含参数的一元二次不等式题(答案)
- 格式:doc
- 大小:126.00 KB
- 文档页数:3
含参数的一元二次不等式例题例题 1解不等式:x^2 2x + a > 0,其中a为参数。
解析:对于一元二次方程x^2 2x + a = 0,其判别式\Delta = 4 4a。
当\Delta 0,即4 4a 0,a > 1时,不等式的解集为R。
当\Delta = 0,即4 4a = 0,a = 1时,不等式化为(x 1)^2 > 0,解集为x ≠ 1。
当\Delta > 0,即4 4a > 0,a 1时,方程x^2 2x + a = 0的两根为x_1 = 1 \sqrt{1 a},x_2 = 1 + \sqrt{1 a},不等式的解集为x 1 \sqrt{1 a}或x > 1 + \sqrt{1 a}。
例题 2解不等式:ax^2 + 2x + 1 > 0,其中a为参数。
解析:当a = 0时,不等式化为2x + 1 > 0,解得x > \frac{1}{2}。
当a ≠ 0时,对于一元二次方程ax^2 + 2x + 1 = 0,其判别式\Delta = 4 4a。
若\Delta 0,即4 4a 0,a > 1,不等式的解集为R。
若\Delta = 0,即4 4a = 0,a = 1,不等式化为(x + 1)^2 > 0,解集为x ≠ 1。
若\Delta > 0,即4 4a > 0,a 1且a ≠ 0,方程ax^2 + 2x + 1 = 0的两根为x_1 = \frac{1 + \sqrt{1 a}}{a},x_2 =\frac{1 \sqrt{1 a}}{a}。
当0 a 1时,不等式的解集为x \frac{1 \sqrt{1 a}}{a}或x > \frac{1 + \sqrt{1 a}}{a}。
当a 0时,不等式的解集为\frac{1 + \sqrt{1 a}}{a} x\frac{1 \sqrt{1 a}}{a}。
含参数一元二次不等式练习题一、选择题:1.(2021·福建高考)假设关于x 的方程x 2+mx +1=0有两个不相等的实数根,那么实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 2.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,那么a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]3.假设(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,那么实数m 的取值范围是( )A . ⎝⎛⎭⎫-∞,-1311 B .(-∞,-1) C. (1,+∞) D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 4.(2021·长沙模拟)二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,那么不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)5.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ) A.⎝⎛⎭⎫32,152B .[2,8]C .[2,8)D .[2,7]6.(2021·温州高三适应性测试)假设圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,那么实数m 的取值范围是( )A .m >-6B .m >3或-6<m <-2C .m >2或-6<m <-1D .m >3或m <-1二、填空题7.假设不等式k -3x -3>1的解集为{x |1<x <3},那么实数k =________. 8.(2021·天津高考)集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),那么m =__________,n =________.9.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,那么实数a 的取值范围是________.10.(2021·九江模拟)假设关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),那么实数a 的取值范围是________;假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,那么实数a 的取值范围是________.11.(2021·陕西师大附中模拟)假设函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,那么m 的取值范围为________. 12.假设关于x 的不等式x 2+12x -⎝⎛⎭⎫12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,那么实数λ的取值范围是________. 13.(2021·江苏高考)函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),假设关于x 的不等式f (x )<c 的解集为(m ,m +6),那么实数c 的值为________.三,解答题14.解以下不等式:(1)x 2-2ax -3a 2<0(a <0). (2)x 2-4ax -5a 2>0(a ≠0). (3)ax 2-(a +1)x +1<0(a >0).15.f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.〔此题中的“x ∈[-1,+∞)改为“x ∈[-1,1)〞,求a 的取值范围〕16.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)假设m =-1,n =2,求不等式F (x )>0的解集;(2)假设a >0,且0<x <m <n <1a,比拟f (x )与m 的大小.含参数一元二次不等式练习题一、选择题:1.(2021·福建高考)假设关于x 的方程x 2+mx +1=0有两个不相等的实数根,那么实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.2.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,那么a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,那么4<a ≤5,当a <1时得a <x <1,那么-3≤a <-2,故a ∈[-3,-2)∪(4,5]3.