大学物理近代物理-基础量子物理
- 格式:ppt
- 大小:3.87 MB
- 文档页数:67
大学物理教案:量子力学基础知识简介量子力学是现代物理学的重要分支,它描述了微观世界中的粒子行为,并解释了许多奇特的现象。
本教案旨在向大学物理学生介绍量子力学的基础知识,包括波粒二象性、不确定性原理、波函数等核心概念。
目标•理解波粒二象性的概念及其实验观测•掌握不确定性原理及其与经典物理的区别•熟悉波函数的表示和应用教学内容1. 波粒二象性•定义:波粒二象性指微观粒子既具有粒子性质又具有波动性质。
•实验观测:通过双缝干涉实验、康普顿散射实验证明波粒二象性。
•特征:粒子表现出波动行为,如干涉和衍射;波动表现出离散行为,如能级和量子跳跃。
2. 不确定性原理•定义:不确定性原理是由海森堡提出的一个基本原理,它指出在某些物理量之间存在固有的不确定关系。
•区别于经典物理:经典物理中,粒子的位置和动量可以同时被准确测量;而在量子力学中,由于波粒二象性,位置和动量不能同时被准确确定。
•数学表述:∆x * ∆p ≥ h/4π,其中∆x表示位置的不确定性,∆p表示动量的不确定性,h为普朗克常数。
3. 波函数•定义:波函数是描述微观粒子状态及其演化的数学函数。
在薛定谔方程下演化。
•形式:一维情况下可用复数函数表示ψ(x),三维情况下可用复数函数表示ψ(x, y, z)。
•解释与应用:波函数的平方模值|ψ|^2 表征了粒子在空间中存在的概率分布。
波函数可以描述能级、态叠加等现象。
教学方法与活动建议1.通过实验演示双缝干涉实验,让学生亲身体验波粒二象性。
2.运用黑板或幻灯片展示不确定性原理的公式推导过程,并举例说明其应用。
3.利用计算机模拟软件绘制波函数的图像,让学生观察不同态的波函数变化。
4.在课堂上进行小组讨论和问题解答,加深学生对概念和原理的理解。
总结通过本教案,学生将能够初步了解量子力学中重要的基础知识。
这些核心概念对于理解量子物理现象以及后续相关课程的学习都具有重要意义。
在教学过程中,鼓励学生积极思考并提出问题,以促进他们对量子力学的兴趣和深入理解。
大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
大学物理近代物理学知识点近代物理学是物理学中重要的分支之一,大学物理中也占有重要地位。
在本文中,我们将介绍大学物理中的一些近代物理学知识点。
1. 相对论相对论是一种物理学理论,被广泛应用于高能物理学、天体物理学和宏观物理学。
相对论中的重要理论是狭义相对论和广义相对论,它们主要是研究物质和能量之间的关系。
其中,狭义相对论主要是研究高速运动物体的行为,而广义相对论主要研究引力和引力对时空的影响。
2. 量子力学量子力学是物理学家研究物质与能量交换时发现的新的规律性。
该学科研究微观领域中的粒子行为,如原子核、电子等。
它是现代物理学的基础之一,也被广泛应用于各种领域,如化学、材料科学和电子工程。
3. 基本粒子基本粒子是物理学家研究微观世界时发现的最小的物质组成部分。
它们包括质子、中子、电子等。
近年来,在高能物理研究中,新的基本粒子不断被发现和探测。
这些发现对于人类对物质构成的认识产生了重大的影响。
4. 大爆炸大爆炸理论是现代宇宙学的基石之一,它描述了宇宙的起源和演化。
大爆炸理论认为,宇宙的起源是由于一次巨大的爆炸而形成的。
从此时起,宇宙开始膨胀并不断演化。
5. 暗物质暗物质是一种物质,它对于宇宙的形成和演化有着重要的作用。
虽然暗物质无法直接观测到,但是通过对星系和宇宙大尺度的结构进行观测,科学家们已经确认它的存在。
暗物质对于我们理解宇宙的形成和演化过程,以及对于寻找基本粒子和探索宇宙物理学的深度理解都具有重要意义。
6. 熵熵是物理学的一个基本概念,它是热力学中对于系统无序性的度量。
由于熵是系统的状态函数,因此它在物理学的许多领域都有广泛的应用。
例如,在统计物理学中,熵被用来表示系统的混乱程度。
在信息理论中,熵则被用来表示信息的多少。
7. 超导超导是一种物理现象,它指的是某些材料在低温下的导电特性。
这些材料在特定的温度下,可以形成一个电流稳定状态,这个状态被称为超导态。
超导材料被广泛应用于各种领域,如磁共振成像、电力输送、制冷技术和计算机芯片等。
第15章 量子力学基础人们用经典物理解释黑体辐射、光电效应、氢原子光谱等实验规律时,遇到了不可克服的困难.经过不断的探索和研究,终于突破了经典物理的传统观念,建立起量子理论.量子理论和相对论是现代物理学的两大支柱.量子理论的诞生,对研究原子、电子、质子、光子等微观粒子的运动规律提供了正确的导向.从此使物理学发生了一次历史性的飞跃,促进了原子能、激光、超导、半导体等众多新技术的生产和发展.本章前部分,分别介绍黑体辐射、光电效应、氢原子光谱等实验规律以及为解释这些实验规律而提出的量子假设,即早期的量子论.本章的后部分简要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论说明量子力学处理问题的一般方法.