题要点:)()(1212λλccehvvehUa-=-=∆∴[ C]2. 下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1.解题要点:斯特藩-玻耳兹曼定律:黑体的辐射出射度M0(T)与黑体温度T的四次方成正比,即.M0 (T)随温度的增高而迅速增加维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长mλ向短波方向移动。
[ D]3. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.解题要点:(B)因散射使电子获得的能量:202c m mc K -=ε 静止能量:20c m[ C ]4. 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.解题要点:L = m e v r = n 第一激发态n =2[ B ]5. 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为 (A) 7/9. (B) 5/9. (C) 4/9. (D) 2/9.解题要点:从较高能级回到n=2的能级的跃迁发出的光形成巴耳末系l h E E h -=νc =λν23max E E ch-=λ2min E E ch-=∞λ[ B ]6. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV .解题要点:26.13n eV E n -=l h E E h -=ν=⎪⎭⎫⎝⎛---2226.136.13eV n eV[ D ]7. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍. (B) 增大2D 倍. (C) 增大D 倍. . (D) 不变.解题要点:注意与各点的概率密度区分开来.二. 填空题1. 康普顿散射中,当散射光子与入射光子方向成夹角φ =___π___时,散射光子的频率小得最多;当φ = ___0___ 时,散射光子的频率与入射光子相同.解题要点:频率小得最多即波长改变量最大2. 氢原子基态的电离能是 __13.6__eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =__5__ 的轨道上运动.解题要点:电离能是指电子从基态激发到自由状态所需的能量. ∴氢原子基态的电离能E =1E E -∞=⎪⎭⎫⎝⎛--∞-2216.136.13eV eV E =n E E -∞ 即 +0.544 eV=26.13neV3. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =___7:11___.解题要点:由维恩位移定律: T m λ=b∴m λ∝T1 即21T T =12m m λλ 4. 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λλc .解题要点:电子的动能:22c m mc e K -=ε 静止能量:2c m e22c m mc e K -=ε=2c m e221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ 5. 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的__64__倍.解题要点:由斯特藩-玻耳兹曼定律:太阳的总辐射功率:024M R M ⋅=π424T R σπ⋅=6. 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量∆λ / λ =10-6,则光子动量数值的不确定量 ∆p x =___s m kg /1066.133⋅⨯-_ _,而光子坐标的最小不确定量∆x =___0.03m___.解题要点:λh p =λλλλλ∆⋅=∆=∆h h p 2三. 计算题1. 图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同.(2) 由图上数据求出普朗克恒量h .解:(1)由得A h U e a -=ν e A e h U a /-=ν 常量==e h d U d a ν/ ∴对不同金属,曲线的斜率相同 (2)s J eetg h ⋅⨯=⨯--==-3414104.610)0.50.10(00.2θ |14Hz)2. 用波长λ0 =1 Å的光子做康普顿实验. (1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:(1)λλλ∆+=0m 1010024.1-⨯=(2)根据能量守恒:∴反冲电子获得动能:202c m mc K -=εννh h -=0λλchch-=0)(00λλλλ∆+∆=hceV J 2911066.417=⨯=-3. 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.解:(1)l h E E h -=ν=⎪⎭⎫⎝⎛---2216.136.13eV n eV =12.75 n=4(2)可以发出41λ、31λ、21λ、43λ、42λ、32λ六条谱线4. 质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) n=1n=2n=3n=4解:考虑相对论效应:22c m mc e K -=ε=12eU221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:221u m e =12eU u m h p h e =='λ=122eU m he =3.88m 1210-⨯ 相对误差:λλλ-'=4.6﹪5. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式≥∆E t∆2 =5.276J 2710-⨯=3.297eV 810-⨯ 根据光子能量与波长的关系==νh E λchEc h=λ=3.67m 710-⨯ 波长的最小不确定量为2EE hc∆=∆λ=7.13m 1510-⨯ [选做题]1. 动量为p的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.解:由不确定关系式 2≥∆∆y p y而 a y =∆,θsin p p y =∆ 则有 pa2sin ≥θ 由图可知,屏上痕迹宽带不小于 paD a D a y+=+=θsin 2 由0=da dy可得 pD a= 且这时 022>dayd 所以狭缝的宽度调到p D a =时屏上痕迹的宽度达到最小。
量子物理学入门知识
量子物理学是现代物理学的重要分支,它主要研究微观粒子的行为和性质。
以下是一些关于量子物理学的入门知识:
1. 原子结构:原子由核和电子组成。
电子在原子中的位置和运动状态由量子力学描述。
2. 波粒二象性:量子力学认为微观粒子既可以表现出波动性质,也可以表现出粒子性质。
这是个非常奇妙的现象。
3. 不确定性原理:根据不确定性原理,我们无法同时精确地知道一个微观粒子的位置和动量。
这种不确定性是量子物理学的核心概念。
4. 超导:超导是一种让电流在物质中无阻力地流动的现象。
量子物理学可以解释这一现象。
5. 量子纠缠:量子纠缠是一种神秘的现象,它描述了两个微观粒子之间的非常强的联系。
当一个粒子发生改变时,另一个粒子会立即发生相应的变化。
6. 量子计算:量子计算是利用量子力学的一些特殊性质来进行计算的方法。
它有潜力解决当前计算机无法解决的一些问题。
以上是量子物理学的一些入门知识,希望能够帮助读者进一步了解这个神奇的领域。
- 1 -。