(
(
D
144
( (
(
证明:(1)连接OF.∵F点为AB的中点,
∴OF⊥AB,且AF=BF. ∵CM⊥AB,∴OF∥CM, ∠ ∵MOCCF==O∠F,CF∴O.∠FCN=∠CFO,
∴∠MCF=∠FCN,即CF平分∠MCN (2)连接OM.∵OF∥CM,∴∠MOF=∠M,∠FON=∠MCN. ∵OC=OM,∴∠MCN=∠M,∴∠MOF=∠FON,∴FM=FN,
AB=CD,∠AOB=60°,则∠BDC的度数是( C )
A.20° B.25° C.30° D.40°
解析:由BD是⊙O的直径,点A、C在⊙O上, AB=CD,∠AOB=60°,利用在同圆或等圆中 同弧或等弧所对的圆周角等于这条弧所对 的圆心角的一半,即可求得∠BDC的度数.
解:∵AB=CD,∠AOB=60° BDC 1 AOB 30 2 故选C.
⌒
探究3:如图所示图中,∠AOB=180°则∠C1, ∠C2, ∠C3等 于多少度呢?从中你发现了什么?
归纳:半圆(或直径)所对的圆周角是直角,90的圆周角所 对的弦是直径。圆内接四边形的对角互补。
知识点一 圆周角定理
A
A
知识点二 圆周角定理推论及其应用
2
C
知识点三 圆内接四边形
B
B
例1:如图,△ABC内接于⊙O,OD⊥BC于D,∠A
则∠ABC的度数是( ) D
A.80°
B.160°
C.100°
D.80°或100°
解析:当点B在优弧AC上时, ABC 1 AOC 180;
当点B在劣弧上时,
2
∠AB’C=180°-∠ABC=180°-80°=100°.
所以∠ABC的度数是80°或100°.