函数定义域的类型和求法
- 格式:ppt
- 大小:160.00 KB
- 文档页数:14
高中常见的四种函数的定义域求法 定义域的范围是指使得函数有意义的x 的范围,如果一个函数是由若干个基本函数构成,只需要把每个基本函数有意义的时候x 范围求解出来,最终求这几个基本函数的x 的范围的交集即可,高中常见的四种函数的定义域求法一一讲解下。
一、母版题(1)求 x y =的定义域范围.解题思路:平方根具有双重非负性,所以定义域范围x ≥0.(2)求 x1y =的定义域范围.解题思路:分母等于0时,式子无意义,故分母不等于0,所以定义域范围x ≠0.(3)求 0x y )(=的定义域范围. 解题思路:00无意义,所以定义域范围x ≠0.(4)求 log x ay =的定义域范围. 解题思路:对数函数真数必须大于0,所以定义域范围x >0.以上四种是最常见的定义域求解题目,主要可以归纳为四句话:1. 平方根具有双重非负性.2. 分数分母不等于0.3. 0的0次方无意义.4. 对数函数真数务必大于0.二、子版题(母版题+形式变化) 主要是整体化原则的应用,x y =、x 1y =、0x y )(=、log x ay =这四个基本函数里的x 是一个整体,可以为任意函数,只需要这个整体满足:平方根具有双重非负性,分数分母不等于0,0的0次方无意义.对数函数真数务必大于0.1. 二次根式型函数x y =求定义域(1)求 x -1y =的定义域范围.解题思路:只需要把1-x 当做一个整体,要使得二次根式有意义,内部整体大于等于0,所以只需要1-x ≥0(按照一元一次不等式思路求x 范围).求出x 范围即为定义域范围。
(2)求 23y 2+-=x x 的定义域范围.解题思路:只需要把232+-x x 当做一个整体,要使得二次根式有意义,内部整体大于等于0,所以只需要232+-x x ≥0(按照一元二次不等式的解题思路,求x 范围).求出x 范围即为定义域范围。
2. 反比例型函数分数型函数x1y =求定义域(1)求 1-x 1y =的定义域范围. 解题思路:只需要把x-1当做一个整体,要使该式子得有意义,分母不为0即可,所以只需要x-1≠0(按照一元一次不等式的解题思路,求x 范围).求出x 范围即为定义域范围。
函数的定义域、值域方法总结一.常见函数(基本初等函数):1.)(为常数C C y = 2.)0(≠+=k b kx y 3.)0(2≠++=a c bx ax y 4.xy 1= 5.幂函数:)(Q a x y a∈=(包括前四个函数) 6.指数函数:)10(≠>=a a a y x 且 7.对数函数:)10(log ≠>=a a x y a 且8.三角函数:x y sin =,x y cos =,x y tan =,x y cot =,x y sec =,x y csc =由以上函数进行四则运算、复合运算得到的函数都是初等函数。
如:d cx bx ax y +++=23,x x y 2log 1sin +=,xxy 513+=,试着分析以上函数的构成。
二.定义域:“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、换元时易忽略定义域。
函数的三要素: 对应法则、定义域、值域只有当这三要素完全相同时,两个函数才能称为同一函数。
函数定义域的求法tan ...(,,)2y x x R x k k ππ=∈≠+∈Z 且cot y x = (),,x R x k k π∈≠∈Z 且例:判断下列各组中的两个函数是否是同一函数?为什么?1.3)5)(3(1+-+=x x x y52-=x y 解:不是同一函数,定义域不同2. 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同3. x x f =)( 2)(x x g = 解:不是同一函数,值域不同 4.x x f =)( 33)(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同练习求下列函数的定义域 ①)2lg(2x x y -=②1112++-=x x y③02)45()34lg()(-++=x x x x f④)1(log 1|2|)(2---=x x x f⑤(x 1)(x)f x -=⑥1(x)tan f x =⑦(x)lgcos f x = ⑧(x)f =⑨2(x)lg(3x 1)f =++⑩ y =ln(x +1)-x2-3x +4关于复合函数例1、设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。
