活性污泥法的基本原理活性污泥法中污泥产率的计算及浓度测定
- 格式:doc
- 大小:77.50 KB
- 文档页数:27
全面解析活性污泥法工艺的原理展开全文◆ ◆ ◆一、活性污泥的形态、组成与性能指标1.活性污泥法工艺活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。
废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。
废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。
非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。
废水由此得到净化。
净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。
2.活性污泥的形态和组成活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。
活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。
例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。
活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。
在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。
3.活性污泥的性能指标(1) 污泥浓度指标混合液悬浮固体浓度(MLSS),也称为“混合液污泥浓度”,表示活性污泥在曝气池混合液中的浓度,其单位为mg/L或kg/m3。
活性污泥污泥浓度的测定活性污泥法是利用悬浮生长的微生物絮体处理有机废水一类好氧生物的处理方法。
这种生物絮体叫做活性污泥,它由好气性微生物(包括细菌、真菌、原生动物和后生动物)及其代谢的和吸附的有机物、无机物组成,具有降解废水中有机污染物(也有可部分利用无机物)的能力,显示生物化学活性。
污泥浓度、污泥指数、污泥沉降比的测定1 适用范围曝气池活性污泥的污泥浓度、污泥指数、污泥沉降比。
2 定义污泥浓度是指曝气池中污水和活性污泥混合后的混合液悬浮固体数量。
单位:mg/L。
污泥沉降比是指曝气池混合液在100ml量筒中,静置沉淀30分钟后,沉淀污泥与混合液之体积比(%)。
污泥指数是指曝气池出口处混合液经30分钟静沉后,1g干污泥所占的容积,以ml计。
3 仪器3.1 天平3.2 定量滤纸3.3 烘箱3.4 真空泵3.5 扁嘴无齿镊子3.6 实验室其它常用仪器4 活性污泥污泥浓度的测定采样与样品保存实验室样品采集在干净的玻璃瓶内,采样之前用待采的水样清洗三次,然后采集具有代表性的水样100―200ml,盖严瓶塞。
应尽快分析。
5 活性污泥污泥浓度测定步骤5.1 滤纸准备用扁嘴无齿镊子夹取定量滤纸放于事先恒重的称量瓶内,移入烘箱中于103―105℃烘干半小时后取出置于干燥器内冷却至室温,称其重量。
反复烘干、冷却、称量,直至两次称量的重量差≤0.2mg,记录(W1)。
将恒重的滤纸放在玻璃漏斗内。
5.2 试样测定用100ml量筒量取充分混合均匀的试样100ml,静止30分钟后读取沉淀后污泥所占的体积V(ml)。
倾去上述量筒中清液,用准备好的滤纸进行过滤量筒中的污泥,并用少量蒸馏水冲洗量筒,合并滤液。
(为提高过滤速度,应采用真空泵进行抽滤。
)将载有污泥的滤纸放在原恒重的称量瓶里,移入烘箱中于103―105℃下烘2~3小时后移入干燥器中,使冷却到室温,称其重量。
反复烘干、冷却、称量,直至两次称量的重量差≤0.4mg为止,记录(W2)。
活性污泥法的基本原理活性污泥法的基本原理⼀、活性污泥法的基本⼯艺流程1、活性污泥法的基本组成①曝⽓池:反应主体②⼆沉池: 1)进⾏泥⽔分离,保证出⽔⽔质;2)保证回流污泥,维持曝⽓池内的污泥浓度。
③回流系统: 1)维持曝⽓池的污泥浓度;2)改变回流⽐,改变曝⽓池的运⾏⼯况。
④剩余污泥排放系统: 1)是去除有机物的途径之⼀;2)维持系统的稳定运⾏。
⑤供氧系统:提供⾜够的溶解氧2、活性污泥系统有效运⾏的基本条件是:①废⽔中含有⾜够的可容性易降解有机物;②混合液含有⾜够的溶解氧;③活性污泥在池内呈悬浮状态;④活性污泥连续回流、及时排除剩余污泥,使混合液保持⼀定浓度的活性污泥;⑤⽆有毒有害的物质流⼊。
