普通活性污泥法设计计算
- 格式:docx
- 大小:36.83 KB
- 文档页数:2
污水处理设计常用计算公式
1.污水流量计算公式:
污水流量=污水产生量×日用水率
污水产生量=人均产污量×人口数+工业废水排放量
2.污染负荷计算公式:
COD负荷=污水流量×COD浓度
BOD负荷=污水流量×BOD浓度
TP负荷=污水流量×TP浓度
TN负荷=污水流量×TN浓度
3.池体尺寸计算公式:
曝气池尺寸=曝气池容积/曝气通量
沉淀池尺寸=沉淀池容积/停留时间
活性污泥池尺寸=活性污泥池容积/深度
4.沉淀速度计算公式:
沉淀速度=比表面积×重力加速度×其中一种颗粒物的密度/动力粘度×浓缩度
5.曝气负荷计算公式:
曝气负荷=曝气量/曝气池有效体积
曝气量=溶氧量/溶解氧传质系数
以上仅为污水处理设计中的一些常用计算公式,实际设计过程中还需要根据具体情况选择合适的公式并考虑其他影响因素。
1、普通活性污泥法处理系统废水量为11400m3/d,BOD5=180mg/L,曝气池容积V为3400m3,出水SS=20mg/L(出水所含的未沉淀的MLSS称为SS),曝气池内维持MLSS浓度为2500mg/L,剩余污泥排放量为155m3/d,其中含MLSS为8000mg/L。
求:曝气时间、BOD5容积负荷、F/M、污泥龄。
2、某造纸厂采用活性污泥法处理废水。
废水量24000m3/d,曝气池容积V为8000m3。
经初次沉淀,BOD5=300mg/L,曝气池对BOD5的去除率为90%,曝气池混合液悬浮固体浓度为4000mg/L,其中挥发性悬浮固体占75%。
(Y=0.76kgMLVSS/kgBOD5、Kd=0.016d-1、a=0.38kgO2/kgBOD5、b=0.092kgO2/kgMLVSS.d)求:F/M、q、Nv、每日剩余污泥量、每日需氧量和污泥龄。
3、某城市日排放量30000m3,进入生物池的BOD5=169mg/L,二级处理要求处理水BOD5为25mg/L,拟采用活性污泥处理系统。
(NS=0.3kgBOD5/kgMLSS.d,SVI=120ml/g,R=50%,r=1.2,f=0.75, Y=0.5kgMLVSS/kgBOD5、Kd=0.07d-1、a=0.5kgO2/kgBOD5,b=0.15kgO2/kgMLVSS.d)(1)计算确定曝气池体积;(2)计算剩余污泥量;(3)计算需氧量。
4、原始数据:Q=10000m3/d,BOD5=200mg/L,MLSS=3000mg/L,f=0.8,Y=0.5kgMLVSS/kgBOD5,K2=0.1L/mg.d,Kd=0.1d-1,SVI=96,处理出水为6mg/L。
采用完全混合活性污泥系统,要求确定(反应动力学参数都以MLVSS出现)(1)所需曝气池体积;(2)计算运行时的污泥龄;(3)确定合适的回流比。
5、:某废水量为21600m3/d,经一次沉淀后废水BOD5为250mg/L,要求出水BOD5在20mg/L 以下,水温20℃,试设计完全混合活性污泥系统。
活性污泥法剩余污泥量的计算随着氮磷去除要求的不断提高,污泥泥龄已成为活性污泥法设计和运行的关键参数,而如何计算剩余污泥量是计算污泥泥龄的关键。
国内的计算方法,无论是动力学法还是经验法,都只考虑由降解有机物BOD5所产生的污泥增殖,没有考虑进水中惰性固体对剩余污泥量的影响,计算所得剩余污泥量往往偏小。
本文介绍德国废水工程学会(ATV)和美国Eckenfelder等人提出的剩余污泥量计算方法。
1 国外剩余污泥量计算方法1.1 德国排水工程学会的剩余污泥计算模式 德国排水工程学会颁布的活性污泥法设计规范(1991)将剩余污泥分为: ①由降解有机物而引起的异养性微生物的污泥增殖量(不计自养性微生物的增殖); ②活性污泥代谢过程惰性残余物(约占污泥代谢量的10%左右); ③曝气池进水中不能水解/降解的惰性悬浮固体,其量约占悬浮固体浓度的60%左右。