函数定义域的类型和求法一、 常规型函数的定义域1.1ln(1)y x =++________ ____ 2.()f x =3.lg(1)()1x f x x +=- 4.21log (2)y x =-5.1)(log 1)(22-=x x f 6.sin x y +=二、抽象函数型函数的定义域已知)(x f 的定义域,求)]([x g f 的定义域1.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为2.已知函数()f x 的定义域为()1,0-,则函数)(log 2x f 的定义域为已知)]([x g f 的定义域,求)(x f 的定义域1.已知函数)12(+x f 的定义域为()1,0-,则函数)(x f 的定义域为2.已知函数)53-(+x f 的定义域为[0,3],则函数)(x f 的定义域为已知)]([x g f 的定义域,求)]([x h f 的定义域1.已知)1(+x f 的定义域为[−2,3),则)2-(x f 的定义域为2.已知)1(+x f 的定义域为[0,1],则)2-2(x f 的定义域为已知)(x f 的定义域,求四则运算型函数的定义域1.若)(x f 的定义域为[- 3,5],则)52()()(++-=x f x f x g 的定义域2.若)(x f 的定义域为[- 3,5],则)2-1(-)()(x f x f x g =的定义域三、逆向型1.已知函数1)(+=ax x f (0<a )的定义域为R ,求实数a 的取值范围.2.已知函数86)(2++-=m mx mx x f 的定义域为R ,求实数m 的取值范围.3.已知函数347)(2+++=kx kx kx x f 的定义域是R ,求实数k 的取值范围.四、实际问题型1.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的定义域.2.用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域.。
常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。
函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。
定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。
常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。
下面将逐个介绍这些函数解析式的定义域和值域的求法。
1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。
2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。
对于一般的二次函数,定义域是实数集,即(-∞, +∞)。
值域则取决于二次函数的开口方向和开口点的位置。
-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。
-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。
3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。
指数函数的定义域是实数集,即(-∞,+∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,指数函数的值域为(0,+∞)。
-当a>1时,指数函数的值域为(0,+∞)。
-当a=1时,指数函数的值域为{1}。
4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。
对数函数的定义域是正实数集,即(0, +∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,对数函数的值域为(-∞,+∞)。
-当a>1时,对数函数的值域为(-∞,+∞)。
5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的定义域是实数集,即(-∞,+∞)。
值域则取决于具体的三角函数类型。
-正弦函数的值域为[-1,1]。
-余弦函数的值域为[-1,1]。
函数的定义域和常见求解方法函数的定义域(domain)是指函数能够接受的实际输入值的集合。
换句话说,定义域是使函数有意义的所有可能的输入值的集合。
在数学中,函数一般表示为f(x),其中x是函数的自变量,而f(x)则是自变量x所对应的函数值。
常见的函数定义域包括实数域(-∞,+∞),有理数集,整数集,自然数集,以及其他特定的定义域,如正数集,三角函数等。
在确定函数的定义域时,我们需要注意以下几点:1.分式函数的定义域:分式函数的定义域由分母不等于零的值所构成。
我们需要找出使分母不等于零的x的值,将这些值作为定义域的一部分。
2.平方根函数的定义域:平方根函数的定义域要求被开方数非负,即要求根号内的数大于等于零。