⼆、活性污泥的性质与性能指标1、活性污泥的基本性质①物理性能:“菌胶团”、“⽣物絮凝体”:颜⾊:褐⾊、(⼟)黄⾊、铁红⾊;⽓味:泥⼟味(城市污⽔);⽐重:略⼤于1,(1.002~1.006);粒径:0.02~0.2 mm;⽐表⾯积:20~100cm2/ml。
②⽣化性能:1) 活性污泥的含⽔率:99.2~99.8%;固体物质的组成:活细胞(Ma)、微⽣物内源代谢的残留物(Me)、吸附的原废⽔中难于⽣物降解的有机物(Mi)、⽆机物质(Mii)。
2、活性污泥中的微⽣物:①细菌:是活性污泥净化功能最活跃的成分,主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、⽆⾊杆菌属等;基本特征:1) 绝⼤多数都是好氧或兼性化能异养型原核细菌;2) 在好氧条件下,具有很强的分解有机物的功能;3) 具有较⾼的增殖速率,世代时间仅为20~30分钟;4) 其中的动胶杆菌具有将⼤量细菌结合成为“菌胶团”的功能。
②其它微⽣物------原⽣动物、后⽣动物----在活性污泥中⼤约为103个/ml3、活性污泥的性能指标:①混合液悬浮固体浓度(MLSS)(Mixed Liquor Suspended Solids):MLSS = Ma + Me + Mi + Mii 单位: mg/l g/m3②混合液挥发性悬浮固体浓度(MLVSS)(Mixed Volatile Liquor Suspended Solids):MLVSS = Ma + Me + Mi;在条件⼀定时,MLVSS/MLSS是较稳定的,对城市污⽔,⼀般是0.75~0.85③污泥沉降⽐(SV)(Sludge Volume):是指将曝⽓池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积⽐,⼀般以%表⽰;能相对地反映污泥数量以及污泥的凝聚、沉降性能,可⽤以控制排泥量和及时发现早期的污泥膨胀;正常数值为20~30%。
活性污泥法的基本原理一.基本概念和工艺流程(一)基本概念1.活性污泥法:以活性污泥为主体的污水生物处理。
2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体(二)工艺原理1.曝气池:作用:降解有机物(BOD5)2.二沉池:作用:泥水分离。
3.曝气装置:作用于①充氧化②搅拌混合4.回流装置:作用:接种污泥5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气也内的微生物量平衡。
混合液:污水回流污泥和空气相互混合而形成的液体。
二.活性污泥形态和活性污泥微生物(一)形态:1、外观形态:颜色黄褐色,絮绒状2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。
③含水率>99%,C<1%固体物质。
④比重1.002-1.006,比水略大,可以泥水分离。
3.组成:有机物:{具有代谢功能,活性的微生物群体Ma{微生物内源代谢,自身氧化残留物Me{源污水挟入的难生物降解惰性有机物Mi无机物:全部有原污水挟入Mii(二)活性污泥微生物及其在活性污泥反应中作用1.细菌:占大多数,生殖速率高,世代时间性20-30分钟;2.真菌:丝状菌→污泥膨胀。
3.原生动物鞭毛虫,肉足虫和纤毛虫。
作用:捕食游离细菌,使水进一步净化。
活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。
☆原生动物作为活性污泥处理系统的指示性生物。
4.后生动物:(主要指轮虫)在活性污泥处理系统中很少出现。
作用:吞食原生动物,使水进一步净化。
存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。
(三)活性污泥微生物的增殖和活性污泥增长四个阶段:1.适应期(延迟期,调整期)特点:细菌总量不变,但有质的变化2.对数增殖期增殖旺盛期或等速增殖期)细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。
3.减速增殖期(稳定期或平衡期)细菌总数达最大,增殖速率等于衰亡速率。
4.内源呼吸期:(衰亡期)细菌总数不断减小,增殖速率小于衷亡速率,微生物的增殖要受到有机物含量的控制。
(四)活性污泥絮凝体形成菌胶团:P99 细菌集团MLSS原理:活性絮凝体的形成与曝气池内的能含量有关☆能含量:曝气池内的有机物量与微生物量的比值,用F/M表示。
有机物F小,F/M小,能含量低,处于内源呼吸期,有利于絮凝体形成。
F大,F/M大,1/2mv2大,引力小不易结合。
F小,F/M小,V↓,易结合成小的菌胶团→生物絮凝体。
