七年级第一章-绝对值
- 格式:ppt
- 大小:1.50 MB
- 文档页数:44
初中七年级数学上册第一章:有理数——1.2.4:绝对值(解析)一:知识点讲解知识点一:绝对值绝对值:✧ 几何意义:一般地,数a 的绝对值就是数轴上表示数a 的点与原点之间的距离,数a 的绝对值记作a ,读作“a 的绝对值”。
✧ 代数意义:一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;零的绝对值是零,即对于任何有理数,都有⎪⎩⎪⎨⎧<-=>=0000a a a a a a ,,,。
由绝对值的定义可知,一个数的绝对值是非负数,在数轴上,一个数离原点越近,绝对值越小;离原点越远,绝对值越大。
绝对值是它本身的数是非负数,即若a a =,则0≥a ,即a 为非负数;绝对值是其相反数的数是非正数,即若a a -=,则0≤a ,即a 为非正数。
绝对值是某个正数的数有两个,它们互为相反数,即若a x =(0>a ),则a x ±=,即若2=x ,则2±=x 。
互为相反数的两个数的绝对值相等;绝对值相等的两个数相等或互为相反数。
若几个数的绝对值之和为0,则这几个数同时为0。
求一个数的绝对值,要“先判后去”,即先判断这个数是正数、0、还是负数,再由绝对值的定义去掉绝对值符号。
例1:写出下列各数的绝对值:23-、211、﹣3、0、45、π- 解:23、211、3、0、45、π知识点二:有理数大小的比较有理数大小的比较:✧ 利用数轴比较大小:依据:在数轴上表示有理数,左边的数小于右边的数;具体方法:把要比较大小的有理数在同一条数轴上表示出来,那么有理数从左到右的顺序就是从小到大的顺序。
✧ 利用数的性质比较大小:依据:正数大于0,0大于负数,正数大于负数。
两个正数,绝对值大的数大;两个负数,绝对值大的数反而小; 具体方法:在比较几个数的大小时,步骤如下:先将它们分类成正数、0、负数,再按上面的依据进行比较。
两个正有理数比较大小:1) 比较两个小数大小,先看正数部分,正数部分大的那个数大;2) 两个分数比较大小,同分母分数,分子大的分数大,异分母分数,要先通分,再比较; 3) 比较分数与小数大小,一般先将小数化成分数再比较。
初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。
1.2.4绝对值(第1课时)一、教学内容解析本节课的教学内容是绝对值.绝对值是笫一章有理数的一个重要内容,首先它可以促进学生对数轴、相反数概念的理解,其次它将冇理数的运算归结到了非负数的运算,我们以有理数的加法的知识框图为例,可以发现,如果没有绝对值的概念,则有理数的加法是很难进行运算的.最后绝对值还是有理数比较大小的借助数轴,给出了绝对值的定义,是数形相依的意识的具体体现;由绝对值的定义,归纳出了绝对值的性质,运用了分类讨论的思想;同时,通过观察具体数的绝对值,归纳岀了求任意一个数的绝对值的方法,渗透了从特殊到一般的学习方法;这些对今后的学习其它知识有很大的帮助.在教科书中,绝对■值的概念是借助距离概念加以定义,在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定•这里,“方向” 与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值可以理解为距离这一几何量的代数表示.因此,在学习绝对值的概念吋,注意从实际问题引入,通过所创设的情境,引入了绝对值的概念•在学习了绝对值的定义后,概括出了绝对值的性质,而其性质将会是以后学生求一个数的绝对值时的首选方法.因此,可以确定本节课的教学重点为:绝对值的定义和性质.学生学情分析北京汇文屮学是北京市示范性屮学,同吋承担了北京市东城区教委创立的小学六年级“少年科学班”的教育教学工作,我所授课班级就是该“少年科学班”, 该班学生数学基础较好,学生个性活泼,思维活跃,积极性高,学习完正数与负数、数轴、相反数的内容后,通过随堂测试,发现该班大部分学生的成绩接近我校初一年级的平均分.但是,学生的抽象概括能力仍相对薄弱,思维过程不够完善,对符号P、"I及其意义的理解存在一定困难.从实际问题引入,抽象出绝对值的概念,有益于学生借助自身的生活经验感知概念.