完整word版几何图形初步全国中考真题及答案
- 格式:docx
- 大小:244.75 KB
- 文档页数:12
初三数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两边相等B. 两边的夹角为90°C. 两边的夹角为60°D. 三边相等答案:B2. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 25答案:A3. 一个矩形的长是宽的两倍,如果宽是4厘米,那么矩形的面积是多少平方厘米?A. 16B. 32C. 64D. 128答案:B4. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么它的高是多少厘米?A. 4B. 5C. 6D. 7答案:A5. 一个正方体的体积是27立方厘米,那么它的表面积是多少平方厘米?A. 54B. 108C. 216D. 486答案:A6. 一个圆的周长是2πr,那么它的面积是多少?A. πrB. πr²C. 2πr²D. 4πr²答案:B7. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 8D. 9答案:A8. 一个平行四边形的对角线互相垂直且相等,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:B9. 一个三角形的三个内角分别是40°、50°和90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B10. 一个圆的面积是π,那么它的半径是多少?A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)1. 如果一个圆的直径是8厘米,那么它的半径是______厘米。
答案:42. 一个三角形的三个内角之和是______度。
答案:1803. 一个矩形的长是10厘米,宽是5厘米,那么它的对角线长度是______厘米。
答案:134. 如果一个等腰三角形的顶角是80°,那么它的底角是______度。
答案:505. 一个正五边形的内角和是______度。
中考数学总复习《图形初步综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。
1.如图,是一个正方体的一种展开图,那么在正方体的表面与“力”相对的汉字是()A.我B.要C.学D.习2.已知∠A=38°,则∠A的补角的度数是()A.52°B.62°C.142°D.162°3.下列四个图中能表示线段x=a+c﹣b的是()A.B.C.D.4.若钝角∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系满足()A.∠1﹣∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠35.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°6.已知直线a∥b,将一块含60°角的直角三角板按如图方式放置,其中60°角的顶点在直线a上,30°角的顶点在直线b上,若∠1=40°,则∠2的度数是()A.30°B.40°C.50°D.60°7.如图,直线AB∥CD,点E是平行线外一点,连接AE,CE,若∠A=22°,∠C=50°,则∠E的度数是()A.22°B.24°C.26°D.28°8.如图,点B在点A的北偏西50°方向,点C在点B的正东方向,且点C到点B与点A到点B的距离相等,则点A相对于点C的位置是()A.北偏东25°B.北偏东20°C.南偏西25°D.南偏西20°9.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°10.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG =2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本题共6题,每小题2分,共12分)。
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.3.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.【答案】(1)16;8(2)解:设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x= ,∴CO=(3)48【解析】【解答】解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t= 或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.4.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.5.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.【答案】(1)证明:∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB(2)解:∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH平分∠EFG,∴∠GFH= ∠GFE=55°,∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°【解析】【分析】(1)根据二直线平行,同位角相等得出,又∠1=∠2,故∠1=∠3,根据同位角相等,两直线平行得出DC∥AB;(2)根据平行于同一直线的两条直线互相平行得出AB∥FP,根据二直线平行,内错角相等得出,,根据角的和差,由算出∠GFE的度数,根据角平分线的定义得出∠GFH的度数,最后根据即可算出答案。
中考数学总复习《几何图形初步》专项测试卷-带有参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.已知A,B两地的位置如图所示,且∠BAC=150∘,那么下列语句正确的是( )A.A地在B地的北偏东60∘方向B.A地在B地的北偏东30∘方向C.B地在A地的北偏东60∘方向D.B地在A地的北偏东30∘方向2.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是A.∠1=∠3B.∠1=180∘−∠3C.∠1=90∘+∠3D.以上都不对3.如果A,B,C三点在同一直线上,且线段AB=6cm,BC=4cm若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cm B.1cm C.5或1cm D.无法确定4.如图,已知线段AB=10cm,M是AB中点,点N在AB上NB=2cm,那么线段MN的长为( )A.5cm B.4cm C.3cm D.2cm5.如图,若∠AOB是直角∠AOC=38∘,∠COD:∠COB=1:2则∠BOD等于( )A.38∘B.52∘C.26∘D.64∘6.下列图中是正方体的展开图的有( )A.1个B.2个C.3个D.4个7.如图,将甲乙丙丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是( )A.甲B.乙C.丙D.丁8.已知线段AB=10cm,PA+PB=20cm则下列说法正确的是( )A.点P一定在线段AB的延长线上B.点P一定在线段BA的延长线上C.点P一定不在线段AB上D.点P一定不在直线AB外二、填空题(共5题,共15分)9.请仿照示例在如下图写出下列射线表示的方位:例:射线OA表示的方向为:北偏西30∘.(1)射线OB表示的方向是(2)射线OC表示的方向是.注意:角必须以正北和正南方向作为基准,“北偏东60∘”不能说成“东偏北30∘”;“南偏西30∘”不能说成“西偏南60∘”.10.如图,已知OM平分∠AOB,ON平分∠BOC,∠AOB=90∘且∠BOC=30∘,则∠MON 的度数为度.11.如图,在数轴上点A表示数−3,点B表示数−1,点C表示数5.点A,B,C同时开始在数轴上运动,点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和每秒3个单位长度的速度向右运动,t s后,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC(1)AB=,BC=.(用含t的代数式表示)(2)经计算,3BC−AB为定值,这个定值是.12.如图,一个正方体由27个大小相同的小立方块搭成.现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.13.(1)如图①,射线OA,OB把∠POQ三等分,若图中所有小于平角的角的度数之和是300∘,则∠POQ的度数为°.(2)如图②,OM平分∠AOB,ON平分∠COD,∠MON=90∘∠BOC=26∘则∠AOD的度数为°.三、解答题(共3题,共45分)14.如图,点A,O,B在一条直线上∠AOC=80∘和∠COE=50∘,OD是∠AOC的平分线.(1) 求∠AOE和∠DOE的度数.(2) OE是∠COB的平分线吗?为什么?(3) 请直接写出∠COD的余角和补角.15.如图,直线AB,CD交于点O,∠AOE=4∠DOE∠AOE的余角比∠DOE小10∘(题中所说的角均是小于平角的角).(1) 求∠AOE的度数;(2) 请写出∠AOC在图中的所有补角;(3) 从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.16.如图,线段AB被点C,D分成2:4:7的三部分,M,N分别是AC,DB的中点,且MN=17cm,求AB的长.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】南偏东70∘;南偏西45∘10. 【答案】6011. 【答案】3t+2t+61612. 【答案】1613. 【答案】9015414. 【答案】(1) ∵∠AOC=80∘,∠COE=50∘∴∠AOE=∠AOC+∠COE=80∘+50∘=130∘.∵OD是的平分线×80∘=40∘.