人教版小学数学六年级上册知识点总结
- 格式:docx
- 大小:85.65 KB
- 文档页数:11
人教版小学数学六年级上册知识点归纳
本文将对人教版小学数学六年级上册的知识点进行归纳和总结,帮助学生们更好地掌握课本内容。
一、整数的认识
整数是由自然数、0和负数组成,可以在数轴上表示。
正整数用红色表示,负整数用蓝色表示。
二、小数的认识
小数是用分数形式表示的有限小数和无限小数,可以通过数轴来表示。
三、数的倍数和因数
一个数可以被另一个数整除,那么前者就是后者的倍数,后者就是前者的因数。
四、质数和合数
质数只有1和自身两个因数的数,而合数有多个因数。
五、图形的认识
了解矩形、正方形、三角形和梯形等各种图形的特点,并能根据给出的条件进行判断和分类。
六、一百以内的加减法
加法和减法是最基本的运算,通过练习一百以内的加减法,能够提高计算能力和思维能力。
七、一百以内的乘法和除法
通过掌握一百以内的乘法和除法,培养学生的快速计算能力和数学思维能力。
八、长度、面积和体积的认识
通过实物和图形的比较,了解长度、面积和体积的概念,能够进行简单的计算和转换。
九、时间的认识
学习时钟的使用,能够准确地读取时间和计算时间的过程。
十、钱币和价格的认识
认识各种钱币的面值和常见商品的价格,能够进行简单的货币换算和价格比较。
十一、数据的收集和整理
通过观察和统计,能够对数据进行收集和整理,并用图表的形式进行展示和分析。
以上是人教版小学数学六年级上册的主要知识点归纳。
希望同学们能够认真学习和掌握这些知识,为接下来的学习打下坚实的基础。
人教版数学六年级上册知识点总结经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
下面是整理的人教版数学六年级上册知识点,仅供参考希望能够帮助到大家。
人教版数学六年级上册知识点一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。
分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。
“%”的两个0要小写,不要与百分数前面的数混淆。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。
6 2222(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。
2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数.所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。
的27×512.27 表示: 512 是多少。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
【导语】⼈教版⼩学六年级上册教材内容包括:分数乘法,位置与⽅向,分数除法,圆,百分数,统计,数学⼴⾓和数学实践活动等。
其中分数乘法和除法,圆,百分数等是本册教材的重点内容。
准备了以下内容,供⼤家参考。
第⼀单元:分数乘法(⼀)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求⼏个相同加数的和的简便运算。
“分数乘整数”指的是第⼆个因数必须是整数,不能是分数。
2、⼀个数乘分数的意义就是求⼀个数的⼏分之⼏是多少。
“⼀个数乘分数”指的是第⼆个因数必须是分数,不能是整数。
(第⼀个因数是什么都可以)(⼆)分数乘法计算法则:1、分数乘整数的运算法则是:分⼦与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是⽤整数和下⾯的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:⽤分⼦相乘的积做分⼦,分母相乘的积做分母。
(分⼦乘分⼦,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的⽅法是:分⼦、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分⼦、分母中,两个可以约分的数先划去,再分别在它们的上、下⽅写出约分后的数。
(约分后分⼦和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分⼦、分母同时乘或者除以⼀个相同的数(0除外),分数的⼤⼩不变。
(三)积与因数的关系:⼀个数(0除外)乘⼤于1的数,积⼤于这个数。
a×b=c,当b >1时,c>a。
⼀个数(0除外)乘⼩于1的数,积⼩于这个数。
a×b=c,当b <1时,c<a(b≠0)。
⼀个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进⾏因数与积的⼤⼩⽐较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号⾥⾯的,再算括号外⾯的。
六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。
小学数学六年级上册知识点总结12月30日1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
12月31日10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
新课标人教版小学六年级数学上册全册知识点归纳总结期中期末要点复习数学研究笔记第一单元:平面直角坐标系数对是由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用是确定一个点的位置,类似于经度和纬度的原理。
例如,在方格图(平面直角坐标系)中,用数对(3,5)表示(第三列,第五行)。
需要注意的是,数对(X,5)的行号不变,表示一条横线;数对(5,Y)的列号不变,表示一条竖线。
行号叫做横排,列号叫做竖排。
图形左右平移行数不变,图形上下平移列数不变。
两点间的距离与基准点的选择无关,基准点不同导致数对不同,但两点间的距离不变。
第二单元:分数乘法分数乘法的意义有两种情况。
一种是分数乘整数,与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
另一种是一个数乘以一个分数,就是求一个数的几分之几是多少。
需要注意的是,第二个因数必须是分数,不能是整数。
分数乘法的计算法则如下:分数乘整数的运算法则是,分子与整数相乘,分母不变。
为了计算简便,可以先约分再计算。
约分是用整数和下面的分母约掉最大公因数。
分数乘分数的运算法则是,用分子相乘的积做分子,分母相乘的积做分母。
如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
分数化简的方法是,分子、分母同时除以它们的最大公因数。
在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
分数的基本性质是,分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。
一、积与因数的关系:当一个数(除0以外)乘以大于1的数时,积大于这个数。
即a×b>c(b>1)。
当一个数(除0以外)乘以小于1的数时,积小于这个数。
即a×b<c(b<1,b≠0)。
当一个数(除0以外)乘以等于1的数时,积等于这个数。
即a×b=c(b=1)。
注意:当进行因数与积的大小比较时,要注意因数为0时的特殊情况。
小学数学六年级上册知识点总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。
整数的定义包括自然数和自然数的相反数。
2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。
整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。
3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。
二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。
2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。
分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。
三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。
2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。
小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。
四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。