假设(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,那么实数m 的取值范围是( )A . ⎝⎛⎭⎫-∞,-1311 B .(-∞,-1) C. (1,+∞) D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选A ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311. 4.(2021·长沙模拟)二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,那么不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点,又f (x )在(-2,-1)上有一个零点,那么f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<a <-56. 又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.5.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ) A.⎝⎛⎭⎫32,152B .[2,8]C .[2,8)D .[2,7]解析:选C 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8. 6.(2021·温州高三适应性测试)假设圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,那么实数m 的取值范围是( )A .m >-6B .m >3或-6<m <-2C .m >2或-6<m <-1D .m >3或m <-1解析:选B 依题意,令x =0得关于y 的方程y 2+2my +m +6=0有两个不相等且同号(均不等于零)的实根,于是有⎩⎪⎨⎪⎧Δ=(2m )2-4(m +6)>0,m +6>0, 由此解得m >3或-6<m <-2. 二、填空题7.假设不等式k -3x -3>1的解集为{x |1<x <3},那么实数k =________. 解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1. 答案:18.(2021·天津高考)集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),那么m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 19.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,那么实数a 的取值范围是________.解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅,∴Δ=4-4(-a 2+2a +4)<0,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)10.(2021·九江模拟)假设关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),那么实数a 的取值范围是________;假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,那么实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0;由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2.答案:(-4,0) (-∞,-6]∪[2,+∞)11.(2021·陕西师大附中模拟)假设函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,那么m 的取值范围为________. 解析:由得f (3)=6-m ,①当m ≤3时,6-m ≥3,那么f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,那么f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5)12.假设关于x 的不等式x 2+12x -⎝⎛⎭⎫12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,那么实数λ的取值范围是________. 解析:由题意得x 2+12x ≥⎝⎛⎭⎫12n max =12,解得x ≥12或x ≤-1. 又x ∈(-∞,λ],所以λ的取值范围是(-∞,-1].答案:(-∞,-1]13.(2021·江苏高考)函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),假设关于x 的不等式f (x )<c 的解集为(m ,m +6),那么实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧ 2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9三,解答题14.解以下不等式:(1)x 2-2ax -3a 2<0(a <0).(2)x 2-4ax -5a 2>0(a ≠0). (3)ax 2-(a +1)x +1<0(a >0).(1)原不等式转化为(x +a )(x -3a )<0,∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.(2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0.由于a ≠0故分a >0与a <0讨论.当a <0时,x <5a 或x >-a ;当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .(3)原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a<x <1; 当a =1时,解集为∅;当0<a <1时,解为1<x <1a. 综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;15.f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.〔此题中的“x ∈[-1,+∞)改为“x ∈[-1,1)〞,求a 的取值范围〕[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a .①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1.