因此,木课的教学教学难点是:抽象出绝对值概念的过程.三、教学目标设置(1)知识技能:了解绝对值的表示方法,理解绝对值的概念,会求有理数的绝对值.(2)数学思考:经历绝对值概念的抽象与形成的过程,和归纳绝对值的性质过程,体会数形相依和分类讨论的观点.(3)问题解决:经丿力将实际问题抽象为数学问题的过程,从几何、代数两个角度得到求一个数的绝对值的方法.(4)情感态度:通过归纳绝对值的性质的过程,获得数学活动的经验.同时,通过实际情境,受到爱国主义教育.四、教学策略分析(1)在学习课标、研读教材的基础上,把绝对値这部分的内容划分为两课吋,第一课吋即木课吋得到绝对值的定义和性质,第二课吋得到有理数比较大小的方法并综合运用绝对值的定义和性质解决问题.(2)本节课采取教师启发引导与学生探究相结合的方式,使学生亲身休验得到绝对值的定义和性质过程.(3)促使学生采取积极主动、勇于探索的学习方式进行学习.(4)根据“以学定教”的原则,及时调整教学方案.五、教学过程1 •创设情境,引入概念情境1通过抗战胜利阅兵视频引出问题.2015年9 JJ 3 H,在北京举行的纪念抗H战争腔利70周年的阅兵活动屮,一个受阅方阵自东向西经过长安街,则该方阵在行进时共冇几次和北京城屮轴线与长安街的交汇处的距离为20米?师生活动:学生先一起回答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知距离是只考虑长度,不考虑方向的•同时, 通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离.为Z后学生自己建系、自己举例做好铺垫•同时,在教学中,渗透爱国主义教育.情境2哈利法塔在75层和100层各有一间避难所•如果发生火灾时,一位游客恰好在85层•如果仅从距离的角度考虑,他会选择哪一层的避难所呢?师生活动:学生先一起冋答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知在考虑这个问题时,只考虑距离,不考虑方向•同时,再次通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离•为之后学生口己建系、口己举例做好铺垫.情境3小明家正东3千米处有家超市A,正东2 T米处有家超市C ,正西2千米处有家超市B.如呆仅从距离的角度考虑,他会选择哪家超市?小明家正东3千米处有家超市正东2千米处有家超市C,正西2千米处有家超市〃•如果仅从距离的角度考虑,他会选择哪家超市?B OC A匹鰹I号一师生活动:学生先一起回答问题后,再由学生建立数轴解释问题•请其他学生修正或补充•教师点评.设计意图:通过实际情境,再次让学生感知在考虑距离的不用考虑方向的特征,同时•同时,通过自己建系,培养学生的建模能力,并再次体会在数轴上求出表示一个数的点与原点的距离•为之后自己举例、学习绝对值的概念做好铺垫. 提出问题:你能举出类似的例子吗?师生活动:学生自己举例子,自己建系,请其他学生修正或补充.教师点评.设计意图:让学生体会出在实际生活屮,只考虑距离,不考虑方向的事例是大量存在的.已引入绝对值的概念.§1.2.4绝对值一. 定义:一般地,数轴上表示数d的点与原点的距离叫做数d的绝对值•记作|Q|.Ml---- •• ---- o a—>举例:B O■C-34-1 0 123|-2|2.辨识概念,深化认识通过借助绝对值的定义,求出具体数的绝对值.例1・在数轴上画出表示下列各数的点,并求岀下列各数的绝对值.1 33,-2, 2, 1-, -2.5, 0.3 4师生活动:学生现在数轴上画出毎个数对应的点,再依次求出毎个数的绝对值, 并说明理由•教师点评.设计意图:引导学生借助数轴,求出一个数的绝对值,并口述理由,加深学生对绝对值概念的理解•在设计题目时,设计了三个止数,三个负数和零共三种情况, 方便学生之后概括性质.思考观察这七个数的绝对值,你能从中发现什么规律?活动1:请同学们先思考,再相互讨论.设计意图:引导学生通过观察例1屮七个数的绝对值,发现并概括出绝对值的性质•培养学生的观察和概括能力.得岀的结论:(1) 一个正数的绝对值是它本身;(2) 一个负数的绝对值是它的相反数;(3) 0的绝对值是0.