§15.1 黑体辐射与普朗克的量子假设一、黑体辐射的基本规律1 热辐射组成物体的分子中都包含着带电粒子,当分子作热运动时物体将会向外辐射电磁波,由于这种电磁波辐射与物体的温度有关,故称其为热辐射.实验表明,热辐射能谱是连续谱,发射的能量及其按波长的分布是随物体的温度而变化的.随着温度的升高,不仅辐射能在增大,而且辐射能的波长范围向短波区移动.物体在辐射电磁波的同时,也吸收投射到物体表面的电磁波.理论和实验表明,物体的辐射本领越大,其吸收本领也越大,反之亦然.当辐射和吸收达到平衡时,物体的温度不再变化而处于热平衡状态,这时的热辐射称为平衡热辐射.为描述物体热辐射能按波长的分布规律,引入单色辐射出射度(简称单色辐出度)这一物理量,其定义为:物体单位表面积在单位时间内发射的、波长在λ+λ→λd 范围内的辐射能dM λ与波长间隔d λ的比值,用M λ(T)表示,即λ=λλd dM T M )( (15.1) 而辐出度定义为⎰∞λλ=0d T M T M )()( (15.2) 2 黑体辐射的基本规律投射到物体表面的电磁波,可能被物体吸收,也可能被物体反射和透射.能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为绝对黑体,简称黑体.绝对黑体是一种理想模型,实验室中用不透明材料制成带有小孔的空腔物体可近似看作黑体.图15.1为用实验方法测得的黑体单色辐出度M B λ (T)按波长和温度分布的曲线.关于黑体辐射,有两个基本定律:一个是斯特藩—玻耳兹曼定律(M B (T )=σT 4 ,即黑体的辐出度与其热力学温度的四次方成正比 ,其中σ=5.6705×10-8 W•m -2 • K -4 称为斯特藩—玻耳兹曼常数);另一个是维恩位移定律(λm T=b,即黑体单色辐出度的最大值对应的波长λm 与其绝对温度T 成反比,其中b=2.8978×10-3m •K 为与温度无关的常数).这两个定律在现代科学技术中有广泛的应用.通常用于测量高温物体(如冶炼炉、钢水、太阳或其他发光体等)温度的光测高温法就是在这两个定律的基础上建立起来的,同时,这两个定律也是遥感技术和红外跟踪技术的理论依据.从理论上导出绝对黑体单色辐出度与波长和温度的函数关系,即M Bλ=f(λ, T) ,是19世纪末期理论物理学面临的重大课题.维恩(W.Wien,1864—1928年)假定带电谐振子的能量按频率的分布类似于麦克斯韦速率分布率,然后用经典统计物理学方法导出了黑体辐射的下述公式T c B e c T M λ-λλ=/)(251 (15.3) 其中 和 是两个由实验确定的参数.上式称为维恩公式.维恩公式只是在短波波段与实验曲线相符,而在长波波段明显偏离实验曲线,如图15.2所示.瑞利(J.W.S.Rayleigh,1842—1919年)和金斯(J.H.Jeans,1877—1946年)根据经典电动力学和经典统计物理学导出了另一个力图反映绝对黑体单色辐出度与波长和温度关系的函数 42λπ=λckT T M B )( (15.4) 式中c 是真空中的光速,k 是玻耳兹曼常数.上式称为瑞利—金斯公式.该公式在长波波段与实验相符,但在短波波段与实验曲线有明显差异,如图15.2所示.这在物理学史上曾称为“紫外灾难”.234167895οοοοοοοοοοοοοο瑞利—金斯线 维恩线 普朗克线 能量密度 m/μ波长图15.2二、普朗克的量子假设1900年普朗克(M.Planck,1858—1947年)在综合了维恩公式和瑞利—金斯公式各自的成功之处以后,得到黑体的单色辐出度为)()(/11252-λπ=λλkT hc B e hc T M (15.5) 这就是普朗克公式,式中h 为普朗克常数,1986年的推荐值为 h=6.6260755×10-34 J ·s.普朗克公式与实验结果的惊人符合预示了其中包含着深刻的物理思想.普朗克指出,如果作下述假定,就可以从理论上导出他的黑体辐射公式:物体若发射或吸收频率为ν的电磁辐射,只能以ε=hν为单位进行,这个最小能量单位就是能量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍,即),,,(Λ321=ν=ε=n nh n E (15.6)普朗克的能量子思想是与经典物理学理论不相容的,也正是这一新思想,使物理学发生了划时代的变化,宣告了量子物理的诞生.普朗克也因此荣获1918年的诺贝尔物理学奖.作业(P224):23§15.2 光电效应与爱因斯坦的光量子假设普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律.一、光电效应的实验规律金属在光的照射下,有电子从表面逸出,这种现象称为光电效应.光电效应中逸出金属表面的电子称为光电子.光电子在电场的作用下所形成的电流叫光电流.研究光电效应的实验装置如图15.3所示.在一个抽空的玻璃泡内装有金属电极K(阴极)和A(阳极),当用适当频率的光从石英窗口射入照在阴极K 上时,便有光电子自其表面逸出,经电场加速后为阳极A 所吸收,形成光电流.