∴∠AOD=∠AOC=12∴∠DOE=∠AOE−∠AOD=130∘−40∘=90∘.(2) 结论:OE是∠COB的平分线.理由如下:∵∠BOE=180∘−∠AOE=180∘−130∘=50∘∠COE=50∘∴∠BOE=∠COE即OE是∠COB的平分线.(3) ∠COD的余角为:∠COE,∠BOE;补角为:∠BOD15. 【答案】(1) 设∠DOE=x,则∠AOE=4x∵∠AOE的余角比∠DOE小10∘∴90∘−4x=x−10∘∴x=20∘∴∠AOE=80∘.(2) ∠AOC在图中的所有补角是∠AOD,∠BOC和∠BOE.(3) ∵∠AOE=80∘∠DOE=20∘∴∠AOD=100∘∴∠AOC=80∘如答图①,当OP在CD的上方时设∠AOP=x∴∠DOP=100∘−x∵∠COP=∠AOE+∠DOP∴80∘+x=80∘+100∘−x∴x=50∘∴∠AOP=∠DOP=50∘∵∠BOD=∠AOC=80∘∴∠BOP=80∘+50∘=130∘.如答图②,当OP在CD的下方时设∠DOP=x∴∠BOP=80∘−x∵∠COP=∠AOE+∠DOP∠COB=∠AOD=100∘∴100∘+80∘−x=80∘+x∴x=50∘∴∠BOP=80∘−50∘=30∘.综上所述,∠BOP的度数为130∘或30∘.16. 【答案】由线段AB被点C,D分成2:4:7的三部分,可设AC=2k(k>0)则CD=4k BD=7k则AB=2k+4k+7k=13k.∵M,N分别是AC,DB的中点∴CM=12AC=k DN=12BD=72k.又∵MN=17cm,MN=MC+CD+DN ∴k+4k+72k=17解得k=2.∴AB=13k=26cm.。
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
(易错题精选)初中数学几何图形初步真题汇编及答案一、选择题1.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.考点:菱形的性质;轴对称-最短路线问题3.下列图形经过折叠不能围成棱柱的是().A.B.C.D.【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.4.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .【答案】D【解析】解:Rt △ACB 绕直角边AC 旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D .首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.5.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.6.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.7.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.8.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD是正方形B D∴、关于AC对称PB PD=∴PB PE PD PE DE∴+=+=2,3BE AE BE==Q6,8AE AB∴==226810DE∴=+=;故PB PE+的最小值是10,故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )A.B.C.D.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如果α∠和β∠互余,下列表β∠的补角的式子中:①180°-β∠,②90°+α∠,③2α∠+β∠,④2β∠+α∠,正确的有( )A .①②B .①②③C .①②④D .①②③④ 【答案】B【解析】【分析】根据互余的两角之和为90°,进行判断即可.【详解】∠β的补角=180°﹣∠β,故①正确;∵∠α和∠β互余,∴∠β=90°-∠α,∴∠β的补角=180°﹣∠β=180°﹣(90°-∠α)=90°+α∠,故②正确;∵∠α和∠β互余,∠α+∠β=90°,∴∠β的补角=180°﹣∠β=2(∠α+∠β)﹣∠β=2∠α+∠β,故③正确;∵∠α+∠β=90°,∴2∠β+∠α=90°+∠β,不是∠β的补角,故④错误.故正确的有①②③.故选B .【点睛】本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.15.用一副三角板(两块)画角,能画出的角的度数是( )A .145C oB .95C o C .115C oD .105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为: 45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,17.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A.102+B.26C.5 D.26【答案】B【解析】【分析】过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,根据勾股定理求出A B'的长即可.【详解】如图,过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,∵等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,∴AE=BE=1,∵P(0,3) ,∴A A´=4,∴A´E=5,∴22221526A B BE A E ''=+=+=,故选B.【点睛】 本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.18.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC ,∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )A .态B .度C .决D .切 【答案】A【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.20.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.。
几何图形初步共27道题一、单选题1.(2022·浙江绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°【答案】C【解析】【分析】 根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.2.(2021·浙江台州)小光准备从A 地去往B 地,打开导航、显示两地距离为37.7km ,但导航提供的三条可选路线长却分别为45km ,50km ,51km (如图).能解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【答案】A【解析】【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.3.(2021·浙江金华)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【解析】【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.4.(2020·浙江台州)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的相关知识直接找出主视图即可.【详解】主视图即从图中箭头方向看,得出答案为A,故答案选:A.【点睛】此题考查立体图形的三视图,理解定义是关键.5.(2022·浙江金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.6.(2021·浙江湖州)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【答案】A【解析】【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分EAD∠交CD于点F,FG AD∥交AE于点G,若1cos4B=,则FG的长是()A.3B.83C215D.52【答案】B【解析】【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∵AGP=∵B可得到cos∵AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB =BC =4,E 是BC 的中点,∵BE =2,又∵1cos 4B =, ∵BH =1,即H 是BE 的中点,∵AB =AE =4,又∵AF 是∵DAE 的角平分线,AD ∵FG ,∵∵F AG =∵AFG ,即AG =FG ,又∵PF ∵AD ,AP ∵DF ,∵PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∵PF ∵BC ,∵∵AGP =∵AEB =∵B , ∵cos∵AGP =12PG AG =22x x-=14, 解得x =83; 故选B .【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2021·浙江丽水)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD的长为( )A .259B .258C .157D .207【答案】D【解析】【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==, ∵222243AB AC BC +=+,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD ,∵BD BC DF AC =即534AD AD -=, 解得:AD =207, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.9.