Ma+Me+Mi+Mii三.活性污泥净化反应过程1、初期吸附去除阶段5-10分钟有机物高速去除定义:P100,吸附去除的原因→有巨大表面积,吸附力强,外部覆盖着多糖类的粘质层。
吸附去除结果:有机物从污水中转移到活性污泥上去2.微生物代谢酶:透膜酶大分子(水解酶)→小分子(透膜酶)→细菌体内→微生物代谢↗(分解代谢)→无机物+Q ↗残存物质(20%)有机物+O2(异养菌)→(合成代谢)→新细胞(内源代谢)→无机物质+Q(80%)4.2 活性污泥净化反应影响因素与主要设计运行参数一.影响因素1.营养物质平衡:C N P碳源N源无机盐类C→BOD5≥100m3/L 城市污水满足对某些工业废水,C低,补充碳源N:生活污水满足对某些废水,N不足。
(尿素,(NH4)2SO4Na3PO4-K3PO4 C:N:P=100:5:12.DO:{过低:微生物生理活动不能正常进行,处理效果差{过高:①有机物降解过快,微生物因缺营养而死亡②耗能过大经济浪费曝气池出口处DO 2mg/L(局部区域进水口处较低,不宜低于1mg/L) 3.PH 6.5—8.5 偏碱PH> 8.5 粘性物质破坏→活性污泥结构破坏PH<6.5:分子结构有变化4.水温:{低温细菌{中温细菌一般化10℃--45℃污水中草药15℃--35℃{高温细菌↘对常年或半年处于低温地区,曝气池建在室内,建在室外要有保温措施.5.有毒物质→ 对微生物抑制和毒害作用重金属离子CN- 酚S2-二.活性污泥处理系统的控制指标和设计运行操作参数目标:{①使水质,水量得到控制{②使活性污泥量保持相对稳定{③控制混合液中DO浓度,满足要求{④使活性污泥有机物和DO充分接触控制指标(对活性污泥的评价指标)→(工程上)设计运行操作的参数1.表示控制混合液中活性污泥微生物量的指标混合液→ 污泥浓度⑴混合液悬浮固体浓度(简化混合液污泥浓度) 英文:Mixed liquid suspended solids (mlss)定义:P106MLSS=(活性污泥固体物总重量)/混合液体积MLSS=M a+Me+Mi+Mii (Me+Mi)→非活性Mii→无机⑵混合液挥发性悬浮固体浓度SS {MLVSS 有{MLSS 无一般用f表示=MLVSS/MLSS 城市污水落石出0.7---0.82、活性污泥的沉降性能及评定指标⑴污泥沉降比P107SV=(混合液30min静沉的沉降污泥体积ml)/(原混合液体积l)意义:SV小,沉淀污泥体积小,污泥沉降性能好.城市污水: 15%---30%⑵污泥溶积指数: (SVI) (sludgs V olume Index)SVI=(混合液30min静沉形成的活性污泥溶积ml)/(混合液中悬浮固体干重g)=((混合静沉30min的污泥体积)/(混合液体积))/((混合液悬浮固体干重)/混合液体积))=SV/MLSS意义:SVI过低,无机颗粒多,污泥缺乏活性。
SVI过高,污泥沉降性能不好,易发生膨胀。
SVI:70-100 SVI=100 SVI=120工程意义:{①SVI与OBD污泥负荷关系{②SVI-MLSS图3.污泥龄(sludge age)指曝气池内活性污泥平均停留时间,以称生物固体平均停留时间。
在曝气池内,有机物降解过程中,微生物保持系统平衡,必须排除相当于每日增长的污泥量。
所以,排除污泥量=每日增长的污泥量△X= { 随上清液排放的污泥土(Q-Qw)Xe{从二沉池底部排出的污泥QwXr△X=(Q-Qw)Xe+Qw-Xr污泥量定义:曝气池内活性污泥量与每日排放的污泥量之比Qc=XV/△X=XV/((Q-Qw)Xe+QwXV)X:代表微生物量X Xr Xe XvS:代表有机物量Sa Se So回流污泥浓度等于排放剩余污泥浓度(Xr)max=106/SVI4.BOD—污泥负荷和BOD—容积负荷F/M=NS=(QSa)/(XV) (kgBOD)/(kg mlss d)定义:V=(QSa)/(XNs) Q—日平均流量m3/sSa 进入曝气池的原污水有机污染物(BOD)浓度Sa=(1-η)S0(经除尘之后)Sa=S0 直接进入在工程上:BOD容积负荷Nv=(Q Sa)/v (kg BOD)/(m2曝气池d)Nv=NsXNs 选取{过高,有机物降解和微生物繁殖速度都很大{过低,有机物降解和微生物繁殖速度慢,容积大,增加了基建投资Ns {高负荷:1.5-2.5 kgBOD5/kgMlss d{中负荷(一般):0.5-0.2{低负荷:≤0.1SVI 0.5-1.5 避免易发生污泥膨胀城市污水:Ns:0.5-0.35.