改变电位差U AK ,测得光电流 i ,可得光电效应的伏安特性曲线,如图15.4所示.实验研究表明,光电效应有如下规律:1)阴极K 在单位时间内所发射的光电子数与照射光的强度成正比.从图15.4可以看出,光电流i 开始时随 增大而增大,而后就趋于一个饱和值 ,它与单位时间内从阴极K 发射的光子数成正比.所以单位时间内从阴极K 发射的光电子数与照射光强成正比.2)存在截止频率.实验表明,对一定的金属阴极,当照射光频率小于某个最小值i s 时,不管光强多大,都没有光电子逸出,这个最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限.3)光电子的初动能与照射光的强度无关,而与其频率成线性关系.在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向电位差增大到一定值时,光电流才降为零,如图15.4所示.此时反向电位差的绝对值称为遏止电压,用U a 表示.不难看出,遏止电压与光电子的初动能间有如下关系a eU m =υ2021 (15.7) 式中m 和e 分别是电子的静质量和电量, 0υ是光电子逸出金属表面的最大速率. 实验还表明,遏止电压U a 与光强I 无关,而与照射光的频率v 成线性关系,即 0V K U a -ν= (15.8)式中K 和V 0都是正值,其中K 为普适恒量,对一切金属材料都是相同的,而V 0=Kv 0对同一种金属为一恒量,但对于不同的金属具有不同的数值.将式(15.8)代入式(15.7)得 )(002021ν-ν=-ν=υeK eV eK m (15.9) 上式表明,光电子的初动能与入射光的频率成线性关系,与入射光强无关.4)光电子是即时发射的,滞后时间不超过10-9s.实验表明,只要入射光的频率大于该金属的红限,当光照射这种金属表面时,几乎立即产生光电子,而无论光强多大.二、爱因斯坦光子假设和光电效应方程对于上述实验事实,经典物理学理论无法解释.按照光的波动理论,光波的能量由光强决定,在光照射下,束缚在金属内的“自由电子”将从入射光波中吸收能量而逸出表面,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能与光强无关;另外,如果光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应该存在红限,而且,光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需要的时间就越长,这都与光电效应的实验事实相矛盾.由此可见,光的波动理论无法解释光电效应的实验规律.为了克服光的波动理论所遇到的困难,从理论上解释光电效应,爱因斯坦发展了普朗克能量子的假设,于1905年提出了如下的光子假设:一束光就是一束以光速运动的粒子流,这些粒子称为光量子(简称光子);频率为v 的光子所具有的能量为hv ,它不能再分割,而只能整个的被吸收或产生出来.按照光子理论,当频率为v 的光照射金属表面时,金属中的电子将吸收光子,获得 的能量,此能量的一部分用于电子逸出金属表面所需要的功(此功称为逸出功A);另一部分则转变为逸出电子的初动能.据能量守恒定律有(15.10) 这就是爱因斯坦的光电效应方程.)(002021ν-ν=-ν=υ↓eK eV eK m 比较 00eK νeV A eK,h === (15.11)由实验可测量K 和V 0,算出普朗克常数h 和逸出功A,进而还可求出金属的红限v 0.按照光子理论,照射光的光强就是单位时间到达被照物单位垂直表面积的能量,它是由单位时间到达单位垂直面积的光子数N 决定的.因此光强越大,光子数越多,逸出的光电子数就越多.所以饱和光电流与光强成正比;由于每一个电子从光波中得到的能量只与单个光子的能量hv 有关,所以光电子的初动能与入射光的频率成线性关系,与光强无关.当光子的能量hv 小于逸出功A,即入射光的频率v 小于红限v 0时,电子就不能从金属表面逸出;另外,光子与电子作用时,光子一次性将能量 全部传给电子,因而不需要时间积累,即光电效应是瞬时的.这样光子理论便成功地解释了光电效应的实验规律,爱因斯坦也因此获得1921年的诺贝尔物理学奖.例题15.1 用波长为400nm 的紫光去照射某种金属,观察到光电效应,同时测得遏止电压为1.24V ,试求该金属的红限和逸出功.解:由光电效应方程得逸出功为1.87eV J 102.9919=⨯=-=-=-020eU λc h m υ21h νA 根据红限与逸出功的关系,得红限为Hz 1051410626610992143419⨯=⨯⨯==--...h A ν0 三、光(电磁波)的波粒二象性一个理论若被实验证实,它必定具有一定的正确性.光子论被黑体辐射、光电效应以及其他实验所证实,说明它具有一定的正确性.而早已被大量实验证实了的光的波动论以及其他经典物理理论的正确性,也是无可非议的.