哈工大半导体物理上课例题
- 格式:ppt
- 大小:41.50 KB
- 文档页数:8
半导体物理习题附: 半导体物理习题第一章 晶体结构1. 指出下述各种结构是不是布拉伐格子。
如果是,请给出三个原基矢量;如果不是,请找出相应的布拉伐格子和尽可能小的基元。
(1) 底心立方(在立方单胞水平表面的中心有附加点的简立方); (2) 侧面心立方(在立方单胞垂直表面的中心有附加点的简立方); (3) 边心立方(在最近邻连线的中点有附加点的简立方)。
2. 证明体心立方格子和面心立方格子互为正、倒格子。
3. 在如图1所示的二维布拉伐格子中,以格点O 为原点,任意选取两组原基矢量,写出格点A 和B 的晶格矢量A R 和B R 。
4. 以基矢量为坐标轴(以晶格常数a 为度量单位,如图2),在闪锌矿结构的一个立方单胞中,写出各原子的坐标。
5.石墨有许多原子层,每层是由类似于蜂巢的六角形原子环组成,使每个原子有距离为a的三个近邻原子。
试证明在最小的晶胞中有两个原子,并画出正格子和倒格子。
第二章晶格振动和晶格缺陷1.质量为m和M的两种原子组成如图3所示的一维复式格子。
假设相邻原子间的弹性力常数都是β,试求出振动频谱。
2.设有一个一维原子链,原子质量均为m,其平衡位置如图4所示。
如果只考虑相邻原子间的相互作用,试在简谐近似下,求出振动频率ω与波矢q之间的函数关系。
3.若把聚乙烯链—CH=CH—CH=CH—看作是具有全同质量m、但力常数是以1β,2β交替变换的一维链,链的重复距离为a,试证明该一维链振动的特征频率为}])(2sin41[1{2/1221221212ββββββω+-±+=qam并画出色散曲线。
第三章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近的能量)(k E c 为mk k m k k E c 21222)(3)(-+=ηη(3.1)价带极大值附近的能量)(k E v 为mk m k k E v 2221236)(ηη-=(3.2)式中m 为电子质量,14.3,/1==a a k πÅ。
半导体物理习题答案半导体物理是固体物理的一个重要分支,它研究的是半导体材料的物理性质及其在电子器件中的应用。
以下是一些常见的半导体物理习题及其答案。
习题一:半导体的能带结构问题:简述半导体的能带结构,并解释价带、导带和禁带的概念。
答案:半导体的能带结构由价带和导带组成,两者之间存在一个能量间隔,称为禁带。
价带是半导体中电子能量最低的能带,当电子处于价带时,它们是被束缚在原子周围的。
导带是电子能量最高的能带,电子在导带中可以自由移动。
禁带是价带顶部和导带底部之间的能量区间,在这个区间内不存在允许电子存在的能级。
半导体的导电性能介于导体和绝缘体之间,主要因为其禁带宽度较小,电子容易从价带激发到导带。
习题二:PN结的形成与特性问题:解释PN结的形成过程,并描述其正向和反向偏置特性。
答案:PN结是由P型半导体和N型半导体接触形成的结构。
P型半导体中存在空穴,而N型半导体中存在自由电子。
当P型和N型半导体接触时,由于扩散作用,P型中的空穴会向N型扩散,而N型中的电子会向P型扩散。
这种扩散导致在接触区域形成一个耗尽层,其中电子和空穴复合,留下固定电荷,形成内建电场。
正向偏置时,外加电压使内建电场减弱,允许更多的电子和空穴通过PN结,从而增加电流。
反向偏置时,外加电压增强了内建电场,阻碍了电子和空穴的流动,导致电流非常小。
习题三:霍尔效应问题:描述霍尔效应的基本原理,并解释霍尔电压的产生。
答案:霍尔效应是指在垂直于电流方向的磁场作用下,载流子受到洛伦兹力的作用,导致电荷在样品一侧积累,从而在垂直于电流和磁场方向上产生一个横向电压差,即霍尔电压。
霍尔效应的发现为研究材料的载流子类型和浓度提供了一种有效的方法。
霍尔电压的大小与电流、磁场强度以及材料的载流子浓度有关。
习题四:半导体的掺杂问题:解释半导体掺杂的目的和方法,并举例说明。
答案:半导体掺杂的目的是为了改变半导体的导电性能。
通过在纯净的半导体中掺入微量的杂质原子,可以增加或减少半导体中的载流子数量。
湖北工业大学半导体物理课程试卷一、选择填空(含多选题)(30分)1、与半导体相比较,绝缘体的价带电子激发到导带所需的能量();A、比半导体的大,B、比半导体的小,C、与半导体的相等。
2、室温下,半导体Si掺硼的浓度为1014cm-3,同时掺有浓度为1.1×1015cm-3的磷,则电子浓度约为(),空穴浓度为(),费米能级为();将该半导体由室温度升至570K,则多子浓度约为(),少子浓度为(),费米能级为()。
(已知:室温下,ni≈1.5×1010cm-3,570K 时,ni≈2×117cm-3)A.1014cm-3B.1015cm-3C、1.1×1015cm-3D、2.25×103、施主杂质电离后向半导体提供(),受主杂质电离后向半导体提供(),本征激发后向半导体提供();A、空穴,B、电子。
4、对于一定的p型半导体材料,掺杂浓度降低将导致禁带宽度(),本征流子浓度(),A、增加,B、不变,C、减少。
5、对于一定的n型半导体材料,温度一定时,减少掺杂浓度,将导致()靠近Ei;A、Ec,B、Ev,C、Eg,D、EF。
