圆的标准方程教案
- 格式:docx
- 大小:40.80 KB
- 文档页数:4
人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会利用圆的标准方程解决实际问题。
3. 掌握圆的标准方程的推导和应用方法。
教学内容:1. 圆的标准方程的定义和意义。
2. 圆的标准方程的推导过程。
3. 圆的标准方程的应用实例。
教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。
1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。
1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。
第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。
2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。
2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。
第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。
3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。
3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。
教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。
2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。
3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。
教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。
2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。
3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。
圆的标准方程》教案教学目标:1.回顾圆的几何要素,掌握圆的标准方程在直角坐标系中的应用。
2.培养学生运用坐标法研究几何的能力,熟练掌握待定系数法求圆的方程。
3.通过实际问题的研究,让学生认识到理论来源于实际,服务于实际。
教学重难点:重点:圆的标准方程的推导和应用。
难点:实际问题和综合问题。
教学过程:一、情景导入引入问题:生活中有很多圆形建筑,如赣南客家围屋、赵州桥等。
什么是圆?圆有哪些特征?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?二、交流展示1.怎样确定圆的标准方程?三、合作探究探究:圆的标准方程的推导。
教师引导学生确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。
设M(x,y)为这个圆上任意一点,那么点M满足的条件是P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件=r²。
化简可得 x²-2ax+a²+y²-2by+b²=r²,即 (x-a)²+(y-b)²=r²,引导学生理解:若点M(x,y)在圆上,由上述讨论可知,点M的坐标适合方程(x-a)²+(y-b)²=r²;反之,若点M(x,y)的坐标适合方程(x-a)²+(y-b)²=r²,这说明点M与圆心的距离是r,即点M在圆心为A的圆上。
方程(x-a)²+(y-b)²=r²就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
学生理解圆的方程的特点:1) 方程的左边是圆上的点的横、纵坐标与圆心相应横、纵坐标差的平方和;2) 两个变量的系数都是1;3) 方程的右边是某个实数的平方,也就是一定为正数。
例1:已知两点M1(4,9)和M2(6,3),求以M1M2为直径的圆的方程。
高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。
-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
圆的标准方程教案一、知识点概述圆是平面上所有到圆心距离相等的点的集合。
圆的标准方程是指将圆心设为坐标系原点,圆的半径为r,则圆上任意一点(x,y)满足方程x2+y2=r2。
二、教学目标1.理解圆的定义和性质;2.掌握圆的标准方程的概念和求解方法;3.能够应用圆的标准方程解决相关问题。
三、教学重点1.圆的标准方程的概念和求解方法;2.圆的性质和应用。