因此,在对光的本性的解释上,不应该在光子论和波动论之间进行取舍,而应该把它们同样地看作是光的本性的不同侧面的描述.这就是说,光具有波和粒子这两方面的特性,这称为光的波粒二象性.既是粒子,也是波,这在人们的经典观念中是很难接受的.实际上,光已不是经典意义下的波,也不是经典意义下的粒子,而是波和粒子的统一.光是由具有一定能量、动量和质量的粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律.描述光的粒子特征的能量与描述其波动特征的频率之间的关系为(15.12)由狭义相对论能量—动量关系并考虑光子的静质量为零得光子动量与波长的关系为====Ph Pc/h c E/h c νc λ (15.13) 它们通过普朗克常数紧密联系起来.通过质能关系还可得光子的质量为c P ch c E m 22=ν==作业(P224):26§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数.在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17) 式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202re πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21)对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πme h εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV . n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为1n =2n =3n =4n =1r r =14r r =19r r =116r r =赖曼系巴耳末系帕邢系 图15.6 氢原子定态的轨道图hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27§15.4 微观粒子的波—粒二象性 不确定关系一、微观粒子的波—粒二象性1923~1924年间,德布罗意仔细地分析了光的微粒说和波动说的历史,深入的研究了光子假设.他认为,19世纪以来,在光的研究中人们只重视了光的波动性,而忽视了它的粒子性.但在实物粒子的研究中却又发生了相反的情况,只重视实物粒子的粒子性,而忽略了它的波动性.在这种思想的支配下,德布罗意大胆的提出了物质的波—粒二象性假设.他认为,质量为m,速度为υ的自由粒子,一方面可用能量E 和动量p 来描述它的粒子性;另一方面还可用频率v 和波长λ来描述它的波动性.它们之间的关系与光的波—粒二相性所描述的关系一样,即h/p λE/h,ν== (15.28)式(15.28)叫德布罗意公式.这种和实物粒子相联系的波称为德布罗意波,或叫物质波.德布罗意因这一开创性工作而获得了1929年的诺贝尔物理学奖.由于自由粒子的能量和动量均为常量,所以与自由粒子相联系的波的频率和波长均不变,这说明与自由粒子相联系的德布罗意波可用平面波描述.对于静质量为m 0,速度为υ的实物粒子,其德布罗意波长为220/c υυm h p h λ-==1 (15.30) 德布罗意关于物质波的假设,1927年首先由戴维孙(C.J.Davisson,1881—1958)和革末(L.H.Germer,1896—1971)通过电子衍射实验所证实.戴维孙和革末作电子束在晶体表面散射实验时,观察到了和X 射线在晶体表面衍射相似的电子衍射现象,从而证实了电子具有波动性.当时的实验中,采用50KV 的电压加速电子,波长约为0.005nm.由于波长非常短,实验难度很高,因此这一实验是极其卓越的.后来证实了不仅电子具有波动性,其他微观粒子,如原子、质子和中子等也都具有波动性.微观粒子的波动性在现代科学技术上已得到广泛的应用,利用电子的波动性,已制造出了高分辨率的电子显微镜;利用中子的波动性,制成了中子摄谱仪.既然微观粒子具有波动性,原子中绕核运动的电子无疑也具有波动性.不过处于原子定态中的电子的波动形式,与戴维孙和革末实验中由小孔衍射的电子束的波动形式是不同的,后者可认为是行波,而前者则应看为驻波.处于定态中的电子形成驻波的情形,与端点固定的振动弦线形成驻波的情形是相似的.原子中电子驻波可如图15.8形象地表示.由图可见,当电子波在离开原子核为r 的圆周上形成驻波时,圆周长必定等于电子波长的整数倍,即),,,(Λ3212==n n λπr (15.31)利用德布罗意关系便可得电子的轨道角动量应满足下面的关系),,,(Λη3212====n n λh πλn rP L (15.32) 这正是玻尔作为假设引入的量子化条件,在这里,考虑了微观粒子的波动性就自然的得出了量子化条件.例题15.2 计算经过电势差U=150V 和U=104V 加速的电子的德布罗意波长(在U<104V 时,可不考虑相对论效应).解:忽略相对论效应,经过电势差U 加速后,电子的动能和速率分别为202,21m eU eU υm =υ= 式中m 0为电子的静止质量.利用德布罗意关系可得德布罗意波长nm 11.225m 1102512121000UU U e m h υm h λ=⨯=⋅==-. 式中U 的单位是伏特. 1nm 0150V U 11.=λ→=,0.0123nm V 10U 242=λ→=由此可见,在这样的电压下,电子的德布罗意波长与X 射线的波长相近。