综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].此题中的“x ∈[-1,+∞)改为“x ∈[-1,1)〞,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0或⎩⎪⎨⎪⎧ Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .16.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)假设m =-1,n =2,求不等式F (x )>0的解集;(2)假设a >0,且0<x <m <n <1a,比拟f (x )与m 的大小. 解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2};当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m=(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .。
一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f〔x〕g〔x〕的形式.(2)将分式不等式转化为整式不等式求解,如:f 〔x 〕g 〔x 〕>0 ⇔ f (x )g (x )>0; f 〔x 〕g 〔x 〕<0 ⇔ f (x )g (x )<0; f 〔x 〕g 〔x 〕≥0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≥0,g 〔x 〕≠0; f 〔x 〕g 〔x 〕≤0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≤0,g 〔x 〕≠0.(2021·课标Ⅰ)集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},那么A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].应选A .设f (x )=x 2+bx +1且f (-1)=f (3),那么f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.应选B. -12<1x <2,那么x 的取值范围是( ) A.-2<x <0或0<x <12 B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,应选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2021·武汉调研)假设一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,那么k的取值范围为________.解:显然k ≠0.假设k >0,那么只须(2x 2+x )max <38k ,解得k ∈∅;假设k <0,那么只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,那么a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解此题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解以下不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2021·金华十校联考)函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 那么不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +〔x +1〕[-〔x +1〕+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +〔x +1〕[〔x +1〕-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.应选C.类型三 二次不等式、二次函数及二次方程的关系关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)假设1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)假设1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)假设1m =1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m 与1大小的不确定性,对m <1、m>1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧〔x +2〕〔2x +1〕≥0,2x +1≠0. 得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2〔x +2〕〔x +1〕>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,那么要注意分式的分母不能为零.※用“数轴标根法〞解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根〞的右上方向左下方画线,穿过此根,再往左上方穿过“次右根〞,一上一下依次穿过各根,“奇穿偶不穿〞来记忆.(5)写出不等式的解集:假设不等号为“>〞,那么取数轴上方穿根线以内的范围;假设不等号为“<〞,那么取数轴下方穿根线以内的范围;假设不等式中含有“=〞号,写解集时要考虑分母不能为零.(1)假设集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,那么A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x 〔x -2〕≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.应选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧〔x -1〕〔2x +1〕≤0,2x +1≠0得-12<x ≤1.应选A.