3.对数函数的定义域:对数函数的定义域要求底数大于零,并且对数函数的参数值必须大于零。
常见的函数求解方法包括图像法、方程法、函数变量代换法、函数性质法等。
1.图像法:图像法是通过绘制函数的图像来找出函数的解。
我们将函数的图像与坐标系结合起来,寻找函数与x轴的交点,即函数的解。
2.方程法:方程法是通过将函数等式转化为方程的形式,然后通过解方程来找出函数的解。
在方程法中,我们可以使用各种方法来解方程,如因式分解法、配方法、根号消去法等。
3.函数变量代换法:函数变量代换法是通过引入新的变量来转化函数,从而简化函数的形式。
通过选择适当的变量代换,我们可以将原函数转化为更简单的函数,进而求解出函数的解。
4.函数性质法:函数性质法是通过利用函数的性质来求解函数的解。
例如,通过函数的奇偶性、单调性、周期性、对称性等性质,我们可以得到函数的一些特殊解。
在实际问题中,常常需要综合运用以上多种方法来求解函数的解。
根据具体的函数形式和问题的要求,选择最合适的方法进行求解。
同时,在进行函数求解时,我们也需要注意函数定义域的范围,以保证求解出的函数解在定义域内有效。
函数定义域的几种求法函数定义域指的是函数的自变量可能取的值的集合,也就是函数的有效输入值集合。
求函数定义域的几种方法有:1、根据函数的表达式或方程求解法这是最常见的求解函数定义域的方法,根据函数表达式或者是方程,计算有效解集,从而求出函数定义域。
例如:函数f(x) = x2 +1 = 0, 求它的定义域;由此等式我们可以得到 x2 = -1,则有x=$$\sqrt{-1}$$, 但是$$\sqrt{-1}$$不存在,从而该函数f(x)的定义域就是空集。
2、根据函数的几何图形特征求解法这是一种不常用的求解函数定义域的方法,简而言之就是通过分析函数的几何图形特征,来求出函数定义域。
例如:如果我们想求函数y= 1/x的定义域,则我们可以发现,当x的值小于0时,y的值会变成负数,而当x的值大于0时,y的值会变成正数;所以我们可以得出结论,这个函数的定义域为 x>0。
3、根据定义求解法例如:求函数g(x) = $$\sqrt{x}$$的定义域,由于x的开平方根√x必须大于等于0,所以该函数的定义域就是[0,+∞)。
4、根据解析学原理求解法对于一般函数,我们还可以运用解析学原理求解函数定义域,这个是一种较为复杂但可以非常准确的求解函数定义域的方法。
例如:求函数h(x) = |x| - 1的定义域;首先,我们使用变量y来表示y = |x| ,并且通过解析学原理可以得到y = x, x≥ 0 或者 y = -x, x < 0 。
根据等式 y - 1 =0 我们可以得到|x| - 1 = 0,即x=1或者x= -1。
所以该函数的定义域为( -∞, -1] U [1,∞)。
函数一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k∈Z ;4、一次函数、二次函数、指数函数的定义域为R;5、定义域的相关求法:利用函数的图象或数轴法;利用其反函数的值域法;6、复合函数定义域的求法:推理、取交集及分类讨论.例题:1、求下列函数的定义域3、已知函数y=lgmx2-4mx+m+3的定义域为R,求实数m的取值范围.解析:利用复合函数的定义域进行分类讨论当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R;当m≠0时,则 mx2-4mx+m+3>0,①m<0时,显然原函数定义域不为R;②m>0,且△=-4m2-4mm+3<0 时,即0<m<1,原函数定义域为R, 所以当m∈0,1 时,原函数定义域为R.4、求函数y=logx + 1 x≥4 的反函数的定义域.2解析:求原函数的值域由题意可知,即求原函数的值域,x≥2∴y≥3∵x≥4,∴log2所以函数y=logx + 1 x≥4 的反函数的定义域是3,+∞.2x的定义域.5、函数f2x的定义域是-1,1,求flog2解析:由题意可知2-1≤2x≤21→ fx定义域为1/2,2→ 1/2≤logx≤2→ √ ̄2≤x≤4.2x的定义域是√ ̄2,4.所以flog2二、函数的值域及求法1、一次函数y=kx+bk≠0的值域为R;2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,y≤-△/4a ;3、反比例函数的值域:y≠0 ;4、指数函数的值域为0,+∞;对数函数的值域为R;5、正弦、余弦函数的值域为-1,1即有界性;正切余切函数的值域为R;6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.