初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)
- 格式:docx
- 大小:753.61 KB
- 文档页数:31
初中数学几何图形初步知识点总复习含解析(1)一、选择题1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.下列立体图形中,侧面展开图是扇形的是()A .B .C .D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C .【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A .中B .考C .顺D .利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.7.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )A .10cm 2B .10πcm 2C .20cm 2D .20πcm 2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm 2,故选D .【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.8.下列图形中1∠与2∠不相等的是( )A.B.C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D 是平行四边形,∴EF ′=AD=3.∴EP+FP 的最小值为3.故选C .考点:菱形的性质;轴对称-最短路线问题10.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.11.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.。
初中数学几何图形初步知识点总复习有解析(1)一、选择题1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.2.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.3.下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A、是三棱锥的展开图,故不是;B、两底在同一侧,也不符合题意;C、是三棱柱的平面展开图;D、是四棱锥的展开图,故不是.故选C.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.4.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()A.30°B.25°C.18°D.15°【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.5.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.6.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD是ABC∆边BD上的高.∆边AB上的高;④线段CD是BCD上述说法中,正确的个数为()A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A与点B的距离是线段AB的长,∴①正确;②、点A到直线CD的距离是线段AD的长,∴②正确;③、根据三角形的高的定义,△ABC边AB上的高是线段CD,∴③正确;④、根据三角形的高的定义,△DBC边BD上的高是线段CD,∴④正确.综上所述,正确的是①②③④共4个.故选:D.【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.8.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )A.B.C.D.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.9.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.10.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导11.如图是画有一条对角线的平行四边形纸片ABCD ,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是( )A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.12.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.13.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.14.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.15.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.19.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.。
人教版初中数学图形认识初步知识点总结及例题解答编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版初中数学图形认识初步知识点总结及例题解答)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版初中数学图形认识初步知识点总结及例题解答的全部内容。
第四章图形认识初步4。
1多姿多彩的图形4.1。
1几何图形①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形.④常常用从不同方向看到的平面图形来表示立体图形.(主视图,俯视图,,左视图).习题在右图的几何体中,它的左视图是( B )习题如图所示的几何体是由4个相同的小正方体组成.其主视图为( D )A.B.C. D.习题已知某几何体的一个视图(如图),则此几何体是( C )A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱习题如图所示,下列水平放置的几何体中,俯视图是矩形的是(A)B .C.D.⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
习题如图,是一个正方体的平面展开图,原正方体中“祝”的对面是(C )A.考B.试C.顺D.利4.1.2点,线,面,体①几何体也简称体。
②包围着体的是面。
面有平的面和曲的面两种。
③面和面相交的地方形成线.(线有直线和曲线)④线和线相交的地方是点.(点无大小之分)⑤点动成线,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
专题五 空间图形与几何初步⎧⎨⎩⎧⎨⎩⎧⎨⎩立体图形点动成线,线动成面,面动成体两点确定一条直线直线、射线、线段,基本事实两点之间,线段最短定义及表示方法角的大小及运算互余:同角或等角的余角相等余角和补角互补:同角或等角的补角相等邻补角与对顶角:对顶角相等图经过一点有且办有一条直线与已知直线垂直形垂线的性质几相交线垂直连接直线外一点与直线上各点的所有线段中,垂线段最短的何初点到直线的距离:直线外一点到这平图步面形认图角识形()⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩⎧⎨⎩⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭条直线的垂线段的长度三线八角同位角、内错角、同旁内角定义:在同一平面内,两条不相交的直线叫做平行线定义及基本事实基本事实:过直线外一点,有且只有一条直线与这条直线平行两直线平行,同位角相等性质两直线平行,内错角相等平行线性质的应用,平行线之间的距离两直线平行,同旁内角互补平行线同位角相等,两直线平行内错角相等,两直线平行判定同旁内角互补,两直线⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎪⎩⎩平行平行于同一条直线的两条直线平行 第28讲 几何图形知识能力解读知能解读(一)几何图形长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.几何图形是数学研究的主要对象之一. 点拨(1)几何图形只关注物体的形状、大小和位置.(2)几何图形都是从实际物体中抽象出来的,与实物有一定的差距,只是形式而已. 知能解读(二)立体图形(1)定义:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.(2)常见的立体图形:()⎧⎧⎪⎪⎨⎪⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎪⎩ 棱柱:三棱柱,四棱柱长方体、正方体都是四棱柱柱体圆柱棱锥:三棱锥、四棱锥立体图形锥体圆锥球知能解读(三)平面图形有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们都是平面图形. 点拨虽然立体图形和平面图形是两类不同的几何图形,但它们是互相联系的.立体图形中某些部分是平面图形,例如长方体的侧面是长方形. 知能解读(四)立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.(1)不是所有的立体图形都可以展开,如球体就不能展开.(2)对于同一个立体图形,按不同的方式展开,可以得到不同的平面图形. 知能解读(五)点、线、面、体(1)体:几何体液简称体.面:包围着体的是面.面有平的面和曲的面两种.线:面和面相交的地方形成线.线有直线和曲线之分. 点:线与线相交的地方是点.(2)点动成线,线动成面,面动成体. 点拨几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.方法技巧归纳方法技巧(一)根据立体图形的概念识别立体图形要准确地识别立体图形,首先应对照基本图形把握其根本特征. 点拨首先区分是柱体还是椎体,然后再看底面是圆还是多边形. 方法技巧(二)立体图形展开的识别由立体图形的展开图可以识别出立体图形的形状,具体方法是:展开图中有圆,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑棱柱或棱锥;展开图中只有长方形或正方形,一般考虑棱柱. 点拨(1)对简单立体图形的展开图进行识记;(2)对柱体和椎体的展开图的特征进行比较. 方法技巧(三)由平面图形旋转成立图形的识别识别由平面图形旋转成的立体图形时,首先要弄清楚旋转轴.同一个平面图形,旋转轴不同,得到的立体图形也不同,可以实际操作一下,然后想象图形. 方法技巧(四)整体表面展开图的应用正方体的表面展开图有多种,正方体中相对面的确定等知识是常考内容,正方体表面展开图,正方体表面展开图有以下几个特点:(1)正方体的表面展开图中,一条直线上的小正方形不会超过四个;(2)正方体的表面展开图中不会有“田”与“凹”字型;(3)相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面“ ”型两端处的小正方形是正方体的对面;(4)中间隔着两个小正方形或拐角型的三个面的正方体的邻面.