2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。
五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。
六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。
2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。
以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。
希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。
人教版六年级数学上册知识点整理概括六年级上册数学知识点单元地点什么是数对?——数对:由两个数构成,中间用逗号分开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确立一个点的地点。
经度和纬度就是这个原理。
例:在方格图顶用数对表示。
注:在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对表示第三列,第二行。
数对的行号不变,表示一条横线,的列号不变,表示一条竖线。
↓↓竖排叫列横排叫行图形左右平移行数不变;图形上下平移列数不变。
两点间的距离与基准点的选择没关,基准点不一样致使数对不一样,两点间但距离不变。
第二单元分数乘法分数乘法意义:分数乘整数的意义与整数乘法的意义同样,就是求几个同样加数的和的简易运算。
注:“分数乘整数”指的是第二个因数一定是整数,不能是分数。
比如:×7表示:求7个的和是多少?或表示:的7倍是多少?一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数一定是分数,不可以是整数。
比如:×表示:求的是多少?×表示:求9的是多少?A×表示:求a的是多少?分数乘法计算法例:分数乘整数的运算法例是:分子与整数相乘,分母不变。
注:为了计算简易能约分的可先约分再计算。
约分是用整数和下边的分母约掉最大公因数。
分数乘分数的运算法例是:用分子相乘的积做分子,分母相乘的积做分母。
注:假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
分数化简的方法是:分子、分母同时除以它们的最大公因数。
在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。
分数的基天性质:分子、分母同时乘或许除以一个同样的数,分数的大小不变。
积与因数的关系:一个数乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a.一个数乘小于1的数,积小于这个数。
a×b=c,当b1时,ca③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混杂运算混杂运算用梯等式计算,等号写在个数字的左下角。
小学数学六年级上册知识点总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
表示两个比相等的式子叫做比例,是比的意义。
比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
17.比和比例的区别(1)意义、项数、各部分名称不同。
比表示两个数相除;只有两个项:比的前项和后项。
如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
a:b=3:4 这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。
比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。
比例的性质用于解比例。
联系:比例是由两个相等的比组成。
18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
因此,比和比例的意义也有所不同。
而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:比和比例有着密切联系。
比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。
比例是由比组成的,如果没有两种量的比,比例就不会存在。
比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。
如果两个比相等,那么这两个比就可以组成比例。
成比例的两个比的比值一定相等。
1月1日20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
21.圆心:圆任意两条对称轴的交点为圆心。
注:圆心一般符号O表示22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
25.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
26.圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2;,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]229.百分数与分数的区别(1)意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数还可以表示两数之间的倍数关系.(2)应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义. (4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
30.百分数应用百分数一般有三种情况:①100%以上,如:增长率、增产率等。
②100%以下,如:发芽率、成长率等。
③刚好100%,如:正确率,合格率等。
31.百分数的意义百分数只可以表示分率,而不能表示具体量,所以不能带单位。
百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。
32.日常应用每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。
20%、10%让人一目了然,既清楚又简练。
知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。
连接圆上任意两点的线段叫做弦。
圆中最长的弦为直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。
7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO<r。
百分数的由来200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。
如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。
而后,人们在分数的基础上又以100做基数,发明了百分数。
1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。
2、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。
(2)区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
③、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
② 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(三)常见的分数与小数、百分数之间的互化21 = 0.5 = 50% 51 = 0.2 = 20% 85 = 0.625 = 62.5% 41 = 0.25 = 25% 52 = 0.4 = 40% 81 = 0.125 = 12.5% 43 = 0.75 = 75% 53 = 0.6 = 60% 83 = 0.375 = 37.5% 161 = 0.0625 = 6.25% 54 = 0.8 = 80% 87 = 0.875 = 87.5% 251 = 0.04 = 4﹪ 252 = 0.08 = 8﹪ 253 = 0.12 = 12﹪ 254 = 0.16 = 16﹪三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量粉的重量 ⑦烘干率 =%100⨯烘干前的重量烘干后的重量 ⑧含水率 = %100⨯-烘干前的重量烘干后的重量烘干前的重量 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。