类型六 和一元二次不等式有关的恒成立问题(1)假设不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,那么a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,那么x 的取值范围是( )A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g 〔1〕>0,g 〔-1〕>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,应选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,那么f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f 〔-2〕>0,f 〔2〕>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论假设方程2ax 2-x -1=0在(0,1)内有且仅有一解,那么a 的取值范围是( )A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,那么f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.应选B.1.不等式x -2x +1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],应选D.2.关于x 的不等式(mx -1)(x -2)>0,假设此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,那么m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0解:由不等式的解集形式知m <0.应选D.3.(2021·安徽)一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,那么f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,应选D.4.(2021·陕西)在如下图的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影局部),那么其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.应选C.5.假设关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,那么实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12D.a <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,那么a <-4.应选D.6.假设不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,那么实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.那么x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2021·江苏)函数f (x )=x 2+mx -1,假设对于任意x ∈[m ,m +1],都有f (x )<0成立,那么实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f 〔m 〕=2m 2-1<0,f 〔m +1〕=2m 2+3m <0, 解得-22<m <0.故填⎝⎛⎭⎫-22,0.8.假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围. 解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.9.二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)假设方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)假设f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a 〔x -1〕x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 假设a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1};假设a -2a -1=2,即a =0时,解集为∅; 假设a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
含参一元二次不等式专项训练含参一元二次不等式专题训练解答题(共12小题)1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.5.求x的取值范围:(x+2)(x﹣a)>0.3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).含参一元二次不等式专题训练参考答案与试题解析一.解答题(共12小题)1.(2009•如皋市模拟)已知不等式(ax﹣1)(x+1)<0 (a∈R).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.考点:一元二次不等式的解法.专题:计算题;综合题;分类讨论;转化思想.分析:(1)若x=a时不等式成立,不等式转化为关于a的不等式,直接求a的取值范围;(2)当a≠0时,当a>0、﹣1<a<0、a<﹣1三种情况下,比较的大小关系即可解这个关于x的不等式.解答:解:(1)由x=a时不等式成立,即(a2﹣1)(a+1)<0,所以(a+1)2(a ﹣1)<0,所以a<1且a≠﹣1.所以a 的取值范围为(﹣∞,﹣1)∪(﹣1,1).(6分)(2)当a>0时,,所以不等式的解:;当﹣1<a<0时,,所以不等式(ax﹣1)(x+1)<0的解:或x<﹣1;当a<﹣1时,,所以不等式的解:x<﹣1或.当a=﹣1时,不等式的解:x<﹣1或x>﹣1综上:当a>0时,所以不等式的解:;当﹣1<a<0时,所以不等式的解:或x>﹣1;当a≤﹣1时,所以不等式的解:x<﹣1或.(15分)点评:本题考查一元二次不等式的解法,考查转化思想,分类讨论思想,是中档题.2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:x2+(a+1)x+a>0(a是实数).可化为(x+a)(x+1)>0.对a与1的大小分类讨论即可得出.解答:解:x2+(a+1)x+a>0(a是实数)可化为(x+a)(x+1)>0.当a>1时,不等式的解集为{x|x>﹣1或x<﹣a};当a<1时,不等式的解集为{x|x>﹣a或x<﹣1};当a=1时,不等式的解集为{x|x≠﹣1}.点评:本题考查了一元二次不等式的解法、分类讨论的方法,属于基础题.3.