正方体的表面展开图共有11种,如图所示.⑩⑨⑧⑦⑥⑤④③②①点拨在正方体的展开图中,相邻的两个正方形是正方体中相邻的两个,当正方体相对的两个面在展开图中的同行或同列时,中间隔一个正方形.易混易错辨析易混易错辨析1.对正方体表面展开图掌握不好致错.2.棱柱与棱锥.区别:棱柱属于柱体,它的上下两个底面是两个相同的多边形;而凌锥属于椎体,它只有一个底面,且是多边形.3.圆柱和棱柱区别:圆柱和棱柱都属于柱体,但圆柱的地面是圆,侧面是曲面;而棱柱的底面是多边形,侧面是平面.4.圆锥和棱锥区别:圆锥和棱锥都属于椎体,但圆锥的底面是圆,侧面是曲面;而棱锥的地面是多边形,侧面是平面.易混易错(一)对例题图形的分类没有理清而致错易混易错(二)对几何体的表面展开图只注意到面的个数,忽视能否还原为原来的几何体致错中考试题研究中考命题规律本将内容在中考中主要考查立体图形的识别及其平面展开图,通常以选择题和填空题的形式出现,有利于考查空间想象能力和动手操作能力.中考试题(一)识别几何体的表面展开图 中考试题(二)识别正方体相对面上的文字⑪中考试题(三)识别正方体的表面展开图第29讲 直线、射线与线段知识能力解读知能解读(1)基本事实:经过两点有一条直线,并且知能有一条直线.简单说成:两点确定一条直线.(2)直线的表示方法:①可以用一个小写资本来表示,如图所示的直线可记作“直线l ”;②也可以用这条直线上的两个点来表示,如图所示的直线也可以记作“直线AB ”或“直线BA ”,其中,A B 为直线上的任意两个点. l(3)点与直线的关系:点A 在直线a 上,也可以说成直线a 经过点A (如图所示);点B 不在直线b 上,也可以说成直线b 不过经点B ,或点B 在直线b 外(如图所示).bOba(4)交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.如直线a 与直线b 相交于点O ,如图所示. 点拨(1)直线无粗细、没有端点、向两方无限延伸,不能度量. (2)直线基本事实中的“有且只有”有两层含义,“有”说明存在一条直线,即确定有一条;“只有”说明这条直线是“唯一”的.(3)两条不重合的直线最多有一个交点n 条直线相交最多有()12n n -个交点.(4)平面上的两条直线,有相交和不相交两种位置关系. 知能解读(二)射线与线段射线和线段都是直线的一部分.类似于直线的表示,我们可以用图所示的方式来表示线段AB (或线段BA ),其中A 、点B 是线段的端点.用图所示的方式来表示射线OA ,其中点O 是射线的端点.线段OA 或射线l线段AB 或线段alA O AB a点拨(1)线段有长短(可以度量),但线段没有方向,表示线段的两个大写字母没有顺序. (2)表示射线时,一定要把表示端点的字母写在前面.(3)端点不同,所表示的射线不同;端点相同,延伸方向不同,所表示的射线也不同;只有端点相同,并且延伸方向也相同时,才是同一条射线. 知能解读(三)直线、射线、线段的区别与联系两点的所有连线中,线段最短.简单说成:两点之间,线段最短. 知能解读(五)两个重要概念(1)两点的距离:连接两点间的线段的长度,叫作这两点的距离. 注意:距离线段的长度,不能仅说成线段,线段是一个几何图形.(2)线段的中点:如图所示,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫作线段AB 的中点.BM点拨常用以下式子表示点M 是线段AB 的中点:①AM BM =;②1122AM AB BM AB ⎛⎫== ⎪⎝⎭或;③()22AB AM AB BM ==或.知能解读(六)线段的画法及线段长短的比较(1)线段的画线:①用刻度尺测量后再画图;②借助直尺和圆规作图. 例:如图所示,作一条线段,使其等于已知线段a .a作法:①先做一条射线AB ; ②用圆规量取已知线段a ;③在射线AB 上以A 为圆心截取AC a =,则线段AC 为所求线段,如图所示.这是第一个基本作图,应熟练掌握. (2)线段长短的比较.①叠合法:先把两条线段放在同一条直线上,让其一端重合,再看另一端的位置,从而确定两条线段的长短,这是从“形”的方面来进行比较.②度量法:利用刻度尺,量出,每条线段的长度,再根据度量的结果确定两条线段的长短,这是从“数”的方面来进行比较,线段的长短关系和它们的长度大小关系是一致的.方法技巧归纳方法技巧(一)直线、射线、线段的识别及表示方法识别时应根据它们各自的特征,“无始无终”的是直线,“有始有终”的是线段,“有始无终”的是射线.表示时注意射线端点必须在前. 注意数射线的关键是找准端点,表示时端点要写在前面. 方法技巧(二)关于直线和线段基本事实的应用关于直线的基本事实:两点确定的一条直线;关于直线的基本事实;两点之间,线段最短.这两条基本事实在实际生活中有广泛的应用,应注意识别.点拨本题是两个基本事实在生活中的应用,要注意学会将生活中的问题转化成数学问题,利用数学原理来解释.方法技巧(三)规律探究技巧在识别平面内直线分平面部分数,直线的交点个数,探究线段、射线或直线条数时,一般先从较简单的情形入手,通过发现其中的规律,然后加以总结.点拨(1)事实上,直线之间的交点个数越多,直线将平面分成部分就越多.(2)从简单情形入手,探索、发现、总结规律是常用的数学方法.方法技巧(四)线段的有关计算技巧求线段长度时,如果直接求解有困难,可采取设未知数建立方程的方法进行.点拨列方程进行机损是常用的方法,应注意掌握.点拨依据线段中点的定义和所分的两条线段相等,再根据线段和、差、倍、分关系求线段AD 的长.在解答此类问题时,既要结合图形分析已知线段和所求线段的位置关系,又要体会比较简捷的解题方法.易混易错辨析易混易错知识1.直线、射线、线段的表示法.区别:直线、射线和线段都可以用两个大写字母表示,但是它们的要求是不一样的,表示直线和线段的两个大写字母没有先后顺序,但表示射线的两个大写字母中端字母必须在前面.2.线段外一点和直线外一点易混淆.区别:线段外一点有两种情况,一是点在线段所在的直线上但在线段的两个端点的外部;二是点在线段所在直线的外部.而直线外一点只有一种情况,就是点在直线外.易混易错(一)不能把握直线、射线、线段的根本特征而致误易混易错(二)点的位置不确定,造成漏解易混易错(三)出现数重或漏数错误中考试题研究中考命题规律本讲内容在中考中主要考查两点确定一条直线及两点之间,线段最短的性质,线段的和、差级线段的中点等概念,对两点之间的距离也常涉及,常以填空题、选择题的形式出现,有时也计算题或探究题的形式出现.中考试题(一)运用之前的基本事实中考试题(二)运用线段的基本事实中考试题(三)利用线段的中点计算第30 讲角知识能力解读知识解读(一)角的概念及表示方法1角的概念(1)有公共端点的两条射线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边.(2)角也可以看作是由一条射线绕着它的端点旋转而形成的图形.(3)射线旋转时经过的平面部分称为角的内部,平面其余部分称为角的外部.注意角的大小只与开口大小有关,而与角的边的长短无关,因为角的两边是射线.2角的表示方法角可用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有四种表示方法:(1)用数字表示单独的一个角,如图所示的1,2,34,5,6,7∠∠∠∠∠∠∠等;EDA B7123456(2)用小写的希腊字母表示单独的一个角,如图所示的,,,αβθγ∠∠∠∠等; (3)用一个大写英文字母表示一个独立的角(在一个顶点处只有一个角),如图1-30-1所示的,B C ∠∠等;γβαθO(4)用三个大写英文字母能表示出任一个角,如图所示的,,,,,BAD BAE BAC CAE CAD ABC ∠∠∠∠∠∠等,注意顶点字母必须写在中间. 知能解读(二)角的比较(1)度量法:如图所示,用量角器量得40,30COD AOB ∠=︒∠=︒,所以COD AOB ∠<∠.OD CO AB(2)叠合法:如图所示,把一个角放到另一个角上,使它们的顶点重合,器重的一边也重合,并使这两个角的另一边都在重合的同侧,其大小关系就明显了,由图可知,COD AOB ∠<∠.CB (D )OA注意(1)角可以度量,可以比较大小,也可以参与运算.(2)用叠合法比较角的大小注意三点;①角的顶点重合;②角的一边重合;③另一边落在重合边的同侧. :知能解读(三)角的画法方法1:画一个角等于已知角,可用量角器先测定已知角的度数,再用量角器画与已知角相等的角.方法2:用圆规和直尺画一个角等于已知角. 例如:如图所示,已知AOB ∠.求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)以O 为圆心,以任意长为半径作弧,交,OA OB 于点MN ;(2)作射线O A '',以O '为圆心,O M 长为半径作弧M C ',交O A ''于点M '; (3)以M '为圆心,MN 长为半径作弧,交弧M C ''于点N '; (4)过N '点作射线O B '',则A O B '''∠即为所求.注意方法2用圆规、直尺画角是基本作图,也在中考命题范围之内. 知能解读(四)角的和、差、倍、分(1)角的和、差 如图①所示,如图将1∠与2∠的顶点重合,再将1∠的一边与2∠的一边重合,并使两个角的另一边分别在重合边的两侧,它们不重合的两边组成AOB ∠,这时就说AOB ∠是1∠与2∠的和,记作12AO B ∠=∠+∠.此时1∠是AOB ∠与2∠的差,记作12AO B ∠=∠-∠;2∠是AOB ∠与1∠的差,记作21AO B ∠=∠-∠.12ABO①(2)角的倍、分 如图②所示,用上述方法将两个1∠拼在一起得到AOB ∠,这时就说AOB ∠是1∠的2倍,记作21AOB ∠=∠或1∠是AOB ∠的12,记作112AOB ∠=∠.类似地,将三个1∠拼在一起得到AOB ∠时,131,13AOB AOB ∠=∠∠=∠.11②知能解读(五)角平分线一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫作这个角的平分线.常用以下三类数学式子表示角的平分线:如图所示,①12∠=∠;②111222AOB AOB ⎛⎫∠=∠∠=∠ ⎪⎝⎭或;③()2122AOB AOB ∠=∠∠=∠或.O21C B A注意角平分线是一条射线,而不是一条直线或线段.角平分线把一个角分成两个相等的角. 知能解读(六)角的度量单位及换算我们常用量角器度量角,度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是1度的角,把1度的角60等分,每一份就是1分的角,把1分的角60等分,每一份就是1秒的角.1度记作1︒,1分记作1',1秒记作1''.160,160''''︒==,1360,1180=︒=︒周角平角.即:1160,160⎛⎫''︒==︒ ⎪⎝⎭;1160,160'⎛⎫'''''== ⎪⎝⎭.1180,1360=︒=︒平角周角.124==周角平角直角.点拨(1)度、分、秒之间是60进制,这和计量时间的单位时、分、秒是一样的.(2)使用量角器时,注意量角器的零刻度的读数的旋转方向,即选择内刻度、外刻度的读数.(3)以、度、分、秒为单位的角的度量制,叫作角度制.此外,还有其他度量角的单位制,如以弧度为基本度量单位的弧度制. 