四、教学难点1.圆的标准方程的应用;2.圆的相关问题的解决方法。
五、教学内容1. 圆的定义和性质圆是平面上所有到圆心距离相等的点的集合。
圆的性质包括:1.圆的直径是圆上任意两点间最长的线段;2.圆的半径垂直于圆上的切线;3.圆的弦垂直于弦所对的圆心角的平分线;4.圆上的任意两条弦所对的圆心角相等;5.圆上的任意两个点所对的圆心角相等;6.圆上的任意一点到圆心的距离等于圆的半径。
2. 圆的标准方程的概念和求解方法圆的标准方程是指将圆心设为坐标系原点,圆的半径为r,则圆上任意一点(x,y)满足方程x2+y2=r2。
求解圆的标准方程的步骤如下:1.确定圆心坐标(a,b);2.确定圆的半径r;3.将圆心坐标和半径代入圆的标准方程x2+y2=r2中。
3. 圆的应用圆的应用包括:1.圆的面积和周长的计算;2.圆的切线和法线的求解;3.圆与直线的位置关系;4.圆与圆的位置关系。
六、教学方法1.讲解法:通过讲解圆的定义、性质和标准方程的概念和求解方法,让学生掌握圆的基本知识;2.实例法:通过实例讲解圆的应用,让学生掌握圆的应用方法;3.互动法:通过互动讨论和小组合作,让学生积极参与,提高学习效果。
七、教学评估1.课堂练习:通过课堂练习,检测学生对圆的定义、性质和标准方程的掌握程度;2.作业评估:通过作业评估,检测学生对圆的应用方法的掌握程度;3.考试评估:通过考试评估,检测学生对圆的知识点的掌握程度。
八、教学资源1.教材:高中数学教材;2.视频:圆的标准方程教学视频;3.练习题:圆的标准方程练习题。
圆的标准方程教案一、教学目标1、理解圆的标准方程的推导过程。
2、掌握圆的标准方程的形式和特点。
3、能够根据圆的标准方程求出圆心坐标和半径。
4、会用待定系数法求圆的标准方程。
二、教学重难点1、教学重点圆的标准方程的推导。
圆的标准方程的应用。
2、教学难点圆的标准方程的推导过程中坐标变换的理解。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入通过展示生活中常见的圆形物体,如车轮、圆盘等,引导学生思考圆的特征。
提问学生如何描述一个圆,从而引出本节课的主题——圆的标准方程。
2、知识讲解(1)圆的定义在平面直角坐标系中,以点\((a,b)\)为圆心,以\(r\)为半径的圆的定义是:平面内到定点\((a,b)\)的距离等于定长\(r\)的点的集合。
(2)圆的标准方程的推导设点\(M(x,y)\)是圆上任意一点,根据圆的定义,点\(M\)到圆心\((a,b)\)的距离等于半径\(r\)。
根据两点间的距离公式可得:\(\sqrt{(x a)^2 +(y b)^2} = r\)两边平方可得:\((x a)^2 +(y b)^2 = r^2\)这就是圆的标准方程。
(3)圆的标准方程的特点方程\((x a)^2 +(y b)^2 = r^2\)中,有三个参数\(a\)、\(b\)、\(r\),即圆心坐标\((a,b)\)和半径\(r\)。
当圆心在原点\((0,0)\)时,圆的标准方程为\(x^2 + y^2 =r^2\)。
3、例题讲解例 1:已知圆的圆心为\((2,-3)\),半径为\(4\),求圆的标准方程。
解:因为圆心为\((2,-3)\),半径为\(4\),所以圆的标准方程为\((x 2)^2 +(y + 3)^2 = 16\)例 2:求以点\((-1,2)\)为圆心,且过点\((3,4)\)的圆的标准方程。
首先计算半径\(r\):\(r =\sqrt{(3 + 1)^2 +(4 2)^2} =\sqrt{16 + 4} =2\sqrt{5}\)所以圆的标准方程为\((x + 1)^2 +(y 2)^2 = 20\)4、课堂练习(1)已知圆的圆心为\((-3,4)\),半径为\(\sqrt{5}\),写出圆的标准方程。
4.1.1圆的标准方程武穴中学伍雅宜一.三维教学目标:1.知识与技能目标:使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径。
能够判断点与圆的位置关系。
会用待定系数法求圆的标准方程;2.过程与方法目标:在学习过程中培养学生用代数的方法解决几何问题的能力,加强学生理论联系实际的能力3.情感,态度与价值目标:培养学生主动探究知识、合作交流的意识,激发学生学习数学的热情和兴趣。
二.教学重点:(1)圆的标准方程的推导过程和圆的标准方程特点的明确。
(2)点与圆的位置关系(3)求圆的标准方程三.教学难点:会根据不同的已知条件,用不同的方法去求圆的标准方程。
课时安排1课时四教学过程1.提出问题具有什么性质的点的轨迹称为圆?讨论结果:平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径。
