再见
点评:当题目结论与比例式有关时,可考虑证明三角形相似.
3.在⊙O 内有一个内接四边形 ABCD,AC 与 BD 交于点 E, 求证:ABEE=ABDC.
︵︵ 证明:由AB=AB, 得∠ADE=∠ACB. 又∠AED=∠BEC,
∴△AED∽△BEC,即ABEE=ABDC.
4.如图所示,已知⊙O中,∠AOB=2∠BOC,求 证∠ACB=2∠BAC. 分析:利用圆周角定理证明. 证明:∵∠ACB=∠AOB, ∠AOB=2∠BOC, ∴∠ACB=∠BOC. 又∵∠BAC=∠BOC, ∴∠ACB=2∠BAC.
►变式BC=4 cm,则OD =__2_c_m____. 2.如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,圆 O的半径r=___5_____.
题型二 证明问题
例2 已知AD是△ABC的高,AE是△ABC的外接圆的直径,求证: ∠BAE=∠DAC. 分析:题目中出现圆的直径,想到直径所对的圆周角是直 角.因此,连接BE,得到∠ABE=90°.同时,在△ABE与 △ADC中,又有同弧所对的圆周角∠C与∠E相等,从而结论 得以证明. 证明:如图,连接BE.
一 圆周角定理
圆周角定理 圆上一条弧所对的圆周角等于它所对的圆心角的一半.
圆心角定理
圆心角的度数等于它所对弧的度数. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 对的弧也相等. 推论2
半圆(或直径)所对的圆周角是直角;900的圆周角所对的 弦是直径
题型一 角、弦、弧长计算
例1 在半径为5 cm的圆内有长为5 cm的弦AB,求此弦所对 的圆周角. 解析:如图所示,
【正解】根据题意画出大致示意图如图所示,∠AOB 为弦 AB 所对的圆心角,∠C 和∠D 是弦 AB 所对的圆周角. ∵AB=OA=OB, ∴△AOB 为等边三角形, ∴∠AOB=60°,∴∠C=30°,∴∠D=150°, ∴弦 AB 所对的圆心角为 60°,所对的圆周角为 30°或 150°. 易错点:对圆周角的概念理解不清 【疑难点辨析】顶点在圆上且两边都和圆相交的角叫做圆周角,一 条弦所对的圆周角应有两种情况.