知能解读(七)互为余角和互为补角(1)如图两个角的和是90︒,那么这两个角互为余角,其中一个角是另一个角的余数.锐角α的余角为90α︒-.(2)如果两个角的和是180︒,那么这两个角互为补角,其中一个角是另一个角的补角.角α的补角是180α︒-.(3)互余、互补的性质;同角(等角)的余角相等;同角(等角)的补角相等. 注意(1)余角和补角是关于两个角的关系的概念,不能单独说哪一个角是余角或补角. (2)两个角互余或互补只是两个角的和为90︒或180︒,与位置无关.(3)两个角互余,则这两个角一定都是锐角.两个角互补,这两个角可能都是直角.也可能一个角是锐角,另一个角为钝角. 知能解读(八)用角度表示方向方位角是从正北或正南方向到目标方向所成的小于九十度的角.例:如图所示,OA 方向可表示为北偏西60︒南东方法技巧归纳方法技巧(一)角的识别和表示法角的识别关键是找角的顶点,再找角的两边,在表示角时,注意一个大写字母只能表示一个独立角,三个大写字母可以表示任意的角,而且要把表示顶点的字母写在中间. 点拨(3)中关键词是“只能”(即不能用另外的表示方法)二字,因此在找角时要按照要求去做.方法技巧(二)利用角平分线的定义求角的度数的方法角的平分线提供了角的相等或倍分关系,把这些关系与已知角联系起来,可以求出相关角的度数.在有关角的度数的计算题中,有些题目设有给出图形,当画出符合题意的图形不唯一时,要注意分情况进行讨论. 点拨根据解题的需要,角平分线的定义既可以写作两角相等的形式,也可以写作一个角是另一个角2倍的形式,还可以写作一个角是另外一个半的形式,应灵活选择.同时在计算中应注意“整体代入思想”的运用. 方法技巧(三)度、分、秒的换算把度换算成度、分、秒时要乘进率,而把度、分、秒转化为度时,要除以进率,换算时要逐级进行,不可越级转化.点拨将的形式化为度、分、秒的形式时,先取度整数后的剩余部分成60,再取乘积整数后的剩余部分乘60,最后以度、分、秒的形式写出来;将度、分、秒的形式化成度的形式的方法是60 3 600b c a b c a ⎛⎫'''︒=++︒ ⎪⎝⎭. 方法技巧(四)余角和补角的有关计算根据余角和补角的定义,锐角α的90,180αα=︒-=︒=余角补角.个别复杂些的问题,可列方程求解. 点拨本题求角度可以利用方程求解,可以直接设未知数,也可以间接设未知数. 点拨在计算有关余角、补角或与角度有关的问题时,多数用列方程的方法求解.方法技巧(五)钟表上的角度问题我们知道,时钟(如图所示)是测量时间的工具,时间的长与短、多与少都可以通过指针的指向来判断.在几何中,机械时钟的指针还给了我们角的直观形象.在时钟的表盘上,分针每分钟转6︒,时针每小时转30︒,每分钟转0.5︒.知道这些关系,就可轻松解决时钟问题了. 点拨钟表中时针与分针的夹角问题可转化为行程与角的应用题,采用方程的思想来解决,使复杂的问题变得直观,易于解决.易混易错辨析易混易错只是1.互余、互补概念混淆.互余、互补是指两个角之间的一种关系,若三个角的和等于90︒(或180︒),不能说这三个角互余(或互补).2.角的换算单位与数的换算单位混淆.区别:角的换算单位之间的进率是60,而数的换算单位之间的进率是10. 易混易错(一)对角的概念理解不清而致错 易混易错(二)考虑问题不全面致错中考试题研究中考命题规律本讲知识在中考中重点考查角的分类,角的大小比较及有关计算,互余、互补等知识,利用角平分线以及角的和差进行角的计算,常以填空题、选择题的形式出现,今年来又出现了对角的个数的规律探究方面的考查. 中考试题(一)角的运算中考试题(二)余角、补角的识别 中考试题(三)余角、补角的有关计算 中考试题(四)方位角的识别第31讲 相交线、平行线知识能力解读知能解读(一)邻补角、对顶角的概念1邻补角 如图所示,1∠和2∠有一条公共边OB ,它们的另一边互为反向延长线(1∠与2∠互补),具有这种关系的两个角,互为邻补角.O1432DCBA2对顶角定义:如图所示,1∠和3∠有一个公共顶点O ,并且1∠的两边分别是3∠的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.性质:对顶角相等. 注意对顶角的特征:①对顶角由两条直线相交形成,同时形成两对对顶角;②成对顶角的两个角有公共的顶点;③一个角的两边分别是另一个角的两边的反向延长线. 知能解读(二)垂线的定义、性质1垂线的定义如图所示,直线AB 与CD 相交于点O ,当90BO C ∠=︒时,我们说直线AB 与直线CD 互相垂直,记作AB CD ⊥.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂直线.它们的交点叫作垂足.O DC BA2垂线的性质(1)基本事实:在同一平面内,过一点有且只有条直线与已知直线垂直. 注意(1)应用以上性质必须强调“在同一平面内”,否则,在空间里,经过直线上一点与已知直线垂直的直线有无数条;(2)“过一点”中的一点可以是直线外一点,也可以是直线上一点;(3)“有且只有”说明了垂线的存在性和唯一性.(2)连接直线外一点与直线上各点的所有线段中的垂线段最短.简单说成:垂线段最短. 注意垂线与垂线段都具有垂直已知直线的特征,但垂线是一条直线,不能度量,而垂线段是一条线段,可以度量,它是垂线的一部分. 知能解读(三)点到直线的距离直线外一点到这条直线的垂线段的长度,叫作到直线的距离. 注意距离是一个数量,而不是一个线段,所以点到直线的距离强调的是垂线段的长度.如图所示,直线AB CD 、被第三条直线EF 所截,构成八个角,简称“三线八角”.FEDCBA87654321(1)同位角:1∠与5∠,2∠与6∠,3∠与7∠,4∠与8∠,它们分别在直线,AB CD 的同一方,且在直线EF 的同侧,具有这种位置关系的一对角叫作同位角.(2)内错角:3∠与5∠,4∠与6∠,它们都在直线,AB CD 之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫作内错角.(3)同旁内角:4∠与5∠,3∠与6∠,它们都在直线,AB CD 之间,又在直线EF 的同一旁,具有这种位置关系的一对角叫作同旁内角. 注意(1)这三类角指的都是位置关系,而不是大小关系. (2)这三类角没有公共顶点,都是成对出现的. 知能解读(五)平行线的概念及平行公理1平行线的概念在同一平面内,直线a 与b 不相交时,我们说线a 与b 互相平行,记作a b . 注意(1)平行线无论怎样延伸也不相交.(2)今后遇到线段、射线平行时,指线段、射线所在的直线平行.(3)在同一平面内两条直线的位置关系只有两种:相交和平行. 2平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 注意(1)以上结论所的是经过“直线外一点”,若经过直线上的一点作已知直线的平行线,就与已知直线重合了.(2)“有且只有”指出了过直线外一点作这条直线的平行线的“存在性”和“唯一性”.推论:如图两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果,b a c a ,那么b c (如图所示).ab c知能解读(六)平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.知能解读(七)平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.知能解读(八)平行线间的距离(1)如果两条直线平行,那么其中一条直线上每个点到另一条直线的距离都相等.这个距离,叫作这两条平行线之间的距离. 注意(1)对于平面内角的两条直线,只有平行线才有距离,两条相交直线不存在距离. (2)求两条平行线之间距离的方法:在两条平行线中的任意一条上取任意一点作另一条直线的垂线段,垂线段的长度是这两条平行线之间的距离,实际上是把求两条平行线间的距离转化为求一点到一条直线的距离.(3)区分“垂线段”与“距离”,前者是形,后者是量,垂线段的长度是距离.方法技巧归纳方法技巧(一)对顶角的识别方法识别对顶角应把握两个条件:一是有公共顶点;二是角的两边互为反向延长线.一般来说,两条直线相交,一定有对顶角产生. 点拨对顶角的定义应注意四点:(1)对顶角由两条直线相交而成;(2)同时形成的有两对对顶角;(3)成对顶角的两个角有公共顶点;(4)一个角的两边分别是另一个角的两边的反向延长线.方法技巧(二)垂直的定义及性质的应用进行有关角的计算时,一遇到垂直就应联想到相交所成的四个角都是90 . 点拨解决与垂直有关的问题时,通常利用互余、互补关系,对顶角及同等角或等角的余角相等,同角或等角的补角相等等条件来求解.方法技巧(三)同位角、内错角、同旁内角的识别要准确地识别这三类角,首先应对照基本图形,根据定义把握其位置特点,在遇到实际问题时要找出哪两条直线被哪一条直线所截,对于一些复杂图形有时还需要把图形分开来识别.。
专题15 图形的初步认识【专题目录】技巧1:活用判定两直线平行的六种方法技巧2:与相交线、平行线相关的四类角的计算技巧3:应用平行线的判定和性质的几种常用作辅助线的方法【题型】一、线段的中点【题型】二、角的计算【题型】三、与角平分线有关的相关计算【题型】四、余角与补角的相关计算【题型】五、对顶角相等进行相关计算【题型】六、邻补角相等求角的度数【题型】七、平行线的判定【题型】八、平行线的应用【题型】九、求平行线间的距离【考纲要求】1、了解直线、线段、射线的相关性质以及线段中点和两点间距离的意义.2、理解角的有关概念,熟练进行角的运算.3、掌握相交线与平行线的定义,熟练运用垂线的性质,平行线的性质和判定.【考点总结】一、直线、射线、线段与角【技巧归纳】技巧1:活用判定两直线平行的六种方法【类型】一、利用平行线的定义1.下面的说法中,正确的是()A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【类型】二、利用“同位角相等,两直线平行”2.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,试判断EC与DF是否平行,并说明理由.【类型】三、利用“内错角相等,两直线平行”3.如图,已知∠ABC=∠BCD,∠1=∠2,试说明BE∥CF.【类型】四、利用“同旁内角互补,两直线平行”4.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.【类型】五、利用“平行于同一条直线的两条直线平行”5.如图,已知∠B=∠CDF,∠E+∠ECD=180°.试说明AB∥EF.【类型】六、利用“垂直于同一条直线的两条直线平行(在同一平面内)”6.如图,AB⊥EF于B,CD⊥EF于D,∠1=∠2.(1)试说明:AB∥CD;(2)试问BM与DN是否平行?为什么?参考答案1.C点拨:根据定义判定两直线平行,一定要注意前提条件:“同一平面内”,同时要注意在同一平面内,不相交的两条线段或两条射线不能判定其平行.2.解:EC∥DF,理由如下:∵∠ABC=∠ACB,∠1=∠2,∴∠3=∠ECB.又∵∠3=∠F,∴∠ECB=∠F.∴EC∥DF(同位角相等,两直线平行).3.解:因为∠ABC=∠BCD,∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠FCB,所以BE∥CF(内错角相等,两直线平行).4.解:AB∥CD,理由如下:延长BE,交CD于点F,则直线CD,AB被直线BF所截.因为∠BEC=95°,所以∠CEF=180°-95°=85°.