6、热平衡时,半导体中的电子浓度与空穴浓度之积为常数,它只与()有关,而与()无关;A、杂质浓度B、杂质类型C、禁带宽度,D、温度。
7、当施主能级ED与费米能级EF相等时,电离施主的浓度为施主浓度的()倍;A、1,B、1/2,C、1/3,D、1/4。
8、最有效的复合中心能级位置在()附近;最有利陷阱作用的能级位置在()附近,A、EA,B、ED,C、EF,D、EiE、少子F、多子。
9、载流子的扩散运动产生()电流,漂移运动产生()电流。
A、漂移B、隧道C、扩散10、MIS结构的表面发生强反型时,其表面的导电类型与体材料的(),若增加掺杂浓度,其开启电压将()。
A、相同B、不同C、增加D、减少二、证明题:(15分)p型半导体的费米能级在n型半导体的费米能级之下。
半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg根据dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’2226m h dk E d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。
第一章 半导体中的电子状态例1. 证明:对于能带中的电子,K 状态和-K 状态的电子速度大小相等,方向相反。
即:v(k )= -v(-k ),并解释为什么无外场时,晶体总电流等于零。
思路与解:K 状态电子的速度为:1()()()()[]x y zE k E k E k v k i j k h k k k ∂∂∂=++∂∂∂ (1)同理,-K 状态电子的速度则为:1()()()()[]x y zE k E k E k v k i j k h k k k ∂-∂-∂--=++∂∂∂ (2)从一维情况容易看出:()()x x E k E k k k ∂-∂=-∂∂ (3)同理有:()()y yE k E k k k ∂-∂=-∂∂ (4)()()zz E k E k k k ∂-∂=-∂∂ (5) 将式(3)(4)(5)代入式(2)后得:1()()()()[]x y zE k E k E k v k i j k h k k k ∂∂∂-=-++∂∂∂ (6)利用(1)式即得:v(-k )= -v(k )因为电子占据某个状态的几率只同该状态的能量有关,即: E(k)=E(-k)故电子占有k 状态和-k 状态的几率相同,且v(k)=-v(-k),故这两个状态上的电子电流相互抵消,晶体中总电流为零。
评析:该题从晶体中作共有化运动电子的平均漂移速度与能量E 的关系以及相同能量状态电子占有的机率相同出发,证明K 状态和-K 状态的电子速度大小相等,方向相反,以及无电场时,晶体总电流为零。
例2. 已知一维晶体的电子能带可写成:2271()(cos 2cos6)88h E k ka ka m a ππ=-+式中,a 为晶格常数。
试求:(1) 能带的宽度;(2) 能带底部和顶部电子的有效质量。
思路与解:(1)由E(k)关系得:223(2sin 2sin 6)4dE h ka ka dk m a πππ=-=231(3sin 2sin 2)4h ka ka m a πππ- (1)222221(18sin 2cos 2cos 2)2d E h ka ka ka dk m ππππ=- (2)令 0dE dk = 得:21sin 212ka π=1211cos 2()12ka π∴=±当cos 2ka π=2)得:222211(18)0121221212d E h dk m m π=⨯⨯-⨯=>对应E(k)的极小值。
第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
一.填空题1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。
(二阶导数.内部势场)2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。
(状态密度.费米分布函数)3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。
(正.相等)4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。
([100]. 间接带隙)5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。
(弗仑克耳缺陷.肖特基缺陷)6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。
(1/2.1/1+exp(2))7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。
(间接带隙.直接带隙)8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。
(玻尔兹曼分布.费米分布)9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。
(温度.禁带宽度)10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。