(2020·浙江湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【答案】D【解析】【分析】解答此题要熟悉中国和日本七巧板的结构,中国七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形;日本七巧板的结构:三个等腰直角三角形,一个直角梯形,一个等腰梯形,一个平行四边形,一个正方形,根据这些图形的性质便可解答.【详解】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.【点睛】此题是一道趣味性探索题,结合我国传统玩具七巧板,用七巧板来拼接图形,可以培养学生动手能力,展开学生的丰富想象力.10.(2020·浙江金华)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b,理由是()A .在同一平面内,垂直于同一条直线的两条直线平行B .在同一平面内,过一点有且仅有一条直线垂直于已知直线C .连接直线外一点与直线各点的所有直线中,垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行【答案】A【解析】【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:,,a AB b ab ⊥⊥∵a ∵b (在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A .【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.11.(2021·浙江金华)某同学的作业如下框,其中∵处填的依据是( ) 如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l . 再根据( ∵ ),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C【解析】【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∵3和∵4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∵34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.12.(2022·浙江台州)如图,已知190∠=︒,为保证两条铁轨平行,添加的下列条件中,正确的是( )A .290∠=︒B .390∠=︒C .490∠=︒D .590∠=︒【答案】C【解析】【分析】 根据平行线的判定方法进行判断即可.【详解】解:A.∵1与∵2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∵1与∵3与两条铁轨平行没有关系,故此选项不符合题意;C. ∵1与∵4是同位角,且∵1=∵4=90°,故两条铁轨平行,所以该选项正确;D. ∵1与∵5与两条铁轨平行没有关系,故此选项不符合题意;故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.13.(2022·浙江杭州)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∵C =20°,∵AEC =50°,则∵A =( )A.10°B.20°C.30°D.40°【答案】C【解析】【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∵C+∵D=∵AEC,∵∵D=∵AEC-∵C=50°-20°=30°,∥,∵AB CD∵∵A=∵D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.14.(2021·浙江台州)一把直尺与一块直角三角板按如图方式摆放,若∵1=47°,则∵2=()A.40°B.43°C.45°D.47°【答案】B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∵3147∠=∠=︒,∵490343∠=︒-∠=︒,∵2443∠=∠=︒,故选:B .【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.15.(2021·浙江杭州)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则( )A .PT PQ ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ ≤【答案】C【解析】【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q , PQ ∴是垂线段,即连接直线外的点P 与直线上各点的所有线段中距离最短,当点T 与点Q 重合时有PQ PT =,综上所述:PT PQ ≥,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.16.(2020·浙江衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【答案】D【解析】【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题17.(2022·浙江嘉兴)如图,在ABC中,∵ABC=90°,∵A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.23 【解析】【分析】 先求解33,,3ABAD 再利用线段的和差可得答案. 【详解】 解:由题意可得:1,15123,DE DC60,90,A ABC ∠=︒∠=︒ 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD23【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.18.(2021·浙江湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.21【解析】【分析】 根据裁剪和拼接的线段关系可知3CD =1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3份,∵133=∵3CD =在Rt ACD △中,根据勾股定理可得222AD CD AC =-=根据裁剪可知1BD CE ==, ∵21AB AD BD =-, 21.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.19.(2022·浙江金华)如图,木工用角尺的短边紧靠∵O 于点A ,长边与∵O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则∵O 的半径为_____cm .【答案】253##183【解析】【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ∵OB ,垂足为D ,利用勾股定理,在Rt∵AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ∵OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∵OB CB ⊥,∵90CBD BDA ACB ∠=∠=∠=︒,∵四边形ACBD 为矩形,∵8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt∵AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =, 即O 的半径为253cm . 故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r的方程,是解题的关键.20.(2020·浙江杭州)如图,AB∵CD,EF分别与AB,CD交于点B,F.若∵E=30°,∵EFC=130°,则∵A =_____.【答案】20°【解析】【分析】直接利用平行线的性质得出∵ABF=50°,进而利用三角形外角的性质得出答案.【详解】∵AB∵CD,∵∵ABF+∵EFC=180°,∵∵EFC=130°,∵∵ABF=50°,∵∵A+∵E=∵ABF=50°,∵E=30°,∵∵A=20°.故答案为:20°.【点睛】此题主要考查了平行线的性质以及三角形外角的性质,求出∵ABF=50°是解答此题的关键.三、解答题21.(2022·浙江温州)如图,BD是ABC的角平分线,DE BC∥,交AB于点E.(1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.【答案】(1)见解析(2)相等,见解析【解析】【分析】(1)利用角平分线的定义和平行线的性质可得结论;(2)利用平行线的性质可得ADE AED ∠=∠, 则AD= AE ,从而有CD = BE ,由(1) 得,EBD EDB ∠=∠,可知BE = DE ,等量代换即可.(1)证明:∵BD 是ABC 的角平分线,∵CBD EBD ∠=∠.∵DE BC ∥,∵CBD EDB ∠=∠,∵EBD EDB ∠=∠.(2)CD ED =.理由如下:∵AB AC =,∵C ABC ∠=∠.∵DE BC ∥,∵,ADE C AED ABC ∠=∠∠=∠,∵ADE AED ∠=∠,∵AD AE =,∵AC AD AB AE -=-,即CD BE =.由(1)得EBD EDB ∠=∠,∵BE ED =,∵CD ED =.【点睛】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.22.(2021·浙江绍兴)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变.∵当点E 与点F 重合时,求AB 的长;∵当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.【答案】(1)∵10;∵5;(2)13,23,2 【解析】【分析】(1)∵利用平行四边形的性质和角平分线的定义先分别求出5DE AD ==,5BC CF ==,即可完成求解; ∵证明出EF CD =即可完成求解;(2)本小题由于E 、F 点的位置不确定,故应先分情况讨论,再根据每种情况,利用 DE AD =,CF CB =以及点 C ,D ,E ,F 相邻两点间的距离相等建立相等关系求解即可.