给出圆的标准方程确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a、b、r都是常数,r>0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件2)2x-a-=r.①+(y)(b将上式两边平方得(x-a)2+(y-b)2=r2.化简可得(x-a)2+(y-b)2=r2.②方程②就是圆心为C(a,b),半径长为r的圆的方程,我们把它叫做圆的标准方程。
2.总结圆的标准方程的特点(1)明确给出了圆心坐标和半径。
(2)圆的标准方程含有三个参量,即a,b,r(3)若圆心在坐标原点,则圆的方程为222x y r+=当r=1时,为单位圆。
3.初步运用写出下列各圆的方程:(1)圆心在点C(3, 4 )(2) 经过点P(5,1),圆心在点C(8,-3)(3)圆心是原点,半径3写出下列各圆的圆心坐标和半径:(1)()()22129x y ++-=(2)()222x a y a ++=4.例题讲解例1()()()()()12124,9,6,3,693353P PP N Q 已知P 求以为直径的圆的方程。
圆的标准方程【教课目的】(1)认识圆的标准方程并掌握推导圆的方程的思想方法;(2)掌握圆的标准方程,并能依据方程写出圆心的坐标和圆的半径;(3)能依据所给条件,经过求半径和圆心的方法求圆的标准方程。
【教课重难点】圆的标准方程及其运用。
圆的标准方程的推导和运用。
【教课过程】一、问题情境1.情境:河北赵州桥是世界上历史最悠长的石拱桥,其圆拱所在的曲线是圆,我们可否表示出该圆弧所在圆的方程呢?2.问题:在表示方程从前我们应当先观察有没有坐标系?假如没有坐标系,我们应当如何成立坐标系?如何找到表示方程的等式?二、学生活动回想初中相关圆的定义,如何用方程将圆表示出来?三、建构数学1.由引例赵州桥圆弧所在圆的方程的求解过程推导一般圆P(x, y) 的标准方程:一般地,设点 P( x, y) 是以 C (a, b) 为圆心, r 为半径的圆上的C ( a, b) O随意一点,则 |CP | r ,由两点间距离公式,获得:(x a)2 (y b)2 r 即( x a)2 ( y b)2r 2 (1) ;反过来,若点 Q 的坐标 ( x 0 , y 0 ) 是方程 (1) 的解,则 ( x 0 a)2 ( y 0 b) 2 r 2 ,即 ( x 0 a) 2 ( y 0 b)2 r ,这说明点 Q ( x 0 , y 0 ) 到点 C (a, b) 的距离为 r 即点 Q 在以 C (a,b) 为 圆心, r 为半径的圆上;2.方程 (x a)2 (y b)2 r 2 (r 0) 叫做以 (a,b) 为圆心, r 为半径的圆的标准方程; 3.当圆心在原点 (0,0) 时,圆的方程则为 x 2y 2r 2 (r 0) ;特别地,圆心在原点且半径为1的圆往常称为单位圆;其方程为 x 2 y 2 1四、数学运用1.例题:例 1.分别说出以下圆方程所表示圆的圆心与半径:(2) ( x 2)2( y 3)27; ( ) ( x 5) 2 ( y 4) 2 182(3)x 2( y 23( ) 2 y 21441)4 x (5) ( x 4)2y 24解:(以下表)方程圆心半径( x 2) 2 ( y 3)2 7 (2,3)7 ( x 5)2 ( y 4) 2 18 ( 5, 4) 3 2x 2 ( y 1)2 3 (0, 1)3x 2y 2 144(0,0) 12( x 4) 2 y 2 4(4,0)2例 .( )写出圆心为 A(2, 3),半径长为 5 的圆的方程,并判断点 M (5, 7),N( 5, 1)21能否在这个圆上;(2)求圆心是 C (2,3) ,且经过原点的圆的方程。
高中圆的标准方程教案文档一、教学目标1. 知识与技能:(1)理解圆的定义及相关概念;(2)掌握圆的标准方程及其推导过程;(3)能够运用圆的标准方程解决实际问题。
2. 过程与方法:(1)通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)运用数学符号、图形等工具,表示圆的位置和大小;(3)培养学生的逻辑思维能力和几何直观能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流的能力。
二、教学内容1. 圆的定义及相关概念:(1)圆的定义;(2)圆心、半径、直径等概念;(3)圆的性质。
2. 圆的标准方程:(1)圆的标准方程的推导;(2)圆的标准方程的形式;(3)圆的标准方程的应用。
三、教学重点与难点1. 教学重点:(1)圆的定义及相关概念的理解;(2)圆的标准方程的推导和应用。
2. 教学难点:(1)圆的标准方程的推导过程;(2)圆的标准方程在实际问题中的应用。
四、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生主动探究;(2)运用分组讨论法,培养学生的合作能力;(3)采用案例分析法,让学生感受数学与生活的联系。
2. 教学手段:(1)利用多媒体课件,直观展示圆的定义和性质;(2)运用几何画板,动态演示圆的标准方程的形成;(3)提供实际问题,引导学生运用圆的标准方程解决。