又因为∠DCE=35°,所以∠BFC=180°-∠DCE-∠CEF=180°-35°-85°=60°.又因为∠ABE=120°,所以∠ABE+∠BFC=180°.所以AB∥CD(同旁内角互补,两直线平行).点拨:本题利用现有条件无法直接判断AB与CD是否平行,我们可考虑作一条辅助线,架起AB 与CD之间的桥梁.5.解:因为∠B=∠CDF,所以AB∥CD(同位角相等,两直线平行).因为∠E+∠ECD=180°,所以CD∥EF(同旁内角互补,两直线平行).所以AB∥EF(平行于同一条直线的两直线平行).6.解:(1)∵AB⊥EF,CD⊥EF,∴AB∥CD(在同一平面内,垂直于同一条直线的两直线平行).(2)BM∥DN.理由如下:∵AB⊥EF,CD⊥EF,∴∠ABE=∠CDE=90°.又∵∠1=∠2,∴∠ABE-∠1=∠CDE-∠2.即∠MBE=∠NDE,∴BM∥DN(同位角相等,两直线平行).点拨:∠1和∠2不是同位角,不能误认为∠1和∠2是同位角,直接得出BM∥DN,要得到BM∥DN,可说明∠MBE=∠NDE.技巧2:与相交线、平行线相关的四类角的计算【类型】一、利用平角、对顶角转换求角1.如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:由∠EOC∶∠EOD=2∶3,设∠EOC=2x°,则∠EOD=3x°.因为∠EOC+∠________=180°(____________),所以2x +3x =180,解得x =36.所以∠EOC =72°.因为OA 平分∠E OC(已知),所以∠AOC =12∠EOC =36°. 因为∠BOD =∠AOC(______________),所以∠BOD =________.【类型】二、利用垂线求角2.如图,已知FE ⊥AB 于点E ,CD 是过点E 的直线,且∠AEC =120°,则∠DEF =________°.3.如图,MO①NO 于点O ,OG 平分①MOP ,①PON =3①MOG ,则①GOP 的度数为________.4.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC ∶∠AOD =7∶11.(1)求∠COE 的度数;(2)若OF ⊥OE ,求∠COF 的度数.【类型】三、直接利用平行线的性质求角5.如图,已知AB ∥CD ,∠AMP =150°,∠PND =60°.试说明:MP ⊥PN.【类型】四、综合应用平行线的性质与判定求角6.如图,∠1与 ∠2互补,∠3=135°,则∠4的度数是( )A .45°B .55°C .65°D .75°7.如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.参考答案1.EOD ;平角的定义;对顶角相等;36° 2.303.54° 点拨:设∠GOP =x°,则∠MOG =x°,∠PON =3x°,由题意得x +x +3x =360-90,解得x =54.∴∠GOP =54°.4.解:(1)∵∠AOC ∠AOD =711,∠AOC +∠AOD =180°,∴∠AOC =70°,∠AOD =110°.又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12∠AOC =12×70°=35°.∴∠COE =180°-∠DOE =180°-35°=145°.(2)∵OF ⊥OE ,∴∠FOE =90°.又∵∠DOE =35°,∴∠FOD =90°-∠DOE =90°-35°=55°.∴∠COF =180°-∠FOD =180°-55°=125°.5.解:如图,过点P 向左侧作PE ∥AB ,则∠AMP +∠MPE =180°.∴∠MPE =180°-∠AMP =180°-150°=30°.∵AB ∥CD ,PE ∥AB ,∴PE ∥CD ,∴∠EPN =∠PND =60°.∴∠MPN =∠MPE +∠EPN =30°+60°=90°,[来源:学,科,网Z,X,X,K]即MP ⊥PN.6.A7.解:∵∠1=72°,∠2=72°,∴∠1=∠2.∴a∥b.∴∠3+∠4=180°.又∵∠3=60°,∴∠4=120°.技巧3:应用平行线的判定和性质的几种常用作辅助线的方法【类型】一、加截线(连接两点或延长线段相交)1.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【类型】二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,求∠1的度数.b.“”形图3.(1)如图①,若AB∥DE,∠B=135°,∠D=145°.求∠BCD的度数.(2)如图①,在AB∥DE的条件下,你能得出∠B,∠BCD,∠D之间的数量关系吗?请说明理由.(3)如图②,AB∥EF,根据(2)中的猜想,直接写出∠B+∠C+∠D+∠E的度数.c.“”形图4.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?d.“”形图5.如图,已知AB∥DE,∠BCD=30°,∠CDE=138°,求∠ABC的度数.e.“”形图6.(1)如图,AB∥CD,若∠B=130°,∠C=30°,求∠BEC的度数;(2)如图,AB∥CD,探究∠B,∠C,∠BEC三者之间有怎样的数量关系?试说明理由.【类型】三、平行线间多折点角度问题探究7.(1)在图①中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图②中,若AB∥CD,又能得到什么结论?参考答案1.C2.解:方法一:过点P作射线PN∥AB,如图①.∵PN∥AB,AB∥CD,∴PN∥CD.∴∠4=∠2=28°.∵P N∥AB,∴∠3=∠1.又∵∠3=∠BPC-∠4=58°-28°=30°.∴∠1=30°.方法二:过点P作射线PM∥AB,如图②.∵PM∥AB,AB∥CD,∴PM∥C D.∴∠4=180°-∠2=180°-28°=152°.∵∠4+∠BP C+∠3=360°,∴∠3=360°-∠BPC-∠4=360°-58°-152°=150°.∵AB∥PM,∴∠1=180°-∠3=180°-150°=30°.3.解:(1)过点C向左作CF∥AB,∴∠B+∠BCF=180°.又∵AB∥DE,∴CF∥DE,∴∠FCD+∠D=180°,∴∠B+∠BCF+∠FCD+∠D=180°+180°,即∠B+∠BCD+∠D=360°,∴∠BCD=360°-∠B-∠D=360°-135°-145°=80°.(2)∠B+∠BCD+∠D=360°.理由如下:过点C向左作CF∥AB,∴∠B+∠BCF=180°.又∵AB∥DE,∴CF∥DE,∴∠FCD+∠D=180°,∴∠B+∠BCF+∠FCD+∠D=180°+180°,即∠B +∠BCD+∠D=360°.(3)∠B+∠C+∠D+∠E=540°.4.解:∠BCD=∠B-∠D.理由如下:如图,过点C作CF∥AB.∵CF∥AB,∴∠B=∠BCF(两直线平行,内错角相等).∵AB∥DE,CF∥AB,∴CF∥DE(平行于同一条直线的两条直线平行).∴∠DCF =∠D(两直线平行,内错角相等).∴∠B-∠D=∠BCF-∠DCF.∵∠BCD=∠BCF-∠DCF,∴∠BCD=∠B-∠D.点拨:已知图形中有平行线和折线或拐角时,常过折点或拐点作平行线,构造出同位角、内错角或同旁内角,这样就可利用角之间的关系求解了.5.解:如图,过点C作CF∥AB.∵AB∥DE,CF∥AB,∴DE∥CF.∴∠DCF=180°-∠CDE=180°-138°=42°.∴∠BCF=∠BCD+∠DCF=30°+42°=72°.又∵AB∥CF,∴∠ABC=∠BCF=72°.6.解:(1)过点E向左侧作EF∥AB,∴∠B+∠BEF=180°,∴∠BEF=180°-∠B=50°,又∵AB∥CD,且EF∥AB,∴EF∥CD,∴∠FEC=∠C=30°,∴∠BEC=∠BEF+∠FEC=50°+30°=80°.(2)∠B+∠BEC-∠C=180°.理由如下:过点E向左侧作EF∥AB,又∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,又∵∠BEF=∠BEC-∠FEC,∴∠BEF=∠BEC-∠C.∵AB∥EF,∴∠B+∠BEF=180°,∠B+∠BEC-∠C=180°.7.解:(1)∠E+∠G=∠B+∠F+∠D.理由:过折点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,如图所示,由A B∥CD,得AB∥EM∥FN∥GH∥CD,这样∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D.因此∠BEF+∠FGD=∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D=∠B+∠EFG+∠D.(2)∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.【题型讲解】【题型】一、线段的中点例1、如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为_____cm.【答案】1【提示】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:①C为AB的中点,AB=8cm,①BC=12AB=12×8=4(cm),①BD=3cm,①CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.【题型】二、角的计算例2、如图,直线m①n,直角三角板ABC的顶点A在直线m上,则①α的余角等于()A.19°B.38°C.42°D.52°【答案】D【解析】试题分析:过C作CD①直线m,①m①n,①CD①m①n,①①DCA=①FAC=52°,①α=①DCB,①①ACB=90°,①①α=90°﹣52°=38°,则①a的余角是52°.故选D.考点:平行线的性质;余角和补角. 【题型】三、与角平分线有关的相关计算例3、如图,AB ①CD ,①EFD =64°,①FEB 的角平分线EG 交CD 于点G ,则①GEB 的度数为( )A .66°B .56°C .68°D .58°【答案】D 【提示】根据平行线的性质求得①BEF ,再根据角平分线的定义求得①GEB . 【详解】 解:①AB①CD , ①①BEF+①EFD =180°, ①①BEF =180°﹣64°=116°; ①EG 平分①BEF , ①①GEB =58°. 故选:D .【题型】四、余角与补角的相关计算例4、如图,E 是直线CA 上一点,40FEA ∠=︒,射线EB 平分CEF ∠,GE EF ⊥.则GEB ∠=( )A .10︒B .20︒C .30D .40︒【答案】B 【提示】先根据射线EB 平分CEF ∠,得出①CEB=①BEF=70°,再根据GE EF ⊥,可得①GEB=①GEF -①BEF 即可得出答案. 【详解】 ①40FEA ∠=︒, ①①CEF=140°,①射线EB 平分CEF ∠, ①①CEB=①BEF=70°, ①GE EF ⊥,①①GEB=①GEF -①BEF=90°-70°=20°, 故选:B .【题型】五、对顶角相等进行相关计算例5、如图,AB 和CD 相交于点O ,则下列结论正确的是( )A .①1=①2B .①2=①3C .①1>①4+①5D .①2<①5【答案】A【提示】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案. 