【详解】(1)∵如图1,四边形ABCD 是平行四边形,//AB CD ∴,DEA EAB ∴∠=∠.AE ∵平分DAB ∠,DAE EAB ∴∠=∠.DAE DEA ∴∠=∠.5DE AD ∴==.同理可得:5BC CF ==.点E 与点F 重合,10AB CD ∴==.∵如图2,点E 与点C 重合, 同理可证5DE DC AD ===, ∵∵ABCD 是菱形,5CF BC ==,∴点F 与点D 重合,5EF DC ∴==.(2)情况1,如图3, 可得AD DE EF CF ===, 13ADAB ∴=.情况2,如图4,同理可得,AD DE BC CF ==,, 又DF FE CE ==,23AD DE AB AB ∴==.情况3,如图5,由上,同理可以得到AD DE CB CF ==,,又FD DC CE ==,2AD DE AB CD∴==.综上:AD AB 的值可以是13,23,2. 【点睛】本题属于探究型应用题,综合考查了平行四边形的性质、角平分线的定义、菱形的判定与性质等内容,解决本题的关键是读懂题意,正确画出图形,建立相等关系求解等,本题综合性较强,要求学生有较强的分析能力,本题涉及到的思想方法有分类讨论和数形结合的思想等.23.(2020·浙江)如图,已知△ABC 是∵O 的内接三角形,AD 是∵O 的直径,连结BD ,BC 平分∵ABD . (1)求证:∵CAD =∵ABC ;(2)若AD =6,求CD 的长.【答案】(1)证明见解析;(2)32π. 【解析】【分析】(1)利用角平分线的性质结合圆周角定理即可证明;(2)可证得CD =AC ,则CD 的长为圆周长的14. 【详解】(1)证明:∵BC 平分∵ABD ,∵∵DBC =∵ABC ,∵∵CAD =∵DBC ,∵∵CAD =∵ABC ;(2)解:∵∵CAD =∵ABC ,∵CD =AC ,∵AD 是∵O 的直径,且AD =6, ∵CD 的长=14×π×6=32π. 【点睛】本题考查了角平分线的性质以及圆周角定理,证得CD =AC 是解(2)题的关键.24.(2022·浙江金华)图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,83m AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m .(2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 9 7.5αβ-=︒ 【解析】【分析】(1)过点A 作AG ∵EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG 的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ∵EF ,垂足为G .∵∵ABE =∵BEG =∵EGA =90°,∵四边形ABEG 是矩形,∵EG =AB =1m ,AG =EB =8m ,∵∵AFG =45°,∵FG =AG =EB =8m ,∵EF =FG +EG =9(m ).故答案为:9;(2)7.5αβ-=︒.理由如下:∵∵A 'B 'E =∵B 'EG =∵EG A '=90°,∵四边形A 'B 'EG 是矩形,∵EG =A 'B '=1m ,A 'G =E B '=83m ,∵tan ∵A 'FG =833A G FG '= ∵∵A 'FG =60°,∵F A 'G =30°,根据光的反射原理,不妨设∵F AN =2m ,∵F A 'M =2n ,∵ 光线是平行的,∵AN∥A 'M ,∵∵GAN =∵G A 'M ,∵45°+2m =30°+2n ,解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'',∵9090m n n m αβ-=--+=-,故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.25.(2021·浙江温州)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【解析】【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∵ADE ,再利用平行线的性质求出∵ ABC ,最后利用角平分线的定义即可完成求解.【详解】 解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.26.(2020·浙江绍兴)如图1,矩形DEFG 中,DG =2,DE =3,Rt∵ABC 中,∵ACB =90°,CA =CB =2,FG ,BC 的延长线相交于点O ,且FG ∵BC ,OG =2,OC =4.将∵ABC 绕点O 逆时针旋转α(0°≤α<180°)得到∵A ′B ′C ′.(1)当α=30°时,求点C ′到直线OF 的距离.(2)在图1中,取A ′B ′的中点P ,连结C ′P ,如图2.∵当C ′P 与矩形DEFG 的一条边平行时,求点C ′到直线DE 的距离.∵当线段A ′P 与矩形DEFG 的边有且只有一个交点时,求该交点到直线DG 的距离的取值范围.【答案】(1)点C ′到直线OF 的距离为3(2)∵点C ′到直线DE 的距离为2±2;∵2≤d <4417或d =3. 【解析】【分析】(1)过点C′作C′H∵OF 于H .根据直角三角形的边角关系,解直角三角形求出CH 即可. (2)∵分两种情形:当C′P∵OF 时,过点C′作C′M∵OF 于M ;当C′P∵DG 时,过点C′作C′N∵FG 于N .通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=52,即d=52;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=3∵点C′到直线OF的距离为3(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵OC′=4,∵C′M=2=22∵点C′到直线DE的距离为222.如图,当C′P∵DG时,过点C′作C′N∵FG于N.同法可证∵OC′N是等腰直角三角形,∵C′N=22∵GD=2,∵点C′到直线DE的距离为222.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC +∴+∵OM =2,∵OMA′=90°,∵A′M 22A O OM '-()22252-4,又∵OG=2,∵DM=2,∵A′D =A′M -DM=4-2=2,即d =2,如图,当点P 落在DE 上时,连接OP ,过点P 作PQ∵C′B′于Q .∵P 为A′B′的中点,∵A′C′B′=90°, ∵PQ∵A′C′,∵'12B PC Q PQ B A B C A C '''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP22+2651∵PM2226422--=OP OM∵PD=222-=,PM DM∵d222,222.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=52,即d=52,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP26OF=5,∵FP22-1,-2625OP OF∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,222 15PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=441752≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 27.(2020·浙江绍兴)如图,点E是∵ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∵BAF=90°,试添加一个条件,并写出∵F的度数.【答案】(1)2;(2)当∵B=60°时,∵F=30°(答案不唯一).【解析】【分析】(1)由平行四边形的性质得出AD∵CF,则∵DAE=∵CFE,∵ADE=∵FCE,由点E是CD的中点,得出DE=CE,由AAS证得∵ADE∵∵FCE,即可得出结果;(2)添加一个条件当∵B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【详解】解:(1)∵四边形ABCD是平行四边形,∵AD∵CF,∵∵DAE=∵CFE,∵ADE=∵FCE,∵点E是CD的中点,∵DE=CE,在∵ADE和∵FCE中,DAE CFEADE FCEDE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ADE∵∵FCE(AAS),∵CF=AD=2;(2)∵∵BAF=90°,添加一个条件:当∵B=60°时,∵F=90°-60°=30°(答案不唯一).【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.3132。