解关于x的不等式ax2+2x﹣1<0(a>0).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:由a>0,得△>0,求出对应方程ax2+2x﹣1=0的两根,即可写出不等式的解集.解答:解:∵a>0,∴△=4+4a>0,且方程ax2+2x﹣1=0的两根为x1=,x2=,且x1<x2;∴不等式的解集为{x|<x<}.点评:本题考查了不等式的解法与应用问题,解题时应按照解一元二次不等式的步骤进行解答即可,是基础题.4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分(1)分a=0,a>0,a<0三种情况进行讨论:a=0,a<0析:两种情况易解;a>0时,由对应方程的两根大小关系再分三种情况讨论即可;(2)按照△=4a2﹣8的符号分三种情况讨论即可解得;解答:解:(1)ax2﹣2(a+1)x+4>0可化为(ax﹣2)(x ﹣2)>0,(i)当a=0时,不等式可化为x﹣2<0,不等式的解集为{x|x<2};(ii )当a>0时,不等式可化为(x﹣)(x﹣2)>0,①若,即0<a<1时,不等式的解集为{x|x<2或x>};②若=2,即a=1时,不等式的解集为{x|x≠2};③若,即a>1时,不等式的解集为{x|x<或x>2}.(iii)当a<0时,不等式可化为(x﹣)(x﹣2)<0,不等式的解集为{x|<x<2}.综上,a=0时,不等式的解集为{x|x<2};0<a<1时,不等式的解集为{x|x<2或x >};a=1时,不等式的解集为{x|x≠2};a>1时,不等式的解集为{x|x<或x>2};a<0时,不等式的解集为{x|<x<2}.(2)x 2﹣2ax+2≤0,△=4a2﹣8,①当△<0,即﹣a时,不等式的解集为∅;②当△=0,即a=时,不等式的解集为{x|x=a};③当△>0,即a<﹣或a>时,不等式的解集为[x|a﹣≤x≤a}.综上,﹣a时,不等式的解集为∅;a=时,不等式的解集为{x|x=a};a <﹣或a >时,不等式的解集为[x|a﹣≤x≤a}.点评:该题考查含参数的一元二次不等式的解法,考查分类讨论思想,若二次系数为参数,要按照二次系数的符号讨论;若△符号不确定,要按△符号讨论;若△>0,要按照两根大小讨论.属中档题.5.求x的取值范围:(x+2)(x﹣a)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:①当a=﹣2时,不等式(x+2)(x﹣a)>0化为(x+2)2>0,解得x≠﹣2,其解集为{x|x∈R,且x≠1}.②当a>﹣2时,由不等式(x+2)(x﹣a)>0,解得x<﹣2或x>a,其解集为{x|x<﹣2或x>a}.③当a<﹣2时,由不等式(x+2)(x﹣a)>0,解得x<a或x>﹣2,其解集为{x|x<a或x>﹣2}.综上可得:①当a=﹣2时,原不等式的解集为{x|x∈R,且x≠1}.②当a>﹣2时,原不等式的解集为{x|x<﹣2或x>a}.③当a<﹣2时,原不等式的解集为{x|x<a或x>﹣2}.点评:本题考查了一元二次不等式的解法和分类讨论的方法,属于基础题.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式x2﹣(a+1)x﹣2a2﹣a≥0化为(x+a)[x﹣(2a+1)]≥0,讨论a的取值,写出对应不等式的解集.解答:解:不等式x2﹣(a+1)x﹣2a2﹣a≥0可化为(x+a)[x﹣(2a+1)]≥0,∵a>﹣1,∴﹣a<1,2a+1>﹣1;当﹣a=2a+1,即a=﹣时,不等式的解集是R;当﹣a>2a+1,即﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};当﹣a<2a+1,即a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.∴a=﹣时,不等式的解集是R;﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.点评:本题考查了含有字母系数的不等式的解法问题,解题时应在适当地时候,对字母系数进行讨论,是基础题.7.解关于x的不等式(x﹣1)(ax﹣2)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出解集.解答:解:①当a=0时,不等式(x﹣1)(ax ﹣2)>0化为﹣2(x﹣1)>0,即x﹣1<0,解得x<1,因此解集为{x|x<1}.②当a >0时,原不等式化为.当a>2时,则,∴不等式(x﹣1)(x﹣)>0的解集是{x|x>1或x}.当a=2时,=1,∴不等式化为(x﹣1)2>0的解集是{x|x≠1}.当0<a<2时,则,∴不等式(x﹣1)(x ﹣)>0的解集是{x|x<1或x}.③当a<0时,原不等式化为,则,∴不等式(x﹣1)(x﹣)<0的解集是{x|x<1}.综上可知::①当a=0时,不等式的解集为{x|x<1}.②当a>0时,不等式的解集是{x|x>1或x}.当a=2时,不等式的解集是{x|x≠1}.当0<a<2时,不等式的解集是{x|x<1或x }.③当a<0时,不等式的解集是{x|x<1}.点评:本题考查了分类讨论方法、一元二次不等式的解法,属于中档题.8.解关于x的不等式,其中a≠0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:方程,其中a≠0两根为1,,对两根大小分类讨论求解.解答:解:当a<0时,,不等式的解集为…(3分)当0<a<1时,,不等式的解集为…(6分)当a=1时,,不等式的解集为ϕ…(9分)当a>1时,,不等式的解集为…(11分)综上所述:当a<0时,或a>1,原不等式的解集为当0<a<1时,原不等式的解集为当a=1时,原不等式的解集为ϕ…(12分)点评:本题主要考查了一元二次不等式的解法,其中主要考查了分类讨论的思想在解题中的应用.9.解不等式:mx2+(m﹣2)x ﹣2<0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式等价变形为(x+1)(mx﹣2)<0,讨论m 的取值,从而求出不等式的解集.解答:解:原不等式可化为(x+1)(mx﹣2)<0,当m=0时,不等式为﹣2(x+1)<0,此时解得x>﹣1.当m≠0,则不等式等价为m(x+1)(x﹣)<0.若m>0,则不等式等价为(x+1)(x ﹣)<0,对应方程的两个根为﹣1,,此时不等式的解为﹣1<x<.若m<0.则不等式等价为(x+1)(x﹣)>0,对应方程的两个根为﹣1,.若﹣1=,解得m=﹣2,此时不等式为(x+1)2>0,此时x≠﹣1.若﹣2<m<0时,<﹣1,此时不等式的解为x>﹣1或x<.若m<﹣2时,>﹣1,此时不等式的解为x<﹣1或x>.