几何光学101:近轴光线追迹计算
- 格式:doc
- 大小:252.50 KB
- 文档页数:11
第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。
§1.3 光路计算与近轴光学系统一、基本概念与符号规则设在空间存在如下一个折射球面:r:折射球面曲率半径 o:顶点 L:物方截距 L':像方截距 u:物方孔径角 u':像方孔径角符号规则: 光线方向自左向右•(1)沿轴线段:以顶点O为原点,光线到光轴交点或球心,顺光线为正,逆光线为负。
•(2)垂轴线端:光轴以上为正,光轴以下为负•(3)光线与光轴夹角:由光轴转向光线锐角,顺时针为正,逆时针为负。
•(4)光线与折射面法线的夹角:由光线经锐角转向法线,顺时针为正,逆时针为负。
•(5)光轴与光线的夹角:有光轴经锐角转向法线,顺时针为正逆时针为负。
•(6)折射面间隔:d有前一面顶点到后一面顶点方向,顺光线方向为正,逆光线方向为负。
二、实际光线的光路计算已知:折射球面曲率半径r,介质折射率为n和n',及物方坐标L和U求:像方L'和U'解:△AEC中,由折射定律:又说明:以上即为子午面内实际光线的光路计算公式,给出U、L,可算出U’、L’,以A为顶点,2U为顶角的圆锥面光线均汇聚于A’点。
由上面推导可知:L’= f(L,U)、U’= g(L,U),当L不变,只U变化时,L’也变。
说明“球差”的存在。
三、近轴光线的光路计算概念:近轴区、近轴光线公式:(5)式说明:在近轴区l’只是l的函数,它不随孔径u的变化而变化,轴上物点在近轴区成完善像,这个像点称高斯像点。
高斯像面:通过高斯像点且垂直于光轴的平面称为高斯像面共轭点:像上面提到的一对构成物象关系的点称为共轭点在近轴区有:由公式(1)(2)(3)(4)(5)(6)可推出:(7)式中Q称为阿贝不变量,对于单个折射球面物空间与像空间的Q相等;(8)式表明了物、像孔径角的关系(9)式表明了物、像位置关系限制了光线与光轴的夹角,光线在折射面上的入射角,折射角等都很小.所有角度小于5°正切,正弦都可用该角度的弧度值代替.。
(1)li ur =−点之间曲线上的无限小弧长。
设任意界面的面形方程为其上任意点P(ζ, ω,l )处的相位函数为APB 的光程:费马原理:界面面形方程为点处法向量的方向余弦7-1离轴全息透镜的光线追迹空间光线(meridional):物点(或主光线,即通过孔径中心的光线)所在并包含光轴的平面。
对于轴对称系统的轴上物点,它有无限多个子午面。
对A−yt ′BMC Os ′rnn ′-t=-s (BM )B t ′B s ′子午焦线垂直于子午面;弧矢光束形成的弧矢焦线垂直于弧矢面。
B 为实际物体时,t =s ,以M 和光线行进方向一致为正,反之为负。
I B s ′在辅轴BC 上。
A−y iBM iO i −t it i ′t i+1D i M i +1O i +1−U zi −U ′zix i−x i +1d it h i h i +1i s入射光线方向余弦(L,M,N),折射光线方向余弦偏折系数T:入射光线与曲面交点的法线:孔径角越大,球差值越大(单透镜)。
246⎛⎞⎛⎞⎛⎞U U U246123max max max U U U L'a a a ......U U U ⎛⎞⎛⎞⎛⎞=+++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠球差影响成像质量,降低清晰度。
轴上点和近轴点具有相同的成像缺陷,称为等晕成像。
正弦差描述对等晕条件的偏离:场曲的形成桶形畸变枕形畸变异称为色差。
位置色差和倍率色差。
成像的细微结构分辨能力的大小来判断像质的优劣的。
ISO 12233分辨率测试标板不同的像差)。
Geometrical Optics 101: Paraxial Ray Tracing CalculationsRay tracing is the primary method used by optical engineersto determine optical system performance. Ray tracing is theact of manually tracing a ray of light through a system bycalculating the angle of refraction/reflection at eachsurface. This method is extremely useful in systems with manysurfaces, where Gaussian and Newtonian imaging equations areunsuitable given the degree of complexity.Today, ray tracing software such as ZEMAX® or CODE V®enable optical engineers to quickly simulate the performance of very complicated systems. Paraxial ray tracing involves small ray angles and heights. To understand the basic principles of paraxial ray tracing, consider the necessary calculations and ray tracing tables employed in manually tracing rays of light through a system. This will in turn highlight the usefulness of modern computing software.PARAXIAL RAY TRACING STEPS: CALCULATING BFL OF A PCX LENSParaxial ray tracing by hand is typically done with the aid of a ray tracing sheet (Figure 1). The number of optical lens surfaces is indicated horizontally and the key lens parameters vertically. There are also sections to differentiate the marginal and chief ray. Table 1 explains the key optical lens parameters.To illustrate the steps in paraxial ray tracing by hand, consider a plano-convex (PCX) lens. For this example, #49-849 25.4mm Diameter x 50.8mm FL lens is used for simplicity. This particular calculation is used to calculate the back focal length (BFL) of the PCX lens, but it should be noted that ray tracing can be used to calculate a wide variety of system parameters ranging from cardinal points to pupil size and location.Figure 1: Sample Ray Tracing SheetTable 1: Optical Lens Parameters forRay TracingVariable DescriptionC Curvaturet Thicknessn Index of RefractionΦSurface Powery Ray Heightu Ray AngleStep 1: Enter Known ValuesTo begin, enter the known dimensional values of #49-849into the ray tracing sheet (Figure 2). Surface 0 is the object plane, Surface 1 is the convex surface of the lens, Surface 2 is the plano surface of the lens, and Surface 3 is the image plane (Figure 3).Remember that the curvature (C) is equivalent to 1 divided by the radius of curvature (R). The first thickness value (t) (25mm in this example) is the distance from the object to the first surface of the lens. This value is arbitrary for incident collimated light (i.e. light parallel to the optical axis of the optical lens). The index of refraction (n) can be approximated as 1 in air and as 1.517 for the N-BK7 substrate of the lens.In Figure 2, the red box is the value to be calculated because it is the distance from the second surface to the point of focus (BFL). The power (Φ) of the individual surfaces is given by the fourth line and is calculated using Equation 1. Note: A negative sign isadded to this line to make further calculations easier.In this example, Surface 1 is the only surface with power as it is the only curved surface in the system.