2020-2021初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.下列说法,正确的是() A.经过一点有且只有一条直线 B.两条射线组成的图形叫做角 C.两条直线相交至少有两个交点 D.两点确定一条直线【答案】D 【解析】 【分析】根据直线的性质、角的定义、相交线的概念一一判断即可. 【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D. 【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键2 . / 1 与/ 2 互余,/ 1 与/3 互补,若/ 3=125°,则/ 2=()解:根据题意得:/ 1 + 7 3=180°, / 3=125°,则/ 1=55°, 1 + 7 2=90°,则/ 2=35°故选:A.【点睛】 本题考查余角、补角的计算.3 .如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出 5cm,宽留出1cm,则该六棱柱的侧面积是()A. 35°【答案】A 【解析】 【分析】【详解】B. 45C. 55D. 65°A. (108 24察)cm2B. 108 1273 cm2C. 54 2443 cm2D. 54 1273 cm2【答案】A【解析】【分析】设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a= 2, h =9-2J3,再根据六棱柱的侧面积是6ah求解.【详解】解:设正六棱柱的底面边长为acm,高为hcm ,如图,正六边形边长AB= acm时,由正六边形的性质可知/ BAD= 30°,BD= —a cm, AD= ^3 a cm , 2 2,AC=2AD=邪a cm,A ------ i—- - - -D「•挪动前所在矩形的长为(2h+2£a) cm,宽为(4a + - a ) cm ,2挪动后所在矩形的长为(h+2a+J3a) cm,宽为4acm,由题意得:(2h+2万a) -(h + 2a+V3a) =5, (4a+1a)-4a=1,2・•.a=2, h=9- 2技「•该六棱柱的侧面积是6ah = 6X2X(9- 2^/3) = (108 2473) cm2;故选:A.【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A落在DE上,若BC P DE ,则AFC的度数为 ()A. 90°B. 75°C. 105°D. 120°【答案】B 【解析】 【分析】根据平行线的性质可得 /E /BCE 30 ,再根据三角形外角的性质即可求解 的度数. 【详解】••• BC//DE Z E / BCE 30••• / AFC / B / BCE 45 3075故答案为:B. 【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.【分析】根据三棱柱的展开图的特点作答. 【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C. 【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.6 .如图,直线a//b,点B 在直线b 上,且AB± BC, Z 1=55 °,那么/ 2的度数是AFC5.下面四个图形中,是三棱柱的平面展开图的是 ( )由垂线的性质可得/ ABC=90 ,所以/ 3=180° -90°-/1=35°,再由平行线的性质可得到/ 2的度数.【详解】又「 a// b, 所以/ 2=7 3=35° . 故选C. 【点睛】本题主要考查了平行线的性质7 .如右图,在 ABC 中, ACB 90 , CD AD ,垂足为点D ,有下列说法:①点 A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段 AD 的长;③线段 CD 是 ABC 边AB 上的高;④线段CD 是 BCD边BD 上的高.上述说法中,正确的个数为()【答案】D 【解析】 【分析】根据两点间的距离定义即可判断 ①,根据点到直线距离的概念即可判断 ②,根据三角形的高的定义即可判断③④. 【详解】B. 30°C. 35°D. 50°B. 2个C. 3个D. 4个BA. 20°【答案】C解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段 AB 的长,・•.①正确;②、点A 到直线CD 的距离是线段 AD 的长,••・②正确; ③、根据三角形的高的定义, 那BC 边AB 上的高是线段 CD, ••.③正确;④、根据三角形的高的定义,ADBC 边BD 上的高是线段 CD,④ 正确.综上所述,正确的是①②③④ 共4个. 故选:D. 【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能 熟练地运用概念进行判断是解此题的关键.8 .如图,B 是线段AD 的中点,C 是线段BD 上一点,则下列结论中错误..的是(*・ ・.AB C D A. BC=AB-CDB. BC=-(AD-CD)【答案】B 【解析】试题解析:: B 是线段AD 的中点,.•.AB=BD=-AD2 ,A 、BC=BD-CD=AB-CD 故本选项正确;-1B 、BC=BD-CD] AD-CD,故本选项错误;-- - 1......G BC=BD-CDh AD-CD,故本选项正确; 2D 、BC=AC-AB=AC-BD 故本选项正确.故选B.9.如图,直线 AB, CD 交于点 O,射线 OM 平分/ AOC,若/ AOC= 76°,则/ BOM 等于8CA. 38°B, 104°C, 142°D, 144【答案】C 【解析】・. / AOC= 76°,射线 OM 平分/ AOC,1 1/ AOM= — / AOC=— x 76=38C. BC=- AD-CDD. BC=AC-BD()2 2 'BOM=180° 上 AOM=180° 38 =142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键10.已知:在RtAABC 中,/ C=90 °, BC=1, AC= J3 ,点D 是斜边AB 的中点,点E 是边C. D.【答案】C 【解析】 【分析】作B 关于AC 的对称点B',连接B'。
三年(2021-2023)中考数学真题分项汇编(全国通用)图形初步认识(优选真题44道)一.选择题(共30小题)1.(2023•威海)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是()A.A点B.B点C.C点D.D点【分析】把图形围成立体图形求解.【解答】解:把图形围成立方体如图所示:所以与顶点K D,故选:D.【点评】本题考查了平面图形和立体图形,掌握空间想象力是解题的关键.2.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为()A.36°B.44°C.54°D.63°【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.【点评】本题考查了余角和补角的知识,解答本题的关键是仔细观察图形,根据角的和差首先求出∠COD 的度数.3.(2023•长春)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.4.(2023•河北)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.5.(2023•扬州)下列图形是棱锥侧面展开图的是()A.B.C.D.【分析】由棱锥的侧面展开图的特征可知答案.故选:D.【点评】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.6.(2023•乐山)下面几何体中,是圆柱的为()A.B.C.D.【分析】根据各个选项中的几何体的形体特征进行判断即可.【解答】解:A.选项中的几何体是圆锥体,因此选项A不符合题意;B.选项中的几何体是球体,因此选项B不符合题意;C.选项中的几何体是圆柱体,因此选项C符合题意;D.选项中的几何体是四棱柱,因此选项D不符合题意;故选:C.【点评】本题考查认识立体图形,掌握圆柱体,圆锥体,棱柱,球的形体特征是正确判断的前提.7.(2023•宜昌)“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是()A.文B.明C.典D.范【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共边和公共顶点,即“对面无临点”,依此来找相对面.【解答】解:∵正方体的表面展开图,相对的面之间一定隔着一个小正方形,且没有公共边和公共顶点,∴“城”字对面的字是“明”.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,熟练掌握正方体的表面展开图的特点是解题的关键.8.(2023•临沂)如图中用量角器测得∠ABC的度数是()A.50°B.80°C.130°D.150°【分析】本题根据∠ABC的位置和量角器的使用方法可得出答案.【解答】解:根据∠ABC起始位置BA,另一条边BC可得:∠ABC=130°.故选:C.【点评】本题主要考查了学生量角器的使用方法,结合∠ABC的位置进行思考是解题关键.9.(2023•巴中)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是()A.传B.承C.文D.化【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“红”字所在面相对的面上的汉字.【解答】解:根据图示知:“传”与“文”相对;“承”与“色”相对;“红”与“化”相对.故选:D.【点评】本题考查灵活运用正方体的相对面解答问题,解决本题的关键是根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点.10.(2023•连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【分析】根据扇形的定义进行判断.【解答】解:由扇形的定义可知,只有乙是扇形,故选:B.【点评】本题主要考查了认识平面图形—扇形,应熟知扇形的定义:由圆心角的两条半径和圆心角所对的圆弧围成的图形叫做扇形.11.(2023•达州)下列图形中,是长方体表面展开图的是()A.B.C.D.【分析】根据长方体的展开图得出结论即可.【解答】解:由题意知,图形可以折叠成长方体,故选:C.【点评】本题主要考查长方体的展开图,熟练掌握长方体的展开图是解题的关键.12.(2023•台湾)如图,直角柱ABCDEF的底面为直角三角形,若∠ABC=∠DEF=90°,BC>AB>BE,则连接AE后,下列叙述何者正确()A.∠ACB<∠FDE,∠AEB>∠ACB B.∠ACB<∠FDE,∠AEB<∠ACBC.∠ACB>∠FDE,∠AEB>∠ACB D.∠ACB>∠FDE,∠AEB<∠ACB【分析】根据直棱柱的性质得∠BAC=∠FDE,再根据三角形的边角关系即可得出答案.