综上:m>0时,不等式的解集为{x|﹣1<x<},m=0时,不等式的解集为{x|x>﹣1};m=﹣2,不等式的解集为{x|x≠﹣1};﹣2<m<0,不等式的解集为{x|x>﹣1或x<};m<﹣2,不等式的解集为{m|x<﹣1或x>}.点评:本题考查了含有参数的一元二次不等式的解法问题,解题时应对参数进行分类讨论,是易错题.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:(1)通过对a和△分类讨论,利用一元二次不等式的解法即可解出;(2)通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:(1)①当a=0时,原不等式可化为4≤0,不成立,应舍去.②当a≠0时,△=4a2﹣16a.当a=4时,△=0,原不等式可化为(x+1)2≤0,解得x=﹣1,此时原不等式的解集为{﹣1};当△<0时,解得0<a<4.此时原不等式的解集为∅.当△>0时,解得a>4或a<0.由ax2+2ax+4=0,解得=,当a>4时,原不等式的解集为{x|};当a<0时,原不等式的解集为{x|x ≥或}.综上可得:当a=4时,不等式的解集为{﹣1};当△<0时,不等式的解集为∅.当△>0时,当a>4时,不等式的解集为{x|};当a<0时,不等式的解集为{x|x ≥或}.(2)①当a=2时,原不等式化为﹣5x+10≥0,解得x≤2,此时不等式的解集为{x|x≤2};②当a≠2时,△=25.此时不等式化为[(a﹣2)x﹣(2a+1)](x﹣2)≥0,当a >2时,化为,此时,因此不等式的解集为{x|x≥或x≤2};当a <2时,,此时不等式化为,不等式的解集为{x|}.综上可得:①当a=2时,不等式的解集为{x|x≤2};②当a>2时,不等式的解集为{x|x≥或x≤2};当a<2时,不等式的解集为{x|}.点评:本题考查了分类讨论、一元二次不等式的解法,考查了计算能力,属于难题.11.解关于x的不等式ax2﹣(a+1)x+1<0.考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:当a=0时,得到一个一元一次不等式,求出不等式的解集即为原不等式的解集;当a≠0时,把原不等式的左边分解因式,然后分4种情况考虑:a小于0,a大于0小于1,a 大于1和a等于1时,分别利用求不等式解集的方法求出原不等式的解集即可.解答:解:当a=0时,不等式的解为x>1;当a≠0时,分解因式a (x﹣)(x﹣1)<0当a<0时,原不等式等价于(x﹣)(x﹣1)>0,不等式的解为x>1或x<;当0<a<1时,1<,不等式的解为1<x<;当a>1时,<1,不等式的解为<x<1;当a=1时,不等式的解为∅.点评:此题考查了一元二次不等式的解法,考查了分类讨论的数学思想,是一道综合题.12.解关于x的不等式ax2﹣2≥2x ﹣ax(a∈R).考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:对a分类:a=0,a>0,﹣2<a<0,a=﹣2,a<﹣2,分别解不等式,求解取交集即可.解答:解:原不等式变形为ax2+(a﹣2)x ﹣2≥0.①a=0时,x≤﹣1;②a≠0时,不等式即为(ax﹣2)(x+1)≥0,当a>0时,x≥或x≤﹣1;由于﹣(﹣1)=,于是当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.综上,当a=0时,x≤﹣1;当a>0时,x≥或x≤﹣1;当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.点评:本题考查不等式的解法,考查分类讨论思想,是中档题.。
高一数学一元二次不等式试题1.已知函数f(x)=mx2-mx-1.(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.【答案】(1)的取值范围(2)的取值范围【解析】试题分析:(1)对于含二次项恒成立的问题,注意讨论二次项系数是否为0,这是学生容易漏掉的地方.(2)恒成立问题一般需转化为最值,利用单调性证明在闭区间的单调性.(3)一元二次不等式在上恒成立,看开口方向和判别式.(4)含参数的一元二次不等式在某区间内恒成立的问题通常有两种处理方法:一是利用二次函数在区间上的最值来处理;二是分离参数,再去求函数的最值来处理,一般后者比较简单.试题解析:解析(1)由题意可得m=0或⇔m=0或-4<m<0⇔-4<m≤0.故m的取值范围为(-4,0]. 6分(2)∵f(x)<-m+5⇔m(x2-x+1)<6,∵x2-x+1>0,∴m<对于x∈[1,3]恒成立,记g(x)=,x∈[1,3],记h(x)=x2-x+1,h(x)在x∈[1,3]上为增函数.则g(x)在[1,3]上为减函数,∴[g(x)]=g(3)=,∴m<. 所以m的取值范围为. 3分min【考点】一元二次不等式恒成立的问题.2.不等式的解集为,则( )A.a =-8,b =-10B.a =-1,b = 9C.a =-4,b =-9D.a =-1,b = 2【答案】【解析】不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.【考点】一元二次不等式;根与系数关系.3.不等式ax2+bx+2>0的解集是,则a+b= _____________.【答案】-14【解析】的解集为,的是的两根,则,解得.【考点】三个“二次”的关系.4.解关于x的不等式-(+)+>0(其中∈R).【答案】当时,解集为;当时,解集为;当时,解集为.【解析】解题思路:将分解因式得,再讨论1与的大小求解集.规律总结:解一元二次不等式,要注意“三个二次”的关系,即一元二次方程、一元二次函数、一元二次不等式之间的关系.注意点:解题中要注意讨论1与的大小.试题解析:,则当时,解集为;当时,解集为;当时,解集为.【考点】1.一元二次不等式的解法;2.分类讨论思想.5.不等式的解集为________________.【答案】.【解析】将原不等式变形为,∴不等式的解集为.【考点】解一元二次不等式.6.不等式的解集是()A.B.C.D.【答案】C【解析】将原不等式等价于或或。