大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
本文将介绍一些关于量子力学的基本概念和原理。
2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。
解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。
2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。
通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。
3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。
通过波函数,可以计算出一系列平均值,用来描述系统的特征。
3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。
这涉及到测量的本质和粒子与波的性质之间的关系。
4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。
它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。
4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。
这为填充多电子原子如何达到稳态提供了解释。
5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。
它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。
5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。
6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。
介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。
6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。
结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。
大学物理易考知识点力学电磁学热学光学量子物理等大学物理是一门综合性的学科,涵盖了力学、电磁学、热学、光学、量子物理等多个领域。
在考试中,有些知识点相对来说相对容易掌握,而有些知识点可能比较难以理解和掌握。
本文将针对大学物理中比较容易考察的知识点进行介绍和讲解,力求帮助同学们在考试中取得好成绩。
一、力学力学是物理学的基础,也是大学物理考试中的重要内容。
力学研究物体运动的规律和原理,包括质点运动、刚体力学、流体力学等内容。
在考试中,经常考察的力学知识点包括牛顿定律、运动学公式、加速度、动量守恒定律等。
要掌握好力学知识,需要理解物体受力情况下的运动规律,能够运用相关公式进行计算和分析。
二、电磁学电磁学是物理学中的重要分支,研究电荷和电磁场的相互作用。
电磁学在现代科技中有着广泛的应用,也是大学物理考试中的重要内容。
在考试中,可能考察的电磁学知识点包括静电学、电场和电势、电流和电阻、磁场和电磁感应等。
要掌握好电磁学知识,需要理解电荷和电场的相互作用规律,能够运用相关公式进行计算和分析。
三、热学热学是物理学中研究热现象和能量转化的学科,也是大学物理考试中的一大考点。
热学研究热能、热力学等内容。
在考试中,常考察的热学知识点包括热力学第一定律、热力学第二定律、理想气体状态方程、热传导等。
要掌握好热学知识,需要理解热能和能量转化的基本原理,能够应用公式进行热力学计算和分析。
四、光学光学是研究光的传播和光现象的科学,也是大学物理考试中的考点之一。
光学涉及光的传播、反射、折射、干涉、衍射等内容。
在考试中,常考察的光学知识点包括光的传播速度、光的折射定律、镜面反射和折射等。
要掌握好光学知识,需要理解光的传播规律和光的反射、折射的基本原理,能够应用公式进行光学计算和分析。
五、量子物理量子物理是研究微观世界的物理学分支,也是大学物理考试中的考点之一。
量子物理研究微粒的行为和性质,包括波粒二象性、不确定性原理、波函数等内容。
第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。
· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。
2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。
3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。
对于一般的物体4T M εσ=e 称发射率。
4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。
黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
· 一个光子具有的能量为νh E =。
5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
与实物粒子相联系的波称为物质波或德布罗意波。
· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。
其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。
大学物理近代物理基础知识点在大学物理学习中,近代物理是一个至关重要的领域,它包括了相对论、光子论、量子力学等诸多重要内容。
本文将介绍一些大学物理中关于近代物理的基础知识点。
1. 相对论相对论是物理学中的一大革命性理论,由爱因斯坦提出。
相对论包括狭义相对论和广义相对论两部分。
狭义相对论主要描述运动速度接近光速的物体,揭示了时间和空间的相对性,提出了著名的质能方程E=mc²。
广义相对论则描述了重力场的性质,提出了引力波等重要概念。
2. 光子论光子论是描述光的微粒性质的理论,由爱因斯坦在20世纪早期提出。
根据光子论,光被看作是由一粒一粒的光子组成,这一理论解释了光的波粒二象性,同时也为量子力学的发展奠定了基础。
3. 量子力学量子力学是描述微观世界的物理理论,它在20世纪初提出,彻底颠覆了经典物理学的观念。
量子力学表明微观粒子的运动是不确定的,引入了波函数、不确定性原理等重要概念,为原子物理、凝聚态物理等领域的发展提供了理论支持。
4. 波粒二象性波粒二象性是指微观粒子既具有波动性质又具有粒子性质的现象。
根据量子力学,微观粒子具有粒子和波的双重性质,这一概念对解释光的干涉、衍射等现象具有重要意义。
5. 单粒子量子力学单粒子量子力学是量子力学的基础概念之一,描述了单个微观粒子的运动规律。
在单粒子量子力学中,微观粒子的状态由波函数表示,其演化受薛定谔方程描述。
通过波函数的数学运算,可以获取粒子的位置、动量等物理量信息。
结语近代物理是物理学中一个充满挑战和奇迹的领域,其中涵盖了许多重要的理论和概念。
通过深入学习近代物理的基础知识,我们可以更好地理解自然界的规律,为未来的科学研究和发展奠定坚实基础。
希望本文介绍的近代物理基础知识点能为大家的学习和研究提供帮助。
大学物理——近代物理近代物理是在20世纪初期发展的一门科学,是对物理学领域的重大进展进行的研究。
从当时开始,物理学家们都致力于探索自然界最基本的粒子和作用机理,以及在微观和宏观世界中统一性的规律。
这篇文章将介绍一些近代物理中的主要概念和理论。
相对论相对论最初是由爱因斯坦在1905年提出的。
相对论推翻了牛顿力学中的经典概念,提出了新的描述物理现象的方法。
相对论是一种描述物体在高速运动中发生变化的理论,它削弱了空间和时间的本质差异,同时也表明了能量和质量的等价性。
相对论所提出的基本概念和结论,包括相对时间、相对长度和光速不变原理,奠定了理论物理学研究的基础,并推动了现代物理学的发展。
量子力学在20世纪初到30年代,有许多物理学家陆续发现了许多在经典物理学中无法描述的微小粒子的行为和性质。
随后,科学家们开始发展量子力学来解释这些现象。
量子力学是一种数学理论,描述了在微观尺度上的粒子之间的相互作用和能量传递。
量子力学是一种高度概率性的理论,它认为粒子在空间中的行为无法准确预测,而是以概率分布的形式表示。
量子力学的主要特征是粒子的波粒二象性、量子叠加原理和不确定性原理。
波粒二象性指物质粒子可以像波一样展现出类似于光的性质。
叠加原理指当粒子处于未观测状态时,粒子可以处于多个状态之间。
不确定性原理指当我们观测粒子时,我们无法同时知道粒子的位置和速度,而是可以从多个可能性中选择出来。
量子力学是现代物理学的基石,同时也是工程和技术领域中的重要应用。
相对论和量子力学的统一相对论和量子力学是对自然界和世界的不同方面进行研究的两个最重要的领域。
尽管在物理上有所区别,但是他们都是尝试去理解自然界运作的规律。
近年来,有一些物理学家尝试着将这两种理论统一在一起,拉格朗日密度和哈密顿量理论构成了相对论量子力学的框架。
弦理论弦理论是一种近代物理学理论,它提供了一种新的理解基本粒子和宇宙结构的方法。
与传统的粒子物理学不同,它认为基本粒子实际上是以能量不同的形式存在的一组振动状态。