【解答】解:如图,连接AE,∵∠ABC=∠DEF=90°,BC>AB,∴∠ACB<∠BAC,∵∠BAC=∠FDE,∴∠ACB<∠FDE,在△ABC和△ABE中,∠ABC=∠ABE=90°,AB=AB,BC>BE,∴∠AEB>∠ACB,故选:A.【点评】本题考查了认识立体图形,关键是掌握直棱柱的性质和三角形的边角关系.13.(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70°B.北偏东75°C.南偏西70°D.南偏西20°【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C =75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC 的度数,即可解答.【解答】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A.【点评】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.(2022•柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据“面动成体”进行判断即可.【解答】解:将矩形绕着它的一边所在的直线l旋转一周,可以得到圆柱体,故选:B.【点评】本题考查认识立体图形,理解“面动成体”是正确判断的前提.15.(2022•资阳)如图是正方体的表面展开图,每个面内都分别写有一个字,则与“创”字相对面上的字是()A.文B.明C.城D.市【分析】先以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,再判断与“创”字相对的字即可.【解答】解:将正方体的表面展开图还原成正方体,以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,可知“创”字与“市”字相对.故选:D.【点评】本题主要考查了将正方体表面展开图还原,确定每个字在还原后的正方体的位置是解题的关键.16.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.17.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是()A.青B.春C.梦D.想【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.18.(2022•绥化)下列图形中,正方体展开图错误的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.【点评】本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.19.(2022•甘肃)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.【点评】本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.20.(2022•常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以得到圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.21.(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.【分析】根据题意和各个选项中的图形,可以判断哪个图形不可能是三棱柱的展开图.【解答】解:如图所示的三棱柱的展开图不可能是,故选:D.【点评】本题考查几何体的展开图,解答本题的关键是明确题意,利用数形结合的思想解答.22.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【分析】根据展开图直接判断即可.【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.【点评】本题主要考查几何体的展开图,熟练掌握基本几何体的展开图是解题的关键.23.(2021•湖州)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【分析】由平面图形的折叠及长方体的表面展开图的特点解题.【解答】解:该长方体表面展开图可能是选项A.故选:A.【点评】本题考查几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.24.(2021•泰州)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定【分析】用假设法分别计算各选项中的a值,再根据a>0判断即可.【解答】解:∵AC=2a+1,BC=a+4,AB=3a,A、B、C三点互不重合∴a>0,若点A在B、C之间,则AB+AC=BC,即2a+1+3a=a+4,解得a=3 4,故A情况存在,若点B在A、C之间,则BC+AB=AC,即a+4+3a=2a+1,解得a=−3 2,故B情况不存在,若点C在A、B之间,则BC+AC=AB,即a+4+2a+1=3a,此时无解,故C情况不存在,∵互不重合的A、B、C三点在同一直线上,故选:A.【点评】本题主要考查两点间的距离及整式的加减,分类讨论和反证法的应用是解题的关键.25.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.26.(2021•包头)已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为()A.1B.3C.1或3D.2或3【分析】根据题意可分为两种情况,①点C在线段AB上,可计算出AC的长,再由D是线段AC的中点,即可得出答案;②BC在线段AB的延长线上,可计算出AC的长,再由D是线段AC的中点,即可得出答案.【解答】解:根据题意分两种情况,①如图1,∵AB=4,BC=2,∴AC=AB﹣BC=2,∵D是线段AC的中点,∴AD=12AC=12×2=1;②如图2,∵AB=4,BC=2,∴AC=AB+BC=6,∵D是线段AC的中点,∴AD=12AC=12×6=3.∴线段AD的长为1或3.故选:C.【点评】本题主要考查了两点之间的距离,正确理解题目并进行分情况进行计算是解决本题的关键.27.(2021•河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【分析】利用直尺画出遮挡的部分即可得出结论.【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故选:A.【点评】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.28.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题.29.(2021•百色)已知∠α=25°30)A.25°30′B.64°30′C.74°30′D.154°30′【分析】根据余角的定义,两个锐角和为90°的角互余.【解答】解:由题意得:∠α=25°30′,故其余角为(90°﹣∠α)=64°30′.故选:B.【点评】本题考查的知识点是两个角的互余,互余的两个角的和为90°.30.(2021•黔东南州)由4个棱长均为1的小正方体组成如图所示的几何体,这个几何体的表面积为()A.18B.15C.12D.6【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有3个;左视图中正方形有3个;俯视图中正方形有3个.则这个几何体表面正方形的个数是:2×(3+3+3)=18.则几何体的表面积为18.故选:A .【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面积之和.二.填空题(共14小题)31.(2023•无锡)若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为 .【分析】由三棱柱三个侧面和上下两个底面的特征,结合侧面展开图是一个边长为6的正方形卡知,上下底面的正三角形的周长为6,即边长为2,然后根据条件公式进而求出表面积即可得出结论.【解答】解:依题意可知:直三棱柱的上下底面的正三角形的边长为2,∴其2个底面积为√34×22×2=2√3. ∵侧面展开图是边长为6的正方形,∴其侧面积为6×6=36,∴该直三棱柱的表面积为36+2√3.故答案为:36+2√3.【点评】此题主要考查了直三棱柱侧面展开图的知识,解题时注意三棱柱的特征,找到所求的量的等量关系是解决问题的关键.32.(2023•乐山)如图,点O 在直线AB 上,OD 是∠BOC 的平分线,若∠AOC =140°,则∠BOD 的度数为 .【分析】根据邻补角定义求得∠BOC 的度数,再根据角平分线定义即可求得答案.【解答】解:∵∠AOC =140°,∴∠BOC =180°﹣140°=40°,∵OD是∠BOC的平分线,∴∠BOD=12∠BOC=20°,故答案为:20°.【点评】本题主要考查角平分线的定义,此为几何中基础且重要知识点,必须熟练掌握.33.(2022•益阳)如图,P A,PB表示以P为起点的两条公路,其中公路P A的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角∠APB=°.【分析】根据题意可得∠APC=34°,∠BPC=56°,然后进行计算即可解答.【解答】解:如图:由题意得:∠APC=34°,∠BPC=56°,∴∠APB=∠APC+∠BPC=90°,故答案为:90.【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.34.(2022•玉林)已知:α=60°,则α的余角是°.【分析】根据如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角即可得出答案.【解答】解:90°﹣60°=30°,故答案为:30.【点评】本题考查了余角和补角,掌握如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角是解题的关键.35.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=cm.