例题::求下列函数的值域解析:1、利用求反函数的定义域求值域先求其反函数:f-1x=3x+1/x-2 ,其中x≠2,由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2}2、利用反比例函数的值域不等于0由题意可得,因此,原函数的值域为1/2,+∞4、利用分离变量法和换元法设法2x=t,其中t>0,则原函数可化为y=t+1/t-1 → t=y+1/y-1 >0∴y>1或y<-1 5、利用零点讨论法由题意可知函数有3个零点-3,1,2, ①当x<-3时,y=-x-1-x+3-x-2=-3x ∴y>9 ②当-3≤x<1时,y=-x-1+x+3-x-2=-x+6 ∴5<y≤9 ③当1≤x<2时,y=x-1+x+3-x-2=x+4 ∴5≤y<6 ④当x ≥2时,y=x-1+x+3+x-2=3x ∴y≥6 综合前面四种情况可得,原函数的值域是5,+∞6、利用函数的有界性三、函数的单调性及应用1、 A为函数fx定义域内某一区间,2、单调性的判定:作差fx1-fx2判定;根据函数图象判定;3、复合函数的单调性的判定:fx,gx 同增、同减,fgx 为增函数,fx,gx一增、一减,fgx 为减函数.例题:2、设a>0且a≠1,试求函数y=loga4+3x-x2的单调递增区间.解析:利用复合函数的单调性的判定由题意可得原函数的定义域是-1,4,设u=4+3x-x2 ,其对称轴是 x=3/2 ,所以函数u=4+3x-x2 ,在区间-1,3/2 上单调递增;在区间3/2 ,4上单调递减.u 在其定义域内为增函数,由x↑→u↑→y↑ ,得函数①a>1时,y=loga4+3x-x2的单调递增区间.u=4+3x-x2的单调递增区间-1,3/2 ,即为函数y=loga②0<a<1时,y=logu 在其定义域内为减函数,由x↑→u↓→y↑ ,得a4+3x-x2的单调递增区间.函数u=4+3x-x2的单调递减区间3/2 ,4,即为函数y=loga2-ax 在0,1上是x 的减函数,求a的取值范围;3、已知y=loga解析:利用复合函数的单调性的判定由题意可知,a>0.设u=gx=2-ax,则gx在0,1上是减函数,且x=1时, =2-a .gx有最小值umin=2-a>0则可,得a<2.又因为u=gx=2-ax>0,所以, 只要 umin又y=log2-ax 在0,1上是x 减函数,u=gx在0,1上是减函数,au是增函数,故a>1.即x↑→u↓→y↓ ,所以y=loga综上所述,得1<a<2.4、已知fx的定义域为0,+∞,且在其上为增函数,满足fxy=fx+fy,f2=1 ,试解不等式fx+fx-2<3 .解析:此题的关键是求函数值3所对应的自变量的值由题意可得,f4=f2+f2=2 ,3=2+1=f4+f2=f4×2=f8又fx+fx-2=fx2-2x所以原不等式可化成fx2-2x<f8所以原不等式的解集为{x|2<x<4}四、函数的奇偶性及应用1、函数fx的定义域为D,x∈D ,f-x=fx → fx是偶函数;f-x=-fx→是奇函数2、奇偶性的判定:作和差f-x± fx=0 判定;作商fx/f-x= ±1,fx≠0 判定3、奇、偶函数的必要条件是:函数的定义域关于原点对称;4、函数的图象关于原点对称奇函数;函数的图象关y轴对称偶函数5、函数既为奇函数又为偶函数 fx=0,且定义域关于原点对称;6、复合函数的奇偶性:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.例题:解析:①利用作和差判断由题意可知,函数的定义域是R,设x为R内任意实数,即,fx = -fx ,∴原函数是奇函数.②利用作商法判断由题意可知,函数的定义域是R,设x为R内任意实数,2∵fx 的图象关于直线x=1对称,∴ f1-1-x=f1+1-x ,x∈R ,即fx =f2-x ,又∵ fx在R上为偶函数,→ f-x=fx=f2-x=f2+x∴ fx是周期的函数,且2是它的一个周期.五、函数的周期性及应用1、设函数y=fx的定义域为D,x∈D,存在非0常数T,有fx+T=fx → fx为周期函数,T为fx的一个周期;2、正弦、余弦函数的最小正周期为2π,函数y=Asinωx+φ和y=Acosωx+φ的最小正周期是T = 2π/|ω| ;3、正切、余切函数的最小正周期为π,函数y=Atanωx+φ和y=Acotωx+φ的周期是T=π/|ω| ;4、周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法;5、一般地,sinωx 和cosωx类函数加绝对值或平方后周期减半,tanωx 和cotωx类函数加绝对值或平方后周期不变如:y=|cos2x| 的周期是π/2 ,y=|cotx|的周期是π.例题:1、求函数 y = |sinx|+|cosx|的最小正周期.解析:利用周期函数的定义y = |sinx|+|cosx|=|-sinx|+|cosx|=|cosx + π/2|+|sinx + π/2|即对于定义域内的每一个x,当x 增加到x + π/2时,函数值重复出现,因此函数的最小正周期是π/2 .3、 求函数y=sin3x+tan2x/5 的最小正周期.