(1) Figure 2: Entering Known Lens Parameter Values into Ray Tracing SheetFigure 3: Surfaces of a Plano-Convex (PCX) LensStep 2: Add a Marginal Ray to the SystemThe next step is to add a marginal ray to the system. Since the PCX lens is spherical with a constant radius of curvature and a collimated input beam is used, the ray height (y) is arbitrary. To simplify calculations, use a height of 1mm.A collimated beam also means the initial ray angle (u) is 0 degrees. In the ray tracing sheet, nu is simply the angle of the ray multiplied by the refractive index of that medium. Both variables are included to make subsequent calculations simpler (Figure 4).Figure 4: Adding a Marginal Ray to the Ray Tracing SheetStep 3: Calculate BFL with Equations and the Ray Tracing SheetRay tracing involves two primary equations in addition to the one for calculating power. Equations 2 – 3 are necessary for any ray tracing calculations.(2)(3)where an apostrophe denotes the subsequent surface, angle, thickness, etc. In this example, to find the ray height at Surface 2 (y'), take the ray height at Surface 1 (y) and add it to -0.0197 multiplied by 3.296:(2.1)Performing this for ray angle yields the following value. The entire process is repeated until the ray trace is complete (Figure 5).(3.1)Figure 5: Propagating the Ray through the SystemNow, solve for the BFL by either adjusting the thickness value until the final ray height is 0 (Figure 6) or by backwards calculating the BFL for a ray height of 0. For #49-849, the final BFL value is 47.48mm. This is very close to the 47.50mm listed in the lens' specifications. The difference is attributed to the rounding error of using an index of refraction of 1.517 instead of a slightly more accurate value that was used when the lens was initially designed.Figure 6: Calculating Back Focal Length of a Plano-Convex (PCX) Lens using a Ray Tracing SheetDECIPHERING A TWO LENS RAY TRACING SHEETTo completely understand a ray tracing sheet, consider a two lens system consisting of a double-concave (DCV) lens, an iris, and a double-convex (DCX) lens (Figures 7 - 8). To learn more about DCV and DCX lenses, please read Understanding Optical Lens Geometries.Figure 7: Double-Concave (DCV) and Double-Convex (DCX) Lens SystemFigure 8: Sample Double-Concave (DCV) and Double-Convex (DCX) Ray Tracing SystemThe aperture stop is the limiting aperture and defines how much light is allowed through the system. The aperture stop can be an optical lens surface or an iris, but it is always a physical surface. The entrance pupil is the image of the aperture stop when it is imaged through the preceding lens elements into object space. The exit pupil is the image of the aperture stop when it is imaged through the following lens elements into image space.In an optical system, the aperture stop and the pupils are used to define two very important rays. The chief ray is one that begins at the edge of the object and goes through the center of the entrance pupil, exit pupil, and the stop (in other words, it has a height (Ӯ) of 0 at those locations). The chief ray, therefore, defines the size of the object and image and the locations of the pupils.The marginal ray of an optical system begins on-axis at the object plane. This ray encounters the edge of the pupils and stops and crosses the axis at the object and image points. The marginal ray, therefore, defines the location of the object and image and the sizes of the pupils.Aperture Stop LocationIf the location of the aperture stop is unknown, a trial ray, known as the pseudo marginal ray, must be propagated through the system. For an object not at infinity, this ray must begin at the axial position of the object and can have an arbitrary incident angle. For an object at infinity, the ray can begin at an arbitrary height, but must have an incident angle of 0°. Once this is accomplished, the aperture stop is simply the surface that has the smallest CA/y p value, where CA is the surface clear aperture and y p is the height of the pseudo marginal ray at that surface.After locating the aperture stop, the pseudo marginal ray can be scaled appropriately to obtain the actual marginal ray (remember the marginal ray should touch the edge of the aperture stop). Once the size and location of the aperture stop is known, the marginal ray height is equal to the radius of the stop and the chief ray height is zero at that location. Paraxial ray tracing can then be carried out in both the forward and the reverse directions from those points. When doing ray tracing in reverse, Equations 4 –5 are useful. Note the similarities to Equations 2 – 3.