【分析】根据中点的定义可得AB=2AC=4cm.【解答】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点评】本题主要考查中点的定义,熟知中点的定义是解题关键.36.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB =120°,∠CDB=20°,则∠AEF=.【分析】根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,根据三角形内角和定理求出∠OED的度数,即可得到∠AEF=∠OED的度数.【解答】解:∵一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,∴∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,∠OED=180°﹣∠AOB﹣∠EDO=180°﹣120°﹣20°=40°,∴∠AEF=∠OED=40°.故答案为:40°.【点评】本题考查了角的计算,根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED是解题的关键.37.(2022•常德)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是.【分析】根据图形,可以直接写出“神”字对面的字.【解答】解:由图可得,“神”字对面的字是“月”,故答案为:月.【点评】本题考查正方体相对两个面上的文字,解答本题的关键是明确题意,利用数形结合的思想解答.38.(2022•连云港)已知∠A的补角为60°,则∠A=°.【分析】根据补角的定义即可得出答案.【解答】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.【点评】本题考查了余角和补角,掌握如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角是解题的关键.39.(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为°.【解答】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.【点评】本题主要考查了角的计算,熟练掌握角的计算方法进行求解是解决本题的关键.40.(2021•丽水)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM=2EM,则“奔跑者”两脚之间的跨度,即AB,CD之间的距离是.【分析】如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.想办法求出BM,MJ,FK与CD 之间的距离,可得结论.【解答】解:如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.由题意,△ABM,△EFK都是等腰直角三角形,AB=BM=2,EK=EF=2√2,FK=4,FK与CD之间的距离为1,∵EI⊥FK,∴KI=IF,∴EI=12FK=2,∵MJ∥EI,∴MJEI=FMEF=23,∴MJ=4 3,∵AB∥CD,∴AB与CD之间的距离=2+43+1=133,故答案为:13 3【点评】本题考查七巧板,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.41.(2021•兴安盟)74°19′30″=°.【分析】先将30″化成“分”,再将19.5′化成“度”即可.【解答】解:30×(160)′=0.5′,19′+0.5′=19.5′,19.5×(160)°=0.325°,74°+0.325°=74.325°,故答案为:74.325.【点评】本题考查度、分、秒的换算,掌握度、分、秒的换算进率和换算方法是得出正确答案的前提.42.(2021•永州)如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB 的值最小,则点P的坐标是.【分析】连接AB交x轴于点P',求出直线AB的解析式与x轴交点坐标即可.【解答】解:如图,连接AB交x轴于点P',根据两点之间,线段最短可知:P'即为所求,设直线AB的关系式为:y=kx+b,{4k+b=3 b=−3,解得{k=32b=−3,∴y=32x−3,当y=0时,x=2,∴P'(2,0),故答案为:(2,0).【点评】本题主要考查了线段的性质,明白两点之间,线段最短是解题的关键.43.(2021•上海)70°的余角是.【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70°,则它的余角度数是90°﹣70°=20°,故答案为,20°.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,44.(2021•营口)若∠A=34°,则∠A的补角为.【分析】根据互为补角的两个角的和等于180°列式计算即可得解.【解答】解:∠A的补角=180°﹣∠A=180°﹣34°=146°.故答案为:146°.【点评】本题考查了余角和补角,是基础题,熟记补角的概念是解题的关键.。
2021年中考数学分类汇编几何图形初步一.选择题1.〔2021温州〕以下各图中,经过折叠能围成一个立方体的是〔〕A.应选A.B.C.D.2.〔2021宁波〕以下四张正方形硬纸片,剪去阴影局部后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是〔〕A.B.C.D.解答:解:A.剪去阴影局部后,组成无盖的正方体,故此选项不合题意;B.剪去阴影局部后,无法组成长方体,故此选项不合题意;C.剪去阴影局部后,能组成长方体,故此选项正确;D.剪去阴影局部后,组成无盖的正方体,故此选项不合题意;应选:C.3.〔2021福州〕如图,OA⊥OB,假设∠1=40°,那么∠2的度数是〔〕.20°B.40°C.50°D.60°应选C.4.〔2021昭通〕如图是一个正方体的外表展开图,那么原正方体中与“建〞字所在的面相对的面上标的字是〔〕A.美B.丽C.云D.南解答:解:由正方体的展开图特点可得:“建〞和“南〞相对;“设〞和“丽〞相对;“美〞和“云〞相对;应选D.5.〔2021曲靖〕如图是某几何体的三视图,那么该几何体的侧面展开图是〔〕A.B.C.D.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.应选A.6.〔2021重庆市〕∠A=65°,那么∠A的补角等于〔〕A.125°B.105°C.115°D.95°应选C.7.〔2021百色〕一个几何体的三视图如下图,那么该几何体的侧面展开图的面积为〔〕A.6cm2B.4πcm2C.6πcm2D.9πcm2解答:解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm2.应选:C.8.〔2021百色〕∠A=65°,那么∠A的补角的度数是〔A.15°B.35°C.115°D.135°解答:解:∵∠A=65°,∴∠A的补角=180°﹣∠A=180°﹣65°=115°.应选C.9.〔2021台湾〕数轴上A、B、C三点所表示的数分别为AC:CB=1:3,那么以下b、c的关系式,何者正确?〔A.|c|=|b|B.|c|=|b|C.|c|=|b|D.|c|=|b|解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.应选A.〕a、b、c,且〕C在AB上.假设|a|=|b|,10.〔2021台湾〕附图的长方体与以下选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.假设以下有一立体图形的外表积与附图的外表积相同,那么此图形为何?〔〕A.B.C.D.解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的外表积为:6×2+3×2+2×2=22,只有选项B的外表积为:5×2+3+4+5=22.应选:B.11.〔2021自贡〕如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为〔〕A.B.9 C.D.解答:解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为=,∴侧面积为长为3,宽为3﹣的长方形,面积为9﹣3应选A.12.〔2021资阳〕钟面上的分针的长为1,从9点到9点.30分,分针在钟面上扫过的面积是〔〕A.πB.πC.πD.π解答:解:从9点到9点30分分针扫过的扇形的圆心角是180°,那么分针在钟面上扫过的面积是:=π.应选:A.13.〔2021绵阳〕把如图中的三棱柱展开,所得到的展开图是〔〕A.B.C.D.解答:解:根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B.应选B.14.〔2021巴中〕如图,是一个正方体的外表展开图,那么原正方体中“梦〞字所在的面相对的面上标的字是〔〕A.大B.伟C.国D.的解答:解:这是一个正方体的平面展开图,共有六个面,其中面“伟〞与面“国〞相对,面“大〞与面“中〞相对,“的〞与面“梦〞相对.应选D.15.〔2021山西省〕如图是一个长方体包装盒,那么它的平面展开图是〔〕A.B.C.D.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C、D.不符合长方体的展开图的特征,故不是长方体的展开图.应选A.16.〔2021菏泽〕以下图形中,能通过折叠围成一个三棱柱的是〔〕A.B.C.D.解答:解:A.另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.应选C.17.〔2021大连〕如图,点O在直线AB上,射线OC平分∠DOB.假设∠COB=35°,那么∠AOD 等于〔〕A.35°B.70°C.110°D.145°解答:解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,应选:C.18.〔2021无锡〕圆柱的底面半径为3cm,母线长为5cm,那么圆柱的侧面积是〔〕A.30cm2B.