因此,剩余污泥量可表达为: 式中 X=(Y H·Q·BOD5,i-b H·X·MLSS·V·f T,H)/SP (2) 由于 SP=MLSSV/Θc (3) 联立式(1)、(2)、(3)即可求得剩余污泥量: SP=Y H·Q·BOD5,i+0.6·Q·SS-0.9·b H·Y H·Q·BOD5·f T,H/[1/Θc+b H·f T,H] (4) 折算到每去除1kgBOD5的污泥产量SP t为: SP t=Y H-0.9·b H·Y H·f T,H/[1/Θc+b H·f T,H]+0.6·SS i/BOD5 (5) 式中 Q——进水流量,m3/d X——异养性微生物在活性污泥中所占的比例 V——曝气池容积,m3 Θc——污泥泥龄,d YH——异养性微生物的增殖率,kgDS/kgBOD5,Y H=0.6 bH——异养性微生物的内源呼吸速率(自身氧化率),bH=0.08L/d fT,H——异养性微生物生长温度修正系数,fT,H=1.072(T-15)(T为温度,℃) SSi——瀑气池进水悬浮SS浓度,kg/m3 BOD5,i——进水BOD5浓度,kg/m3 MLSS——污泥浓度,kg/m3 通常YH=0.6、hH=0.08L/d,公式可写成: 从式(6)可以看出,剩余污泥产率(每去除1kgBOD5产生的剩余污泥量)取决于曝气池进水SS/BOD5值、水温、污泥泥龄等因素。
4430℃(Cs 30)mg·L —l 45空气离开生化池氧的百分比(O f )%4620℃(Csmf 20)mg·L —l 4730℃(Csmf 30)mg·L —l 480.82490.950脱氧清水最大充氧量(Gom')kg/h 51m 3/hm 3/h 52m 3/min m 3/min53气水比(Y)m 3气/m 3水54生化池池数(n)个55每个生化池充气量(Gom")m 3/min56生化池每个有效体积(V')m 357生化池有效水深(H 1)m3.5~6.058生化池超高(H 2)m0.3~0.559生化池总高(H)m60生化池总有效面积(S 总)m 261生化池每个有效面积(S)m 262生化池宽(b)m63污泥产率系数(a 0)kg/kgBOD 50.5~0.5564污泥自身氧化速率(b 0)d -10.075~0.0565NVSS占TSS的百分数(u)%50%66活性污泥产量(ω1)kg/d67剩余污泥干量(ω)kg/d68剩余污泥含水率(P)%99.2%~99.6%69剩余污泥容积量(q)m 3/d 70设计污泥龄(t s )???d>10???71污泥负荷率校核(Fs)kgBOD 5/(kgMLSS·d)72悬浮物浓度仪台73溶解氧仪台废水与清水中氧的总转移系数比值(a 1)废水与清水中氧的饱和浓度之比(β)仪表(a 0×(Bo-Be)×Q-b 0×O 2×Csmf20/(a1×(β×Csmf30-C L )×1.0供气量(Gs)溶解氧饱和浓度21×(1-ηA )/(79+21×生化池中溶解氧平均饱和浓度Cs 20×(Pb/(2.026×1000Cs 30×(Pb/(2.026×10000×(β(2030。
目录摘要 (1)前言 (2)1.设计原始资料 (2)2。
工艺比较及选择 (2)2.1 污水特征 (2)2。
2 工艺比较 (3)2。
2.1 普通活性污泥工艺 (3)2.2.2 氧化沟工艺 (5)2.2.3 SBR工艺 (4)2.2。
4 AB法工艺 (4)2.3 工艺选择 (5)3。
设计计算 (6)3.1 污水处理程度的确定 (6)3。
2 污水处理工艺流程的选择 (6)3.3 各处理单元设计计算 (7)3.3.1 格栅 (7)3。
3.2 曝气沉砂池 (8)3.3.3 AB工艺参数 (9)3.3.4 A段曝气池 (11)3.3.5 B段曝气池 (14)3。
3.6 A段中沉池 (17)3。
3。
7 B段终沉池 (17)3.3.8 污泥浓缩池 (18)3.3。
9 贮泥池 (19)3。
3.10 污泥消化池 (20)3。
3.11 污泥脱水机 (25)3。
4 附属建筑物 (27)3。
5 处理厂规划 (27)3.5。
1 平面布置 (27)3。
5.2 高程布置 (27)3.6 污水提升泵选择 (29)4。