五、教学过程1. 导入新课:(1)复习相关概念:点、线、角等;(2)引入圆的定义,引导学生观察生活中的圆;(3)提出问题:如何用数学语言表示圆的位置和大小?2. 探究圆的标准方程:(1)引导学生通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)讲解圆的标准方程的推导过程,引导学生理解并掌握;(3)让学生运用圆的标准方程,解决实际问题。
3. 巩固练习:(1)提供一些有关圆的标准方程的练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解答练习题;(3)教师对学生的解答进行点评和指导。
圆的标准方程教案圆的标准方程教案教学目标•了解圆的基本定义和性质•掌握圆的标准方程的推导过程•理解并能够应用圆的标准方程解决相关问题具体内容1.圆的定义–圆是由平面上到一个定点的距离恒为定值的点的集合。
–圆心:到圆上任意一点的距离相等的那个点称为圆心。
–半径:圆心到圆上任意一点的距离称为半径。
2.圆的性质–圆上任意两点之间的距离等于半径的长度。
–圆上任意一点到圆心的距离等于半径的长度。
–圆的直径是两个任意点之间的最大距离,等于半径的两倍。
3.圆的标准方程的推导–圆心为原点(O, 0)的标准方程:x2+y2=r2•推导过程:–假设圆上一点的坐标为(x, y)–利用圆的性质,得到点(x, y)到原点(0, 0)的距离表达式为√x2+y2–根据圆的定义,该距离应等于半径r,即√x2+y2=r–两边平方可得x2+y2=r24.应用示例–示例1:已知圆心为O(2, 3),半径为5,求圆的标准方程。
–示例2:已知圆的标准方程为x2+y2=16,求圆心和半径。
教学步骤1.引入圆的基本定义和性质,让学生了解圆的特点和基本概念。
2.介绍圆的标准方程的推导过程,引导学生理解推导思路。
3.提供示例,让学生通过实例练习应用圆的标准方程。
4.鼓励学生以小组或个人形式进行讨论,解决更复杂的问题。
5.结合生活和实际问题,让学生应用所学的圆的标准方程解决实际情况。
6.给学生一些拓展题,鼓励他们提出更多的问题和思考。
7.总结课程内容,强调圆的标准方程在解决几何问题中的重要性。
教学资源•教科书或教材相关章节•板书或投影仪,展示圆的标准方程的推导过程•实例问题和解答•拓展题目评估与反馈•在课堂上进行学生的练习和回答问题。
•布置课后作业,检查学生对圆的标准方程的理解和应用能力。
•检查学生解决实际问题的能力,如通过实例或情境题进行评估。
•综合评价学生在课堂讨论、练习和作业中的表现,提供反馈和指导。
圆的标准方程【教学目标】(1)掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题。
(2)通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力。
(3)通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育。
【教学重难点】教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程。
教学难点:运用圆的标准方程解决一些简单的实际问题。
【教学过程】一、情景导入、展示目标前面,大家学习了圆的概念,哪一位同学来回答?1.具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆)。
2.图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小。
二、检查预习、交流展示求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明。
其中步骤(1)(3)(4)必不可少。
三、合作探究、精讲精练探究一:如何建立圆的标准方程呢?1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法。
教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导。
因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y)。
4.1.1 圆的标准方程
宁夏育才中学高红霞
【三维目标】:
1掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
反过来,能根根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力.
2 会用待定系数法求圆的标准方程。
也要掌握数形结合求圆标准方程的方法,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣。
3就本节课而言,让学生欣赏和体验圆的对称性,感受解析几何的奥妙,感受数学美.