(4)(5) Vignetting AnalysisOnce the location and size of the aperture stop is known, use vignetting analysis to see which surfaces will vignette, or cause rays to be blocked. Vignetting analysis is accomplished by taking the clear aperture at every surface and dividing it by two. That value is then compared to the heights of the chief and marginal rays at that surface (Equation 6). Equation 6 can be easily reordered to Equation 7. If Equation 7 is true, the surface does not vignette.(6)(7)Notice in the preceding DCV and DCX example how Surface 3 is the aperture stop where the CA/(|Ӯ |+|y|) value is the smallest among all surfaces. Also, none of the surfaces vignette because all values are greater than or equal to 2.Object/Image Size and LocationObject (Surface 0)•Size is 10mm in diameter (twice the chief ray height at Surface 0)•Location is 5mm in front of the first lens (the first thickness value)Image (Surface 6)•Size is 18.2554mm in diameter (twice the final chief ray height)•Location is 115.4897mm behind the final lens surface (the last thickness value)It is important to note that the Surface 0 chief ray height is positive while the Surface 6 chief ray height is negative. This indicates that the image is inverted.Effective Focal LengthTo solve for the effective focal length (EFL), it is first necessary to trace a pseudo marginal ray through the system for an object at infinity (i.e. the first ray angle will be 0). In Figure 9, an arbitrary initial height of 1 is chosen to simplify calculations. Once this is accomplished, the EFL of the system is given by Equation 8.Figure 9: Pseudo Marginal RayField of View(9)where nū is the first chief ray angle.Lagrange InvariantThe optical invariant is a useful tool that allows optical designers to determine various values without having to completely ray trace a system. It is obtained by comparing two rays within a system at any axial point. The optical invariant is constant for any two rays at every point in the system. In other words, if the invariant for a set of two rays is known, ray trace one of the rays and then scale that by the invariant to find the second.The Lagrange Invariant is a version of the optical invariant that uses the chief ray and the marginal ray as the two rays of interest. It is solved using Equation 10 and is illustrated in Figure 10.(10) Figure 10: The Lagrange Invariant of Ray TracingREAL-WORLD RAY TRACING AND SOFTWARE ADVANTAGESWithin paraxial ray tracing, there are several assumptions that introduce error into the calculations. Paraxial ray tracing assumes that the tangent and sine of all angles are equal to the angles themselves (in other words, tan(u) = u and sin(u) = u). This approximation is valid for small angles, but can lead to the propagation of error as ray angles increase.Real ray tracing is a method of reducing paraxial error by eliminating the small-angle approximation and by accounting for the sag of each surface to better model the refraction of off-axis rays. As with paraxial ray tracing, real ray tracing can be done by hand with the help of a ray trace sheet. For the sake of brevity, only the paraxial method has been demonstrated. Ray tracing software such as CODE V and ZEMAX use real ray tracing to model user-inputted optical systems.Ray tracing by hand is a tedious process. Consequently, ray tracing software is usually the preferred method of analysis. Figure 11 shows the DCV-DCX system from the section on "Deciphering a Two Lens Ray Tracing Sheet". The following ZEMAX screenshot shows a focal length value of 34.699mm – confirming the paraxial calculation previously performed.Figure 11: Sample ZEMAX System DataRay tracing is an important tool for any optical designer. While the proliferation of ray tracing software has minimized the need for paraxial ray tracing by hand, it is still useful to understand conceptually how individual rays of light move through an optical system. Paraxial ray tracing and real ray tracing are great ways to approximate optical lens performance before finalizing a design and going into production. Without ray tracing, system design is much more difficult, expensive, and time-intensive.References1.Geary, Joseph M. "Chapter 4 – Paraxial World." Introduction to Lens Design: with Practical ZEMAXExamples. Richmond, Va: Willmann-Bell, 2007. Print.2.Greivenkamp, John E. "Paraxial Raytrace." Field Guide to Geometrical Optics. V ol. FG01. Bellingham, W A:SPIE, 2004. 20-32. Print. SPIE Field Guides.3.Smith, Warren J. "Chapter 3 – Paraxial Optics and Calculations." Modern Optical Engineering: the Designof Optical Systems. New York: McGraw Hill, 2008. Print.4.Dereniak, Eustace L., and Teresa D. Dereniak. "Chapter 10 - Paraxial Ray Tracing." Geometrical andTrigonometric Optics. Cambridge, UK: Cambridge UP, 2008. Print.。