π2C.2.π230cm15cm D15cm解答:解:根据圆柱的侧面积公式,可得该圆柱的侧面积为:2π×3×5=30πcm2.应选B.19.〔2021南京〕如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.以下图形中,是该几何体的外表展开图的是〔〕A.B.C.D.解答:解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.应选B.20.〔2021岳阳〕一个正方体的平面展开图如下图,将它折成正方体后,与汉字“岳〞相对的面上的汉字是〔〕A.建B.设C.和D.谐解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“和〞与“岳〞是相对面,“建〞与“阳〞是相对面,“谐〞与“设〞是相对面.应选C.21.〔2021湘西〕以下图形中,是圆锥侧面展开图的是〔〕A .B .C .D .解答:解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.应选B .22.〔2021随州〕如图是一个长方体形状包装盒的外表展开图.折叠制作完成后得到长方体的容积是〔包装材料厚度不计〕〔 〕A .40×40×70B .70×70×80C .80×80×80D .40×70×80 解答:解:根据图形可知:长方体的容积是: 40×70×80;应选D .23.〔2021荆州〕将一边长为 2的正方形纸片折成四局部,再沿折痕折起来,恰好能不重叠 地搭建成一个三棱锥,那么三棱锥四个面中最小的面积是〔 〕A .1B .C .D .解答:解:最小的一个面是等腰直角三角形,它的两条直角边都是 2÷2=1,1×1÷2=.故三棱锥四个面中最小的面积是 .应选C . 24.〔2021黄石〕直角三角形 ABC 的一条直角边AB=12cm ,另一条直角边BC=5cm ,那么以AB 为轴旋转一周,所得到的圆锥的外表积是〔 〕A .90πcm2B .209πcm2C .155πcm2D .65πcm22π 2解答:解:圆锥的外表积=×10π×13+π×5.应选A .=90cm25.〔2021黄冈〕一个圆柱的侧面展开图为如下图的矩形,那么其底面圆的面积为〔 〕A .πB .4πC .π或4πD .2π或4π解答:解:①底面周长为24π时,半径为4π÷π÷2=2,底面圆的面积为π×2π;②底面周长2=4.为2π时,半径为2π÷π÷2=1,底面圆的面积为π×1π.应选C=26.〔2021恩施州〕如下图,以下四个选项中,不是正方体外表展开图的是〔 〕A .B .C .D .解答:解:选项A ,B ,D 折叠后都可以围成正方体;而C 折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.应选C .27.〔2021天门〕小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒〔如图〕.礼盒每个面上各有一个字,连起来组成“芦山学子加油〞,其中“芦〞的对面是“学〞,“加〞的对面是“油〞,那么它的平面展开图可能是〔〕A.B.C.D.解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,A.“加〞与“子〞是相对面,故本选项错误;B.“芦〞与“子〞是相对面,故本选项错误;C.“芦〞与“子〞是相对面,故本选项错误;D.“芦〞与“学〞是相对面,“山〞与“子〞想相对面,“加〞与“油〞是相对面,故本选项正确.应选D.28.〔2021六盘水〕直尺与三角尺按如下图的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个〔〕A.2个B.3个C.4个D.6个解答:解:与∠1互余的角有∠2,∠3,∠4;一共3个.应选B.29.〔2021河南省〕如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2〞相对的面上的数字是〔〕A.1 B.4 C.5 D.6解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,〕“2〞与“4〞是相对面,“3〞与“5〞是相对面,“1〞与“6〞是相对面.应选B.30.〔2021玉林防城港〕假设∠α=30°,那么∠α的补角是〔〕A.30°B.60°C.120°D.150°解答:解:180°﹣30°=150°.应选D.31.〔2021钦州〕以下四个图形中,是三棱柱的平面展开图的是〔A.B.C.D.解答:A.是三棱锥的展开图,应选项错误;B.是三棱柱的平面展开图,应选项正确;C.两底有4个三角形,不是三棱锥的展开图,应选项错误;D.是四棱锥的展开图,应选项错误.应选B.32.〔2021南宁〕如下图,将平面图形绕轴旋转一周,得到的几何体是〔〕A.B.C.D.解答:解:半圆绕它的直径旋转一周形成球体.应选:A.33.〔2021贵港〕如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共〞字一面的相对面上的字是〔〕A.美B.丽C.家D.园解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“共〞与“园〞是相对面,“建〞与“丽〞是相对面,“美〞与“家〞是相对面.应选D.34.〔2021厦门〕∠A=60°,那么∠A的补角是〔〕A.160°B.120°C.60°D.30°解答:解:∵∠A=60°,∴∠A的补角=180°﹣60°=120°.应选B.二.填空题1.〔2021义乌〕把角度化为度、分的形式,那么°=20°′.解答:解:°=20°30′.故答案为:30.2.〔2021湖州〕把15°30′化成度的形式,那么15°30′=度.解答:解:∵30′度,∴15°30′度;故答案为:.3.〔2021杭州〕四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的外表积分别为S1,2,那么1﹣2S|SS|=〔平方单位〕旋转一周形成的圆柱°.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC的侧面的面积是:2π×2×2=8π,那么|S1﹣S2|=4π.故答案是:4π.4.〔2021泉州〕如图,∠AOB=90°,∠BOC=30°,那么∠AOC=解答:解:由图形可知,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°.故答案为:60.5.〔2021晋江市〕∠1与∠2互余,∠1=55°,那么∠2=°.解答:解:∠2=90°﹣∠1=90°﹣55°=35°.故答案为:35.6.〔2021曲靖〕如图,直线AB、CD相交于点O,假设∠BOD=40°,OA平分∠COE,那么∠AOE=.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.7.〔2021德宏州〕以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.解答:解:只有图〔1〕、图〔3〕能够折叠围成一个三棱锥.故答案为:〔1〕〔3〕.8.〔2021枣庄〕从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如下图的零件,那么这个零件的外表积为.解答:解:挖去一个棱长为1的小正方体,得到的图形与原图形外表积相等,那么外表积是2×2×6=24.故答案为:24.9.〔2021徐州〕假设∠α=50°,那么它的余角是°.解答:解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.10.〔2021淮安〕如图,三角板的直角顶点在直线l上,看∠1=40°,那么∠2的度数是.解答:解:如图,三角板的直角顶点在直线l上,那么∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.11.〔2021长沙〕∠A=67°,那么∠A的余角等于度.解答:解:∵∠A=67°,∴∠A的余角=90°﹣67°=23°.故答案为:23.12.〔2021咸宁〕在数轴上,点A〔表示整数a〕在原点的左侧,点B〔表示整数的右侧.假设|a﹣b|=2021,且AO=2BO,那么a+b的值为.b〕在原点解答:解:如图,a<0<b.∵|a﹣b|=2021,且AO=2BO,∴b﹣a=2021①,a=﹣2b②,由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671,故答案是:﹣671.13.〔2021咸宁〕如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的外表上,与汉字“香〞相对的面上的汉字是.解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“力〞与“城〞是相对面,“香〞与“泉〞是相对面,“魅〞与“都〞是相对面.故答案为泉.14.〔2021绥化〕直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的外表积是cm2.〔结果保存π〕解答:解:三角形斜边==5〔cm〕,当以3cm的边所在直线为轴旋转一周时,其所得到的几何体的外表积2π?π=π?4+?524=36〔cm2〕;当以4cm的边所在直线为轴旋转一周时,其所得到的几何体的外表积2π?π=π?3+?523=24〔cm2〕;当以5cm的边所在直线为轴旋转一周时,其所得到的几何体为共一个底面的两圆锥,其底面圆的面积=cm,所以此几何体的外表积=?2π??3+?2π??4=π〔cm2〕.故答案为24π,36π,π.15.〔2021德州〕如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.16.〔2021南宁〕一副三角板如下图放置,那么∠ AOB=°.解答:解:根据三角板的度数可得:∠1=45°,∠2=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.17.〔2021梅州〕假设∠α=42°,那么∠α的余角的度数是解答:解:∵∠α=42°,∴∠α的余角=90°﹣42°=48°.故答案为:48°..。