有机物的降解和活性污泥增长{合成代谢---新细胞↘差值---净增值----排放{内源代谢---减少新细胞↗△X=aSr-bx b---自身氧化率a---合成产率Sr=Sa-Se (dx/dt)g=(dx/dt)s-(dx/dt)e(dx/dt)s=Y(ds/dt)u Y—合成产率系数(dx/dt)e=kdsv(dx/dt)g=Y(ds/dt)u-kdxv----微生物增值速度基本方程式(ds/dt)v=(Sa-Se)/t=(Sa-Se)/(V/Q)=Q(Sa-Se)/V△X/v=YQ(Sa-Se)/v-KdXv 同乘v△X=YQ(Sa-Se)-KdVXv →用来计算排放的剩余污泥量Y Kd 的确定(上式同除以VXv)△X/VXv=YQ(Sa-Se)/VXv-KdBOD污泥去除负荷Xv/△X=Qc ∴1/Qc=Ynys-KdNys与Qc成反比关系用图解法确定Y Kd 图经验数据生活污水: Y 0.4—0.65Kd 0.05—0.1城市污水; Y 0.4—0.5Kd 0.07工业废水,Y Kd 按实测数据由图解法组成6.有机物的降解与需氧量需氧过程{有机物降雨量降解的需氧量{微生物内源代谢自身氧化需气量Ov=a’Q(Sa-Se)+b’VXv 用来计算曝气池内实际需氧量a′:有机物降解需氧量b′:需氧率图解确定O2/VXv=a′Q(Sa-Se)/VXv+b′=a′Nrs+b′同除以Q(Sa-Se)O2/QSr=a′+b′/Nrs结论:降解单位有机物需氧量小,BOD去除率高。
a′b′确定O2/VXv=a′+b′/Nrsa′ 0.42---0.53 b′ 0.188---0.114.3 活性污泥反应动力学基础一.概述研究目的{①研究反应速度和环境因素间的关系{②对反应的机理进行研究,使反应进行控制反应动力学方程式{米门方程式1913研究酶促反应速度{莫诺方程式1942{劳—麦方程式1970二.莫诺方程式1.基本方程式形式提出人:莫诺时间:1942试验条件:纯种生物在单一底物的培养基中试验内容:研究微生物的增值速度与底物浓度间的关系结果与米门方程式相同μ=μmaxS/(Ks+S) μ---比增值速度(单位生物量的增殖速度)S―有机底物的浓度Ks-饱和常数当μ=1/2μmax时,有机底物的浓度有机物比降解速度与底物浓度关系V=VmaxS/(Ks+S) (1)V=-(ds+dt)/x v=f(s)-ds/dt=vmaxXS/(Ks+S) (2)2.推论(1)对于高底物浓度条件下S>>KsV=Vmax=k1-ds/dt=vmaxx=k1x结论:①在高底物浓度下,有机底物以最大速度进行降解,与有机底物浓度无关,其降解速度只与污泥浓度有关。
②低底物浓度,S<<KsV=VmaxS/Ks=k2S (3)-ds/dt=VmaxXS/Ks=k2SX (4)结论:在低底物浓度下,有机底物降解速度与有机底物浓度有关,且成一级反应(有机物多,无机物少)由(4)得-∫s0sds/dt=∫0tk2xsdtS=S0e-k2xt3.莫诺方程式在曝气池中的应用Q(Sa-Se)/v=-ds/dtQ(Sa-Se)/v=Nrv ∴ds/dt=Nrv(1) 用来计算Nrv=-ds/dt=Q(Sa-Se)/v=(Sa-Se)/tk2Xse=Q(Sa-Se)/v(2)计算Nrs k2Se=Q(Sa-Se)/xv=Nrs(3)计算有机物降解率η=(Sa-Se)/S0=1-Se/S0=k2xt/(1+k2xt)4.有关k2的确定(图解法)Q(Sa-Se)/xv作纵轴Se-X斜率k2经验数据0.0168---0.0281三.劳—麦方程式1.概念:(1)把污泥龄改名为生物固体平均停留时间(2)提出单位底物利用率概念2.基本方程式(1)劳---麦第一方程式1/Qc=Yq-Kd(2)劳-麦第二方程式v=qv=KS/(Ks+S) →(ds/dt)u/xa=KS/(Ks+S)3.劳-麦方程式的推论及应用①Se—Qc关系②Xa—Qc Xa=YQQc(Sa-Se)/t(1+KdQc)③R---Qc④V与q的关系(ds/dt)u/Xa=k2Se →Q(Sa-Se)/XaV=k2Se →v=Q(Sa-Se)/k2XaSe曝气池容积的计算方法{①Ns V=Q(Sa-Se)/NsX{②Nrs V=Q(Sa-Se)/NrsXv{③劳麦{v=YQQc(Sa-Se)/Xa(1+KdQc){v=Q(Sa-Se)/k2SeXa⑤两种产率△X=YQ(Sa-Se)-KdVXv合成产率微生物的净增值量Yobs=Y/(1+KdQc)△X计算{△X=YQ(Sa-Se)-KdVXv{△X=YobsQ(Sa-Se)4.4 曝气池的理论基础作用:充氧搅拌方法:鼓风曝气:从鼓风机中房或空气压缩机房送来的空气,经过设置在曝气池底的空气扩散装置,溶解于水中。