解析:最小公倍数法和公式法,设fx 、gx 是定义在公共集合上的两上三角周期函数,T 1、、T 2分别是它们的周期,且T 1≠T 2,则fx± gx 的最小正周期等于T 1、、T 2的最小公倍数.注:分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数.由题意可知,sin3x的周期是T1= 2π/3,tan2x/5的周期是T2=5π/2,∴原函数的周期是T=10π/1 =10π .4、求函数y=|tanx|的最小正周期.解析:利用函数的图象求函数的周期函数y=|tanx|的简图如图:由函数y=|tanx|的简图可知,其最小正周期是π.5、设fx是-∞,+∞上周期为2的奇函数,当0≤x≤1时,fx=x,求f解析:利用周期函数的定义由题意可知,f2+x = fx∴ f =f =f =-f =-0.5。
函数的定义域和常见求解方法一、函数的定义域在一般的函数定义中,常见的定义域包括实数、有理数和整数等。
例如,函数$f(x)=\sqrt{x}$的定义域为非负实数集合即$[0,+\infty)$,因为负数的平方根是没有意义的。
又如,函数$g(x)=\dfrac{1}{x}$的定义域为除0以外的所有实数,即$(-\infty, 0) \cup (0, +\infty)$,因为0不能作为除数。
当给定一个复合函数时,可以通过多个函数的定义域的交集得到整个函数的定义域。
例如,对于函数$h(x)=\sqrt{\log(x)}$,先看到内层函数$\log(x)$的定义域是正实数,而外层函数$\sqrt{x}$的定义域是非负实数。
所以整个函数$h(x)$的定义域即正实数集合$[0,+\infty)$。
二、常见的求解方法1.方程求解法方程求解法是指通过解方程的方式求解函数的取值范围。
常见的方程求解法包括代数法和计算法。
代数法是通过对方程进行变形或利用数学性质来求解,而计算法是通过运算符和数值的计算来求解。
举例来说,对于函数$f(x)=\dfrac{1}{(x-3)^2}$,要求函数的定义域,需要解方程$(x-3)^2\neq 0$。
通过解这个方程,可以得到$x \neq 3$,即函数的定义域为整个实数集合除去32.不等式求解法不等式求解法是通过对不等式进行变形或运算,得出函数的定义域。
常见的不等式求解法包括分段法和绝对值法。
对于分段函数,可以对每一段函数的定义域进行求解,然后将这些定义域的并集作为整个函数的定义域。
对于函数$f(x) = \sqrt{a-x}$,当$a>x$时,根式内部大于等于0,所以函数的定义域为$(-\infty, a]$。
3.图像法图像法是通过观察函数的图像来确定函数的定义域。
对于一元函数,可以通过绘制函数的图像来判断函数在何种区间内有定义。
例如,为了求解函数$f(x) = \sqrt{x^2-4}$的定义域,可以考虑到根式内部的取值不能小于0。
8种求定义域的方法定义域是指一个函数中所有可能输入的集合。
具体来说,定义域是指函数中的自变量可以取得的所有值。
在数学中,求定义域是解决一个函数的自变量的取值范围的问题。
下面是八种常见的方法来求定义域。
方法1:显式定义对于一些函数,定义域可以通过其显式定义来确定。
例如,对于函数f(x)=1/x,定义域可以通过注意到除数不能为零来确定,即x不能为0。
因此,定义域就是除去0之后的实数集合:R\{0}。
方法2:关系定义有些函数的定义域可以通过直接观察定义函数的关系来确定。
例如,对于函数f(x)=√(2x-1),注意到根号内的表达式必须大于等于零,即2x-1≥0。
解这个不等式可以得到定义域为x≥1/2方法3:对数函数对于对数函数,定义域必须满足底数必须大于零且不等于1,并且实数必须大于零。
例如,对于函数f(x) = log₂(x + 3),定义域为x + 3 > 0,即x > -3方法4:分式函数对于分式函数,定义域必须使分母不等于零。
例如,对于函数f(x)=1/(x-2),定义域为x≠2方法5:根式函数对于根式函数,定义域必须使根号内的表达式大于等于零。
例如,对于函数f(x)=∛(x-4),根号内的表达式必须大于等于零,即x-4≥0,解不等式可得x≥4、因此,定义域为x≥4方法6:三角函数对于三角函数,定义域是实数的所有值,因为三角函数在整个数轴上都有定义。
例如,对于函数f(x) = sin(x),定义域为所有实数:(-∞, ∞)。
方法7:反三角函数对于反三角函数,定义域必须使其定义范围内的表达式满足相应的条件。
例如,对于函数f(x) = arcsin(x),由于反正弦函数的定义域是[-1, 1],因此定义域必须满足-1 ≤ x ≤ 1方法8:参数化定义对于一些函数,可以通过将函数参数化来求取定义域。
例如,对于函数f(x)=√(x²-1),我们可以通过取x²-1≥0来求取定义域。