【教学重点】:
1圆的标准方程的推导过程,及圆的标准方程特点的明确;
2待定系数法求圆的标准方程
【教学难点】:
1会根据不同的已知条件,利用待定系数法,求圆的标准程。
2 结合初中平面几何所学的圆的性质,分别求出圆心和半径大,写出圆的标
准方程
【教学方法】:
启发-引导-合作探究式
【教学过程】
一、情景创设
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?
探究一:已知圆的圆心A(a,b)及圆的半径R,如何确定圆的方程?
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满 足的条件是(引导学生自己列出)
P={M||MA|=r},
由两点间的距离公式让学生写出点M 适合的条件
r = ①
化简可得: 222()()x a y b r -+-= ②
引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程.
我们把方程②称为圆的标准方程。
(standard equation of circle )(即圆上每一点的横、纵坐标满足的关系式)
注意:
1圆的标准方程的特征,圆心A(a,b),半径r;
2确定元的标准方程的条件,三个参数a,b,r
思考:当圆心在原点时圆的方程为?(x 2+y 2=r 2).
巩固练习:
1写出下列圆的标准方程
(1)圆心在C(-3,4),半径长是5;
(2)圆心在C(8,-3),且经过点M(5,1).
2说出下列圆的圆心、半径
(1)(x+1)2+(y +3)2=2;(进一步分析圆标准方程的特征)
(2)(x-1)2+y 2=a 2;(a ≠0)(注意半径为a ,说明a=0是可看做圆的极限形式——点圆).
二、知识应用与解题研究
例1:写出圆心为(2,3)A -半径长等于5的圆的方程,并判断
点12(5,7),(1)M M --是否在这个圆上.
解:圆心是(2,3)A -,半径长是5的圆的标准方程是: (x-2)2+(y +3)2=25 把点M 1、M 2的坐标代入圆的方程(x-2)2+(y +3)2=25中,M 1(2,-3)使得
方程左边等于右边,而M 2(-5,-1)使方程左右不相等,所以,点M 1、在圆上,
M 2不在圆上.
探究二:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(几何画板演示)
(1)2200()()x a y b -+->2r ,点在圆外
(2)2200()()x a y b -+-=2r ,点在圆上
(3)2200()()x a y b -+-<2r ,点在圆内
同类练习:课本课本P 121练习2、3题.(利用计算器)
练习:圆心为 A(3,-1) 半径长等于5的圆的方程 ( )
A (x – 3 )2+(y – 1 )2=25
B (x – 3 )2+(y + 1)2=25
C (x – 3 )2+(y + 1 )2=5
D (x + 3 )2+(y – 1 )2=5
变式一: 圆心在C(8,-3),且经过点M(5,1)的圆的标准方程?
(挑战高考:2006年重庆高考题)
变式二: 以点(2,-1)为圆心且与直线 3x-4y+5=0相切的圆的方程为( )
A (x – 2 )2+(y +1 )2=3
B (x + 2 )2+(y -1 )2=3
C (x – 2 )2+(y +1 )2=9
D (x + 2 )2+(y – 1)2=3
变式三:∆ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方
程.
师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,先要确定a b r 、、三个参数.(学生自己运算解决)
方法一:待定系数法;
(教师在黑板上板演解题过程)
方法二:先通过几何作图把圆心和半径找到,然后计算出来,代入圆的标准
方程.
(叫一个学生起来说思路,教师配合用PPT 播放过程)
同类练习:课本P 121练习第4题.
总结归纳:(教师启发,学生自己比较、归纳)比较两种可得出∆ABC 外接圆的标准方程的两种求法:
①根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、的值,写出 圆的标准方程.
②根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写、
出圆的标准方程.
三、作业:
基础作业:课本124页:A组第2题
挑战作业:见PPT
四、小结:
1、圆的标准方程;
2、点与圆的位置关系的判断方法;
3、根据已知条件求圆的标准方程的方法;
五、板书设计
课题:圆的标准方程
一:方程的推导过程二:点与圆的位置关系三:例题讲解:-- - - - - - - 1. 例1:- - - - -
- - - - - - -- - - 2. - - - - - - -- - - - - - - - 3. 例2:- - - - - - 222
-+-=- - - - - -- - ()()
x a y b r。