【详解】解:由两直线相交,对顶角相等可知A 正确; 由三角形的一个外角等于它不相邻的两个内角的和可知 B 选项为①2>①3, C 选项为①1=①4+①5,D 选项为①2>①5. 故选:A .【题型】六、邻补角相等求角的度数例6、如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】B 【提示】已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数. 【详解】 ①OE CD ⊥ ①90COE ∠=︒ ①40BOE ∠=︒①180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒ 故选:B【题型】七、平行线的判定例7、如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ①b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 【答案】B【提示】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:①由题意a①AB ,b①AB , ①①1=①2 ①a①b所以本题利用的是:同一平面内,垂直于同一条直线的两条直线平行, 故选:B .【题型】八、平行线的应用例8、如图,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若64EFG ∠=︒,则EGD ∠的大小是( )A .132︒B .128︒C .122︒D .112︒【答案】C【提示】利用平行线的性质求解FEB ∠,利用角平分线求解BEG ∠,再利用平行线的性质可得答案. 【详解】解://AB CD ,180,EFG FEB ∴∠+∠=︒ 64,EFG ∠=︒18064116,FEB ∴∠=︒-︒=︒EG 平分BEF ∠,58,FEG BEG ∴∠=∠=︒//AB CD180,BEG EGD ∴∠+∠=︒ 18058122.EGD ∴∠=︒-︒=︒故选C.【题型】九、求平行线间的距离例9、设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD 的距离是5cm,则AB与EF的距离等于_____cm.【答案】7或17.【提示】分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论.【详解】解:分两种情况:①当EF在AB,CD之间时,如图:①AB与CD的距离是12cm,EF与CD的距离是5cm,①EF与AB的距离为12﹣5=7(cm).①当EF在AB,CD同侧时,如图:①AB与CD的距离是12cm,EF与CD的距离是5cm,①EF与AB的距离为12+5=17(cm).综上所述,EF与AB的距离为7cm或17cm.故答案为:7或17.图形的初步认识(达标训练)一、单选题1.如图所示,下列条件中能说明a b ∥的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=︒D .14180∠+∠=︒【答案】B【分析】利用平行线的判定定理对各选项进行分析即可.【详解】解:A .当①1=①2时,不能判定a ①b ,故选项不符合题意; B .当①3=①4时,①3与①4属于同位角,能判定a ①b ,故选项符合题意;C .当①2+①4=180°时,①2与①4属于同旁内角,能判定c ①d ,故选项不符合题意;D .当①1+①4=180°时,不能判定a ①b ,故选项不符合题意; 故选:B .【点睛】此题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用. 2.如图,a b ∥,143∠=︒,则2∠的度数是( )A .137°B .53°C .47°D .43°【答案】D【分析】根据两直线平行,同位角相等即可得. 【详解】解:1,43a b ∠=︒,2143∴∠=∠=︒,故选:D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键. 3.如图,若AB CD ,CD EF ,那么①BCE =( )A .180°-①2+①1B .180°-①1-①2C .①2=2①1D .①1+①2【答案】A【分析】先利用平行线的性质说明①3、①1、①4、①2间关系,再利用角的和差关系求出①BCE . 【详解】解:如图,①AB CD ,CD EF , ①①1=①3,①2+①4=180°, ①①4=180°-①2,①①BCE =①4+①3=180°﹣①2+①1. 故选:A .【点睛】本题主要考查了平行线的性质,掌握“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解决本题的关键.4.如图,AB CD ∥,GH 平分AGF ∠,166∠=︒,则2∠的度数为( )A .114︒B .66︒C .75︒D .57︒【答案】D【分析】根据平行的性质可得①1=①BGF ,则可求出①AGF ,再根据HG 平分①AGF ,即可求出①2. 【详解】①AB CD ∥,①1=66°, ①①1=①BGF =66°,①①AGF =180°-①BGF =180°-66°=114°, ①HG 平分①AGF ,①①2=12①AGF =114°×12=57°, 故选:D .【点睛】本题考查了平行线的性质、角平分线的性质,根据平行线的性质得到①1=①BGF 是解答本题的关键.5.如图,AB CD ,140CDE ∠=︒,则A ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】A【分析】根据补角的定义,两直线平行内错角相等,计算求值即可; 【详解】解:①AB ①CD , ①①A =①CDA ,①①CDA =180°-①CDE =180°-140°=40°, ①①A =40°, 故选:A .【点睛】本题考查了相交线和平行线,掌握平行线的性质是解题关键. 6.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .75︒B .105︒C .120︒D .135︒【答案】B【分析】利用直角三角形的两锐角互余先求出2∠和3∠的度数,再根据平角的定义求出4∠的度数,最后由平行线的性质即可得出答案. 【详解】解:如图, ①2906030∠=︒-︒=︒,3904545∠=︒-︒=︒,①41803045105∠=︒-︒-︒=︒, ①a b ∥,①14105∠=∠=︒. 故选:B .【点睛】本题考查平行线的性质,直角三角形的两锐角互余,平角的定义.关键是根据两直线平行,同位角相等进行解答.二、填空题7.如图,直线a b ∥,则1 的度数为______.【答案】30°##30度【分析】根据两直线平行,内错角相等,即可求解. 【详解】解:①a b ∥, ①①1=30°. 故答案为:30°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,内错角相等是解题的关键. 8.如图,AB ①CD ,点E 在CA 的延长线上.若①BAE =50°,则①ACD 的大小为 _____.【答案】130°##130度【分析】延长DC ,根据平行线的性质得①ECF =①BAE =50°,即可得. 【详解】解:如图所示,延长DC ,,①AB ①CD ,①①ECF =①BAE =50°,①①ACD =180°﹣①ECF =180°﹣50°=130°. 故答案为:130°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质“两直线平行,同位角相等”.三、解答题9.已知,ABC ∠和DEF ∠中,AB DE ∥,BC EF ∥.试探究:(1)如图1,B 与E ∠的关系是______,并说明理由; (2)如图2,写出B 与E ∠的关系,并说明理由; (3)根据上述探究,请归纳得到一个真命题. 【答案】(1)B E ∠=∠,理由见解析 (2)180B E ∠+∠=︒,理由见解析(3)如果两个角的两边分别平行,那么这两个角相等或者互补【分析】(1)根据平行线的性质得出①B =①1,①1 =①E ,即可得出答案; (2)根据平行线的性质得出①B +①1 = 180°,①1=①E ,即可得出答案;(3)根据(1) (2)可推出,如果两个角的两边分别平行,那么这两个角相等或者互补. (1)解:B E ∠=∠,理由如下: 如下图,①AB ①DE , ①①B =①1, 又①BC ①EF , ①①1=①E , ①①B =①E ;故答案为:B E ∠=∠; (2)解:180B E ∠+∠=︒,理由如下: 如下图,①AB ①DE , ①①B +①1=180°, 又①BC ①EF , ①①E =①1, ①①B +①E =180°故答案为:180B E ∠+∠=︒; (3)解:由题意得:如果两个角的两边分别平行,那么这两个角相等或者互补.【点睛】本题主要考查平行线的性质、命题与证明,熟练掌握平行线的性质是解题的关键.图形的初步认识(提升测评)一、单选题1.如图,直线12l l ∥,等腰直角ABC 的两个顶点A 、B 分别落在直线1l 、2l 上,90ACB ∠=︒,若118∠=︒,则2∠的度数是( )A .35︒B .30C .27︒D .20︒【答案】C【分析】根据等腰直角三角形的性质可得45CAB ∠=︒,根据平行线的性质可得23∠∠=,进而可得答案.【详解】解:如图标记①3,ABC ∆是等腰直角三角形, 45CAB ∴∠=︒,12//l l ,23∴∠=∠, 118∠=︒,2451827∴∠=︒-︒=︒,故选:C .【点睛】此题主要考查了平行线的性质,等腰直角三角形的性质,解题的关键是掌握两直线平行,内错角相等,等腰直角三角形的性质.2.如图,ABD ∠为ABC ∆的外角,BE 平分ABD ∠,EB ∥AC ,65A ∠=︒,则EBD ∠的度数为( )A .50︒B .65︒C .115︒D .130︒【答案】B【分析】根据平行线的性质,得到65A EBA ∠=∠=︒,再根据BE 平分ABD ∠,即可得到EBD ∠的度数. 【详解】解:①EB ∥AC ,65A ∠=︒,65EBA ∴∠=︒,又BE 平分ABD ∠,65EBD EBA ∴∠=∠=︒,故选:B .【点睛】此题考查了平行线的性质:两直线平行内错角相等,以及角平分线的定义,熟记平行线的性质是解题的关键.3.如图,AB CD ∥,EF 交AB 、CD 于点E 、F ,FG 平分EFD ∠,若=70AEF ∠︒,则EGF ∠的度数为( )A .70︒B .35︒C .50︒D .55︒【答案】B【分析】根据平行线的性质,求出EFD ∠的度数,再根据角平分线的定义求出GFD ∠的度数,再由平行线的性质得出结论即可. 【详解】解:AB CD ,①==70AEF EFD ∠∠︒FG 平分EFD ∠交AB 于点G ,①11==?70=3522GFD EFD ∠∠︒︒AB CD ,==35∠∠︒EGF GFD故选:B.【点睛】本题考查平行线的性质:两直线平行,内错角相等,熟练掌握该性质是解决本题的关键.4.将一副直角三角尺按如图所示放置(其中①GEF=①GFE=45°,①H=60°,①EFH=30°),满足点E在AB上,点F在CD上,AB①CD,①AEG=20°,则①HFD的大小是()A.70°B.40°C.35D.65°【答案】C【分析】由角的和差可求解①AEF的度数,结合平行线的性质可求解①EFD的度数,利用三角形的内角和定理可求解①EFH的度数,进而可求解.