方法一:
C
A
解:连接BC ∵AB为直径
D O
∴∠BCA=90°
(直径所对的圆周角为直角)
B
∴∠BCD+∠DCA=90°,∠ACD=15°
∴∠BCD=90°-15=75°
∴∠BAD=∠BCD=75°(同弧所对的圆周角相
等)
4.如图,AB是⊙O的直径,∠C=15°,求 ∠BAD的度数。
C
A
方法二:
解:连接OD
并且两边都和圆相交的角
A
叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交. B
.
O C
根据圆心与圆周角的位置关系
归纳同学们的意见我们得到以下几种情况。
A
C
A C
A C
O
B ①
O
O
B
B
②
③
圆周角和圆心角的关系
▪ 1.首先考虑一种特殊情况:
▪ 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角
情境导入
• 当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.你能观察 到这三个角有什么共同 特征吗?
A
E B
C D
1.顶点在圆上 2.两边和圆相交
A
E
●O
C
B
D
1、了解圆周角的概念。 2、会推导证明圆周角定理并会灵活运用。 3、灵活运用圆周角定理推论解决问题。
老师提示:能否转化为1的情况? 过点B作直径BD.由1可得:
AD C
●O
∠ABD
=
1∠AOD,∠CBD
2
=1 ∠COD,