一元二次不等式的应用———不等式中的参数问题200000a b a ax bx c x c ==>⎧⎧++>⇔⎨⎨><⎩⎩ 不等式对任意实数恒成立或 200000a b a ax bx c x c ==<⎧⎧++<⇔⎨⎨<<⎩⎩不等式对任意实数恒成立或 1.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(2)若不等式13642222<++++x x mmx x 的解集为R ,求实数m 的取值范围.答案:(1)()2,2a ∈- (2) 1<m<32.已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,①若A B ,求实数a 的取值范围.;②若A B ⊆,求实数a 的取值范围.;③若B A 为仅含有一个元素的集合,求a 的值.① a>2 ② 1≤a ≤2 ③ a ≤1答案:13,2x ⎛⎫∈- ⎪⎝⎭2210{|2},30ax bx c x x cx bx a ++≥-≤≤++<3.若不等式的解集是 求不等式的解集.答案:10a c +=对于含参数的不等式恒成立问题的处理方法:方法1:将不等式化为f(x)>0(<0)的形式,构造函数y=f(x), 求函数的最小值(最大值),再令(fmin(x)> 0(fmax(x)<0)通过解不等式求得。
方法2:分离参数法:分离参数,构造函数y=f(x), 求函数的最小值(最大值),使参数t<fmin(x)(参数t>fmax(x))。
21. 10(0,]2x ax x a ++≥∈5不等式对于一切恒成立,求的最小值。
答案:min 52a =-6.已知函数3()f x x x =+,对任意的m ∈[-2,2],(2)()0f mx f x -+<恒成立, 则x 的取值范围为____.223x -<<7.2lg()R,y x bx b b =++若函数的定义域为求实数的取值范围。
高二数学一元二次不等式试题答案及解析1.设函数,记不等式的解集为.(1)当时,求集合;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,不等式是一个具体的一元二次不等式,应用因式分解法可求得其解集;(2)注意这个条件只能用于第(1)小问,而不能用于第(2)问,所以不能用第(1)小问的结果,来解第(2)问;不等式从而可得,然后由画出数轴,就可列出关于字母a的不等式组,从而求出a的取值范围.试题解析:(1)当时,,解不等式,得, 5分. 6 分(2),,又,,. 9分又,,解得,实数的取值范围是. 14分【考点】1.一元二次不等式;2.集合间的关系.2. (1)求不等式的解集:;(2)求函数的定义域:.【答案】(1); (2)【解析】(1)根据解一元二次不等式的步骤,首先求方程,再结合函数的图象写出不等式的解;(2)已知解析式求函数的定义域,转化为解不等式,从而得到函数的定义域.试题解析:解:(1)解:原不等式等价于,令,得或所以原不等式的解为或,即原不等式的解集为(2)要使函数有意义,则,得不等式组的解为或,所以原不等式的解集为.所以函数的定义域为【考点】1、一元二次不等式的解法;2、分式不等式的解法;3、函数的定义域.3.设,解关于的不等式.【答案】当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】由实数的取值是不为零关系到不等的类型,所以要首先考虑的情况;、当时,要解不等式,需要先解方程得两根:2和,可以发现实数的取值对两根的大小起决定作用,故又需要依此对的取值进行分类讨论.试题解析:解:(1)若,则不等式化为,解得 2分(2)若,则方程的两根分别为2和 4分①当时,解不等式得 6分②当时,不等式的解集为 8分③当时,解不等式得 10分④当时,解不等式得或 12分综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为 14分【考点】1、一元一次、一元二次不等式的解法;2、分类讨论的思想.4.已知函数,求不等式的解集。
一元二次不等式 参考例题(2)
1.
(1)解不等式121≤-x x (2)不等式11
<-x ax 的解集为}21|{><x x x ,或,求a 的值.
2.解下列关于x 的不等式:
(1)01)1(2<++-x a
a x (2))23(0)3)(2(-≠≠<-+-a a x x a x ,且
(3)01)1(2<++-x a ax (4)0)2)(2(>--ax x
(5)012<++x ax (6)
)(11
R a a x x ∈-<-
3.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.
(2)若不等式
13642222<++++x x m mx x 的解集为R ,求实数m 的取值范围.
4.(1)已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,
①若A B ,求实数a 的取值范围.;
②若A B ⊆,求实数a 的取值范围.;
③若B A 为仅含有一个元素的集合,求a 的值.
(2)已知}031|
{≤--=x x x A ,B B A a x a x x B =≤++-= 且},0)1(|{2,求实数a 的取值范围.
(3) 关于x 的不等式2
)1(|2)1(|2
2-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 与B , 若B A ⊆,求实数a 的取值范围.
(4)设全集R U =,集合}3|12||{},01
|
{<+=≥+-=x x B x a x x A ,若R B A = , 求实数a 的取值范围.
(5)已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A ,
若C B A ⊆)( ,求实数a 的取值范围.
答案:1、(}0,1|{>-≤x x x 或)(2
1=a ) 2、}1|{01,1)3(1)2(}1|{10,1)1(a x a
x a a a a
x a x a a <<<<->Φ±=<<<<-<时,或当时,当时,或当 }3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当
}11|{1)5(1)4(}11|{10)3(}
1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><
<x a x a a a
x x a x x a x a
x x a 时,当时,当时,当时,当或时,当 }2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x a
x x a x x a a x x x a x x a x a x a 或时当时当或时当时当时当 Φ≥-+-<<---<<-<=--->-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a a
a x a a x x a }1,1|{0)3(}1|{0)2(}11|
{0)1(a a x x x a x x a x a
a x a -><<<=<<->或时,当时,当时,当 3、(22≤<-a )、(31<<m )
4、(2>a )、(21≤≤a )、(1≤a )/ (31<≤a )/(31,1≤≤-=a a 或)/(12≤≤-a ) /( 21≤≤a )。