【详解】解:①①AEG=20°,①GEF=45°,①①AEF=20°+45°=65°,①AB①CD,①①EFD=①AEF=65°,①①EFH=30°,①①HFD=65°﹣30°=35°.故选:C.【点睛】本题主要考查平行线的性质,求解①EFD的度数是解题的关键.5.如图,已知直线a,b,c,d中,c a⊥,直线b,c,d交于一点,若236⊥,c b∠等∠=︒,则1于()A.34︒B.36︒C.56︒D.54︒【答案】D【分析】首先根据同一平面内垂直于同一条直线的两条直线平行,得出a,b互相平行,再运用平行线的性质,得出13∠=∠,再根据平角定义,可得出2390∠+∠=︒,结合已知可求出1∠的度数. 【详解】如图,①c a ⊥,c b ⊥, ①a b ∥ ①13∠=∠ ①c b ⊥ ①490∠=︒①234180∠+∠+∠=︒, ①2390∠+∠=︒, ①1290∠+∠=︒ ①236∠=︒①190254∠=︒-∠=︒. 故选:D【点睛】本题主要考查了平行线的性质与判定,垂直定义和平角定义,熟练掌握平行线的性质与判定是解本题的关键.二、填空题6.已知12l l ∥,一个含有30角的三角尺按照如图所示的位置摆放,若165∠=︒,则2∠=__________度.【答案】25【分析】先利用平行线的性质得出13∠=∠,24∠∠=,最后利用直角三角形的性质即可.【详解】解:如图,过直角顶点作直线1//l l ,12//l l ,12////l l l ∴,13∠∠∴=,24∠∠=, 3490∠+∠=︒,2190∴∠+∠=︒,又165︒∠=,2906525∴∠=︒-︒=︒.故答案为:25.【点睛】此题主要考查了平行线的性质,三角板的特征,解题的关键是作出辅助线,是一道基础题目. 7.如图所示,AB CD ∥,点E 在CD 上,BE DF ⊥,垂足为B ,已知34BED ∠=︒,则ABF ∠的度数为________.【答案】56°【分析】先根据平行线的性质求出①ABE 的度数,然后根据角的和差关系求①ABF 度数即可. 【详解】解:①AB CD ∥, ①①ABE =①BED =34°, ①BE DF ⊥,即①EBF =90°, ①①ABF =①EBF -①ABE =90°-34°=56°. 故答案为:56°.【点睛】本题考查了平行线的性质,角的和差与垂直的定义,解题的关键是根据平行线的性质求出①ABE 的度数.三、解答题8.(1)课题研究:“尺规作图:过直线外一点作这条直线的平行线”.做法一:①以B为圆心,任意长为半径作弧,分别交AB,BC于点E,F;①以C为圆心,BE长为半径作弧,交BC的延长线于点M;①再以M为圆心,EF长为半径作弧,与前弧交于点N;①连接CN,则CN AB∥.做法二:①以A为圆心,BC长为半径作弧;①以C为圆心,AB长为半径作弧;两弧交于点D,连接CD;则CD AB∥.请根据以上作法,写出这两种方法用到的数学定理或基本事实:(各写出一个即可)做法一:____________________________________做法二:____________________________________(2)如图,ABCD中,DE BF,请你再加一个条件,使四边形AECF为菱形,并证明.【答案】(1)做法一:同位角相等,两直线平行做法二:两组对边分别相等的四边形是平行四边形(2)AF=FC,见解析【分析】(1)利用平行线的判定定理,平行四边形的判定定理即可.(2)根据平行四边形的性质,菱形的判定定理解答即可.【详解】(1)做法一:同位角相等,两直线平行.做法二:两组对边分别相等的四边形是平行四边形.(2)添加条件:AF=FC,理由如下:① 四边形ABCD是平行四边形,①AB=CD,AB∥CD,①DE=BF,①EC=AF,AF∥CE,①四边形AFCE是平行四边形,① FC=AF,①四边形AFCE是菱形.【点睛】本题考查了平行线的判定,平行四边形的判定,菱形的判定,熟练掌握各种判定定理是解题的关键.。
几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题1】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3.已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、展开图4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【答案】 A .类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).【答案】A【典型例题2】类型一、几何图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面是平面或曲面来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、从不同方向看2.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】如图所示的几何体中,主视图与左视图不相同的几何体是( ).【答案】D提示:圆锥的主视图与左视图为相同的三角形;圆柱的主视图与左视图为相同的矩形;球的主视图与左视图为相同的圆,正三棱柱的主视图和左视图为不相同的两个矩形,故选D.3.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.【答案】B【解析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,2,3个正方形.【总结升华】本题考查了对几何体三种视图的空间想象能力,注意找到该几何体的主视图中每列小正方体最多的个数.举一反三:【变式1】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?【答案】几何体的形状不唯一,最少需要小方块的个数:3222110++++=,最多需要小方块的个数:3323116⨯+⨯+=.【变式2】下图是从正面、左面、上面看由若干个小积木搭成的几何体得到的图,那么这个几何体中小积木共有多少个?【答案】这个几何体中小积木共有6个.类型三、展开图4.右下图是一个正方体的表面展开图,则这个正方体是( )【答案】D【解析】最直接的方法是做一个如图所示的正方体的表面展开图,然后再折叠后进行对照即可.也可用排除法,观察正方体的表面展开图,可发现分成4块的面中的4个小正方形中有3块的颜色是阴影,这就可排除A,再想象折叠的图形,可知正方体被分成4块的面的对面应是阴影,这就可排除B 、C,所以选D.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.正方体沿着棱展开,把各种展开图分类,可以总结为如下11种情况.主视图俯视图举一反三:【变式】宜黄素有“华南虎之乡”的美誉.将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”相对的字是________.【答案】“美”.类型四、点、线、面、体5.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.【思路点拨】(1)根据图形可得侧面的个数,再加上上下底面即可;(2)顶点共有10个,棱有5×3条;(3)根据五棱柱顶点数、面数与棱的条数进行总结即可.【答案与解析】解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.【总结升华】此题主要考查了认识立体图形,关键是掌握常见的立体图形的形状.6.将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同 B.左视图相同 C.俯视图相同 D.三种视图都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体的三视图做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(2015春•海安县校级期中)将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的()A.B.C.D.【答案】C二、直线、射线、线段基础知识讲解【学习目标】1.理解直线、射线、线段的概念,掌握它们的区别和联系;2. 利用直线、线段的性质解决相关实际问题;3.利用线段的和差倍分解决相关计算问题.【要点梳理】要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A,B两点所连的线中,线段AB的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C是线段AB的中点,则12AC CB AB==,或AB=2AC=2BC.图6要点诠释:若点C 是线段AB 的中点,则点C 一定在线段AB 上. 要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l 上点O 和它一旁的部分是一条射线,点O 是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA .(2)也可以用一个小写英文字母表示,如图8所示,射线OA 可记为射线l . 要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA ,射线OB 是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA 、射线OB 、射线OC 都表示同一条射线.要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表图7 图8 图9 图10要点诠释:(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.【典型例题】类型一、相关概念1.下列说法中,正确的是( )A.射线OA与射线AO是同一条射线B.线段AB与线段BA是同一条线段C.过一点只能画一条直线D.三条直线两两相交,必有三个交点【答案】B【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是()A.延长线段AB到C B.延长射线ABC.直线AB的端点之一是A D.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【答案】解:【变式2】用直尺作图:P 是直线a 外一点,过点P 有一条线段b 与直线a 不相交. 【答案】 解:类型三、有关条数及长度的计算3.如图,A 、B 、C 、D 为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出 条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数. 【答案】6条直线【解析】由两点确定一条直线知,点A 与B,C,D 三点各确定一条直线,同理点B 与C 、D 各确定一条直线,C 与D 确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有n 个点,其中任意三点不在一条直线上,则最多确定的直线条数为:(1)123...(1)2n n n -++++-=. 