师生活动:引导学生利用绝对值的性质,重新计算例1中七个数的绝对值,并说 明理由•教师点评.活动:请学生以一问一答的形式,计算一个数的绝对值,并说明理曲•教师点评. 设计意图:加深学生对绝对值概念的理解的绝对值,并为之后借助符号语言概括 绝对■值的性质提供素材.思考 2: \a\=?活动2:请同学们先思考,再相互讨论.二性质:⑴如果a>09那么|4二a ;(2) 如果 a=O 9 那么|a|= 0;(3) 如果 a<0,那么|a|= -a,小结:回顾所学的绝对值的知识,同时回顾得到绝对值概念的过程.设计意图:回顾所学知识,帮助学生解决Z 后的练习,同时,回顾得到绝对值概 念的过程,让学生体会数形相依、分类讨论的思想方法,以及从特殊到i 般的学 习方法.练习1 •判断下列说法是否正确.(1) 符号相反的数互为相反数;(2) —个数的绝对值越大,表示它的点在数轴上越靠右;(3) —个数的绝对值越大,表示它的点在数轴上离原点越远;⑷当a#0时,|a|总是大于0练习2•判断下列各式是否正确:(3)-5=|-5|.练习3•如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负 数,从轻重的角度看,哪个球最接近标准?卜5 师生活动:学生回答问题,并说明理由•教师点评设计意图:引导学生解决不同类型的题目,加深学生对绝对值3•理解应用,巩 概念3.5 +0.7 -2.5 -0.6概念的理解.4•归纳总结,布置作业小结:通过今天这节课,你有哪些收获和感受? 师生活动:学生谈收获和感想,教师点评.作业:教材习题1.2:5, 10, 12.思考题:若|a|=-a,求d的取值范围.设计意图:根据学生的情况,留不同难度的作业,设置一道思考题,让学有余力的同学完成,可以加深学牛对绝对值概念的理解,并提高学牛的学习兴趣.。
七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
新2024秋季七年级人教版数学上册第一章有理数《有理数:绝对值》听课记录一、教学目标(核心素养)1.知识与技能:理解绝对值的概念,掌握求有理数绝对值的方法,能够准确求出任意有理数的绝对值。
2.过程与方法:通过实例分析、归纳总结等过程,培养学生观察、比较、抽象概括的能力,以及运用绝对值解决实际问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨的数学态度和探索精神。
二、导入教师行为:•教师首先展示一张数轴图,并在数轴上标出几个有理数点(包括正数、负数和0)。
•提问:“同学们,如果我们只看这些点到原点的距离,而不考虑它们是在原点的哪一侧,你们能发现什么共同点吗?”•引导学生观察并思考,逐步引出绝对值的概念。
学生活动:•学生认真观察数轴图,并尝试回答教师的问题。
•部分学生可能会注意到这些点到原点的距离都是非负的,但尚未明确“绝对值”这一术语。
过程点评:•通过直观的数轴图引入,有效激发了学生的学习兴趣和好奇心,为后续学习绝对值概念奠定了良好的基础。
三、教学过程(一)概念讲解教师行为:•明确给出绝对值的定义:“一个数到0的距离叫做这个数的绝对值。
”•强调绝对值的符号表示:正数的绝对值就是它本身,负数的绝对值是它的相反数,0的绝对值是0。
•举例说明,如|-3| = 3,|5| = 5,|0| = 0。
学生活动:•学生认真听讲,记录绝对值的定义和符号表示。
•通过教师的举例,尝试理解并记忆绝对值的计算方法。
过程点评:•教师通过清晰的定义和具体的例子,帮助学生快速掌握了绝对值的基本概念和计算方法。
(二)练习巩固教师行为:•设计一系列练习题,包括直接求绝对值、利用绝对值解决实际问题等类型。
•要求学生独立完成练习,并在完成后进行小组交流,分享解题思路和答案。
学生活动:•学生积极投入练习,认真计算每道题目的答案。
•在小组交流中,学生相互讨论,纠正错误,共同提高。
过程点评:•通过多样化的练习和小组交流,学生不仅巩固了绝对值的计算方法,还提高了运用绝对值解决实际问题的能力。
七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。