结论 (30)参考文献 (31)致谢 (32)AB法污水处理工艺设计计算摘要:通过分析污水特征和工艺比较,污水处理厂采用AB法污水处理工艺。
AB属超高负荷活性污泥法,其设计特点一般为不设初沉池,A段和B段的回流系统分开.A段和B段负荷在极为悬殊的情况下运行.A段污泥负荷高、污泥龄短、产泥量多,B段污泥负荷低、污泥龄长、产泥量较少。
两段的沉淀池表面负荷差异也较大。
AB法产泥量较大,需设污泥消化工艺,解决污泥处理和出路问题。
此外,AB法污水处理厂中的分期建设可缓解资金不足问题,同时使污水得到较大程度处理。
本设计中选用的各参数数据参考现运行AB法污水厂的经验数据。
关键词: AB法,负荷,设计,参数The design and calculationof AB wastewater treatment technologyAbstract:By means of analyzing the sewage characteristic and comparing treatment technologies, this wastewater treatment plant adopts the AB process. AB process belongs to the ultrahigh load activated sludge process. The design feature of AB process is that the primary sedimentation tank is generally unnecessary, and the refluence systems of section A and section B are separated. The load of Section A and section B are extremely different. Section A has high sludge load, short sludge age and more sludge production,while section B has low sludge load, long sludge age and less sludge production。
普通活性污泥法设计计算
普通活性污泥法是一种常见的生物处理工艺,用于处理有机废水。
下面是普通活性污泥法的设计计算步骤:
1. 确定处理规模:首先确定需要处理的废水流量,通常以每天处理的废水量来计算。
根据废水的性质和排放标准,确定出水水质要求。
2. 确定污泥负荷:根据废水中的有机物质浓度,计算出单位时间内有机物质的负荷,通常以化学需氧量(COD)或生化需氧量(BOD)来表示。
污泥负荷是指单位时间内进入活性污泥系统的有机物质质量。
3. 确定活性污泥容积:根据污泥负荷和废水流量,计算出活性污泥系统所需的容积。
活性污泥容积通常以单位时间内进入的有机物质质量与污泥浓度之比来计算。
4. 确定曝气量:曝气是活性污泥法中的关键步骤,通过曝气提供氧气供给污泥中的微生物进行有机物降解。
曝气量的大小取决于废水中有机物负荷、废水中氮、磷等元素的含量以及污泥的浓度。
通常可以通过试验或经验确定曝气量。
5. 确定污泥回流比例:污泥回流是指将部分处理后的污泥回流到污泥系统中,以增加微生物的浓度和活性。
污泥回流比例的大小取决于废水中的有机物负荷、废水中氮、磷等元素的含量以及污泥的浓度。
通常可以通过试验或经验确定污泥回流比例。
6. 设计污泥处理设施:根据污泥产生量和处理要求,设计污泥处理设施,包括污泥浓缩、脱水和处置等步骤。
7. 设计系统运行参数:根据污泥负荷、曝气量、污泥回流比例
等参数,设计系统的运行参数,包括曝气池和沉淀池的尺寸、曝气池和沉淀池的深度、曝气设备的数量和功率等。
8. 设计系统控制参数:根据废水水质要求,设计系统的控制参数,包括进水流量、出水流量、污泥回流流量、曝气量等。
以上是普通活性污泥法的设计计算步骤,具体的计算方法和参数选择需要根据实际情况进行调整和确定。