举一反三:【变式1】如图所示,已知线段AB 上有三个定点C 、D 、E . (1)图中共有几条线段?(2)如果在线段CD 上增加一点,则增加了几条线段?你能从中发现什么规律吗? 【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD 上增加一点P ,则P 与其它五个点各组成一条线段,因此,增加了5条线段.(注解:若在线段AB 上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB 上增加到n 个点(即增加n -2个点)时,线段的总条数为1+2+……+(n -1)=21n(n -1) .) 【变式2】)如图直线m 上有4个点A 、B 、C 、D ,则图中共有________条射线.【答案】84.(2016春•启东市月考)已知点C 在线段AB 上,线段AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,求MN 的长度. 【思路点拨】根据M 、N 分别为AC 、BC 的中点,根据AC 、BC 的长求出MC 与CN 的长,由MC+CN 求出MN 的长即可. 【答案与解析】解:∵AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点, ∴MC=AC=3.5cm ,CN=BC=2.5cm , 则MN=MC+CN=3.5+2.5=6(cm ).【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.举一反三:【变式】在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.【答案】解:依题意,设AB =2x cm ,那么BC =3x cm ,CD =4x cm .则有: MN=BM+BC+CN= x+3x+2x=15 解得:52x =所以AB=2x =5252⨯=cm. 类型四、最短问题5.(2015•新疆)如图所示,某同学的家在A 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【答案】B.【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.【典型例题】类型一、有关概念1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.【答案与解析】解:直线有一条:直线AD;射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;线段有三条:线段BC、线段BE、线段CE.【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点. 这是为什么?画图说明.【答案】解:∵过两点有且只有一条直线.(或两点确定一条直线.)∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.类型二、有关作图2.(2016春•高青县期中)已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.【思路点拨】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC方向延长交AD于点O;(3)连接各点,其交点即为点F.【答案与解析】解:如图所示:【总结升华】本题主要考查直线、射线、线段的认识,掌握直线、射线、线段的特点是解题的关键. 举一反三:【变式1】下列说法正确的有 ( )①射线与其反向延长线成一条直线; ②直线a 、b 相交于点m ; ③两直线相交于两个交点; ④直线A 与直线B 相交于点MA .3个B .2个C .1个D .4个 【答案】 C【变式2】下列说法中,正确的个数有( )①已知线段a ,b 且a-b =c ,则c 的值不是正的就是负的; ②已知平面内的任意三点A ,B ,C 则AB+BC ≥AC ; ③延长AB 到C ,使BC =AB ,则AC =2AB ;④直线上的顺次三点D 、E 、F ,则DE+EF =DF . A .1个 B .2个 C .3个 D .4个 【答案】C类型三、个(条)数或长度的计算3. 根据题意,完成下列填空.如图所示,1l 与2l 是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线3l ,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线4l ,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n 为大于1的整数)条直线最多可有________个交点(用含有n 的代数式表示).【答案】3, 6, 15,(1)2n n -. 【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.【总结升华】n(n 为大于1的整数)条直线的交点最多可有:(1)123...(1)2n n n -++++-=个 举一反三:【变式1】平面上有n 个点,最多可以确定 条直线 【答案】(1)2n n -【变式2】一条直线有n个点,最多可以确定条线段,条射线【答案】(1)2n n-,2n【变式3】一个平面内有三条直线,会出现几个交点?【答案】0个,1个,2个,或3个.4.已知线段AB=14cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长.【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM的长.【答案与解析】解:①当点C在线段AB上时,如图所示.因为M是线段AC的中点,所以12AM AC=.又因为AC=AB-BC,AB=14cm,BC=4cm,所以1()2AM AB BC=-1(144)5(cm)2=-=.②当点C在线段AB的延长线上时,如图所示.因为M是线段AC的中点,所以12AM AC=.又因为AC=AB+BC,AB=14cm,BC=4cm,所以1()2AM AB BC=+=9(cm).所以线段AM的长为5cm或9cm.【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.举一反三:【变式】(2015秋•泰安校级月考)已知A,B,C为直线l上的三点,线段AB=9cm,BC=1cm,那么A,C两点间的距离是.【答案】8cm或10cm.解:分两种情况:①如图1,点C在线段AB上,则AC=AB﹣BC=9﹣1=8(cm);②如图2,点C在线段AB的延长线上,AC=AB+BC=9+1=10( cm).故答案为:8cm或10cm.。
中考数学复习考点:图形的初步认识中考数学温习考点:图形的初步看法考纲要求:1.了解直线、线段、射线的相关性质以及线段中点、线段的和、差和两点间距离的意义.2.了解角的有关概念,熟练停止角的运算.3.了解补角、余角、对顶角、垂线、垂线段等概念及性质.4.会识别同位角、内错角和同旁内角,掌握相交线与平行线的定义,熟练运用垂线的性质,平行线的性质和判定.命题趋向:中考中,对这局部外容命题的难度较小,主要以选择题、填空题的方式出现,重点考察互为余角、互为补角的角的性质、平行线的性质与判定的运用.知识梳理一、直线、射线、线段1.直线的基本性质(1)两条直线相交,只要________交点.(2)经过两点有且只要一条直线,即:两点确定一条__________________.2.线段的性质一切衔接两点的线中,线段最短,即:两点之间______最短.3.线段的中点把一条线段分红两条________线段的点,叫做这条线段的中点.4.直线、射线、线段的区别与联络有几个端点向几个方向延伸表示图形直线2两个大写字母或一个小写字母射线11两个大写字母线段2两个大写字母或一个小写字母二、角的有关概念及性质1.角的有关概念角是由一条射线绕着它的端点旋转而成的图形.射线端点叫做角的顶点,两条射线是角的两边.从一个角的顶点引出的一条射线,把这个角分红两个相等的角,这条射线就叫做这个角的________.2.角的单位与换算1=60,1=60,1周角=2平角=4直角.3.余角与补角假设两个角的和等于________,就说这两个角互为余角;假设两个角的和等于______,就说这两个角互为补角.同角(或等角)的余角________;同角(或等角)的补角______.4.对顶角与邻补角在两条相交直线构成的四个角中,假设两个角有公共顶点,一个角的两边区分是另一个角两边的反向延伸线,这样的两个角称为对顶角.假设两个角有公共顶点,有一条公共边,它们的另一边互为反向延伸线,这样的两个角为邻补角.对顶角________,邻补角________.三、垂线的性质与判定1.垂线及其性质垂线:两条直线相交所构成的四个角中有一个角是__________,那么这两条直线相互垂直,其中一条直线叫做另一条直线的垂线.性质:(1)过一点有且只要一条直线与直线垂直;(2)直线外一点与直线上各点衔接的一切线段中,垂线段最短.(简说成:垂线段最短)2.点到直线的距离直线外一点到这条直线的________的长度,叫做点到直线的距离.3.判定假定两条直线相交且有一个角为直角,那么这两条直线相互垂直.四、平行线的性质与判定1.概念在同一平面内,不相交的两条直线,叫做平行线.2.平行公理经过直线外一点,有且只要一条直线与直线平行.3.性质假设两条直线平行,那么同位角相等,内错角相等,同旁内角互补.4.判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;在同一平面内垂直于同不时线的两直线________,平行于同不时线的两直线______.。
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)三视图:正视图--------------从正面看几何体的三视图左视图--------------从侧边看俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②三视图的画法原则:高平齐宽相等长对正.③能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系:几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
15 图形的初步认识考点总结【思维导图】【知识要点】知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.2.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.【答案】B【解析】试题解析:A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,可得B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中,有一个圆,故D选项错误.故选B.3.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【答案】B【解析】根据三棱柱的展开图的特点进行解答即可:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误。
故选B。
4.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】解:观察图形可知,这个几何体是三棱柱.故选:A.5.下列几何体中,是圆柱的为()A.B.C.D.【答案】A【解析】A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.题型一判断被截几何体截面的形状例1.在下列几何体中,截面不是等腰梯形的是()A.圆台B.圆柱C.正方体D.三棱柱【答案】B【解析】A、根据圆台的定义,即以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.那么它的截面一定是等腰梯形,故本选项不符合;B、根据圆柱的定义,即以矩形的一边所在的直线为旋转轴旋转而成,则它的截面一定是矩形,故本选项符合;C、正方体的截面可能是三角形、四边形、五边形、六边形,四边形中可能是等腰梯形,故本选项不符合;D、三棱柱的截面可能是等腰梯形,故本选项不符合,故选B.跟踪训练一1.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥【答案】D【解析】用平面去截圆锥,截面的形状是不可能长方形,故选D.2.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【答案】D【解析】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯放倒可得到C选项的形状,不能得到三角形的形状,故选.3.一个四棱柱被一刀切去一部分,剩下的部分可能是()A.四棱柱B.三棱柱C.五棱柱D.以上都有可能【答案】D【解析】三棱柱、四棱柱、五棱柱都有可能.故选D4.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【答案】B【解析】①正方体的截面是三角形时,为锐角三角形,正确;②正四面体的截面不可能是直角三角形,不正确;③正方体的截面与一组平行的对面相交,截面是等腰梯形,不正确;④若正四面体的截面是梯形,则一定是等腰梯形,正确.故选:B.三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
2.过三个已知点不一定能画出直线。
当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。
⏹比较线段长短画线段的方法:(1)度量法;(2)用尺规作图法线段的大小比较方法:方法一:度量法分别用刻度尺测量线段AB、线段CD的长度,再进行比较方法二:叠加法让线段某一段端点重合,比较另一边两端点的位置。
线段中点:把一条线段分成两条相等的线段的点叫线段中点;⏹实际问题依据:两点之间线段最短。
两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。
注意:它是线段的长度,是数量,是非负数。
考点知识三角角的概念:由公共端点的两条射线所组成的图形叫做角(静态)。
角也可以看做由一条射线绕着它的端点旋转而形成的图(动态)。
角的分类:角的表示法(四种):(1)角可以用三个大写字母表示,但表示顶点的字母一定要写在中间.(2)用一个字母表示角, 必须是以这个字母为顶点的角,而且只有一个.(3)用一个数字表示角,在靠近顶点处画上弧线,写上数字.(4)用一个希腊字母表示,在靠近顶点处画上弧线,写上希腊字母.角的度量:1°=60′;1′=60″;1直角=90°;1平角=180 °;1周角=360°角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法,分别用量角器测量两个角的大小,再进行比较。
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
互余与互补:余角概念:如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;补角概念:如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;性质:等角的余角相等,等角的补角相等。
时针和分针所成的角度:钟表一周为360°,每一个大格为30°,每一个小格为6°.(每小时,时针转过30°,即一个大格,分针转过360°,即一周;每分钟,分针转过6°即一个小格)【考点题型】考点题型一几何体的展开图【解题思路】考查正方体的展开图,理解和掌握正方体的展开图的11种不同情况,是正确判断的前提.典例1.(2021·江西中考真题)如图所示,正方体的展开图为()A.B.C.D.【答案】A【提示】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.变式1-1.(2021·四川绵阳市·中考真题)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【答案】D【提示】根据正方体的展开图的11种不同情况进行判断即可.【详解】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.变式1-2.(2021·黑龙江大庆市·中考真题)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1 B.2 C.3 D.4【答案】B【提示】正方体的表面展开图,相对的面之间一定相隔一个正方形,先判断中间四个面的情况,根据这一特点可得到答案.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以:1,6是相对面,3,4是相对面,所以:5,2是相对面.故选B.变式1-3.(2021·甘肃天水市·中考真题)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【答案】D【提示】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】解:在原正方体中,与“扬”字所在面相对面上的汉字是“羲”,与“伏”字所在面相对面上的汉字是“化”,与“弘”字所在面相对面上的汉字是“文”.故选:D.考点题型二线段的中点【解题思路】考查线段之间的关系,解题的关键是熟知线段的和差关系.典例2.(2021·四川凉山彝族自治州·)点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm ,则线段BD 的长为()A .10cmB .8cmC .8cm 或10cmD .2cm 或4cm【答案】C【提示】根据题意作图,由线段之间的关系即可求解.【详解】如图,∵点C 是线段AB 的中点,∴AC=BC=12AB=6cm 当AD=23AC=4cm 时,CD=AC-AD=2cm ∴BD=BC+CD=6+2=8cm ;当AD=13AC=2cm 时,CD=AC-AD=4cm ∴BD=BC+CD=6+4=10cm ;故选C .变式2-1.(2021·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2021的中点A 2021.则点A 2021表示的数为__________.【答案】201912【提示】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112= 点2A 表示的数为11111222OA == 点3A 表示的数为22111242OA == 点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-= 故答案为:201912.变式2-2.(2021·山东中考真题)如图,已知AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .【答案】1【提示】先根据中点定义求BC 的长,再利用线段的差求CD 的长.【详解】解:∵C 为AB 的中点,AB =8cm ,∴BC =12AB =12×8=4(cm ),∵BD =3cm ,∴CD =BC ﹣BD =4﹣3=1(cm ),则CD 的长为1cm ;故答案为:1.考点题型三 最短距离问题典例3.(2021·江苏南京市·中考真题)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线A B '与直线l 的交点C 的位置即为所求,即在点C 处建气站,所得路线ACB 是最短的,为了让明点C 的位置即为所求,不妨在l 直线上另外任取一点C ',连接AC ',BC ',证明AC CB AC C B ''+<+,请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),①生市保护区是正方形区城,位置如图③所示②生态保护区是圆形区域,位置如图④所示.【答案】(1)证明见解析;(2)①见解析,②见解析【提示】'=,利用三角形的三边关系,即可(1)连接A C',利用垂直平分线的性质,得到A C CA得到答案;(2)由(1)可知,在点C处建燃气站,铺设管道的路线最短.分别对①、②的道路进行设计提示,即可求出最短的路线图.【详解】(1)证明:如图,连接A C'∵点A、A'关于l对称,点C在l上'=,∴A C CA∴''+=+=,CA CB A C CB A B同理'''''AC C B A C C B +=+,在'A C B '∆中,有'''A B A C C B '<+∴''AC CB AC C B +<+;(2)解:①在点C 处建燃气站,铺设管道的最短路线是AC+CD+DB (如图,其中D 是正方形的顶点).②在点C 处建燃气站,铺设管道的最短路线是AC CD DE EB +++(如图,其中CD 、BE 都与圆相切).考点题型四钟面角【解题思路】.了解钟面特点是关键.典例4.(2021·广西梧州市·中考真题)如图,钟表上10点整时,时针与分针所成的角是()A.30B.60︒C.90︒D.120︒【答案】B【提示】根据钟面分成12个大格,每格的度数为30°即可解答.【详解】解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°故选B.变式4-1.(2021·浙江杭州市·七年级其他模拟)在3:30、6:40、9:00、12:20中,时针和分针所成的角度最大的是()A.3:30 B.6:40 C.9:00 D.12:20【答案】D【提示】根据时针的旋转角减去分针的旋转角,可得答案.【详解】解:A、3:30时时针与分针的夹角是19030752︒-⨯︒=︒,B、6:40时时针与分针的夹角是40302304060︒⨯-︒⨯=︒,C、9:00时时针与分针的夹角是90°,D、12:20时时针与分针的夹角是20 3043011060︒⨯-︒⨯=︒,所以时针和分针所成的角度最大的是12:20,故选:D.【点睛】本题考查了钟面角,利用了时针与分针的夹角是时针的旋转角减去分针的旋转角.变式4-2.(2018·山东德州市·中考模拟)在下列时间段内时钟的时针和分针会出现重合的是()A.5:20-5:26 B.5:26-5:27 C.5:27-5:28 D.5:28-5:29【答案】C【解析】提示:解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关系.每一小时,分针转动360°,而时针转动30°,依据这一关系列出方程,可以求出.详解:设:从5:20开始,经过x分钟,时针和分针会出现重合。