《代数式的值》word版 公开课一等奖教案 (1)
- 格式:doc
- 大小:65.50 KB
- 文档页数:3
代数式的值的教案教案标题:代数式的值的教案教学目标:1. 理解代数式的概念,并能够正确地写出给定代数式;2. 掌握计算代数式的值的方法;3. 能够应用所学知识解决实际问题。
教学内容:1. 代数式的概念:包括变量、系数、常数项等基本概念;2. 代数式的运算:加法、减法、乘法、除法等运算规则;3. 计算代数式的值:代入数值替换变量,进行计算;4. 实际问题的应用:将实际问题转化为代数式,并计算其值。
教学步骤:引入:1. 引导学生回顾数学表达式的概念,引出代数式的概念,并解释其在现实生活中的应用场景。
讲解与示范:2. 结合幻灯片或白板展示代数式的组成要素,包括变量、系数和常数项,并通过示例向学生说明每个要素的作用和含义。
3. 讲解代数式的运算规则,包括加法、减法、乘法和除法,通过具体例子演示如何进行运算。
练习与巩固:4. 给予学生多个练习题,让他们亲自计算代数式的值。
例如:a) 计算代数式 3x + 2y,当 x = 4,y = 5 时的值;b) 计算代数式 2a^2 - 3b,当 a = -2,b = 1 时的值。
提醒学生按照运算规则逐步计算,注意替换变量后的数值计算。
应用与拓展:5. 引导学生将所学知识应用于实际问题求解。
例如,给学生一个实际问题,要求他们建立相应的代数式,并计算其值。
如:小明的年龄是小红年龄的两倍减去5岁,且小红今年15岁。
请计算小明今年的年龄。
学生需要将小红年龄用变量代替,建立代数式为2x-5,其中 x 为小红的年龄。
然后代入已知数值 x = 15,计算代数式的值。
课堂小结与反思:6. 对学生进行小结,强调代数式的重要性和运用价值,并对学生在计算过程中可能遇到的困难进行指导和解答。
拓展练习(家庭作业):7. 布置拓展练习作为家庭作业,包括更复杂的代数式计算和实际问题求解。
鼓励学生查阅教材或互联网资源进行自主学习与探索。
教学辅助工具:- 幻灯片或白板- 代数式练习题- 实际问题练习题- 课堂笔记和教材评估方式:- 教师对学生在课堂练习中的答题情况进行观察和评估;- 统一布置的拓展练习作为家庭作业,课后进行批改和评估。
3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。
3.3 代数式的值(第一课时)教学目标: 一、知识目标:1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法2、会利用代数式求值推断代数式所反映的规律 3能理解代数式值的实际意义二、能力目标:通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际问题能力。
三、情感目标:让学生体会从生活中发现数学和应用数学解决生活中问题的过程,品尝成功的喜悦,激发学生应用数学的兴趣教学重点:求代数式的值教学难点:利用代数式求值推断代数式所反映的规律。
.教学过程: 一、创设情境:1.求下图三角形的面积:生:三角形的面积 =2ha2.继续求下图三角形的面积生:三角形的面积 =2163⨯⨯= 9 3.用字母a 表示三角形的底,h 表示三角形的高,求当a =6,h = 3时,三角形的面积。
三角形的面积 = 2h a = 2163⨯⨯= 9 4.揭示新课(这节课我们就来学习4.3节代数式的值)二、探索新知1.师生共同学习例1当a =-2、b = -3时,求代数式2a 2-3ab +b 2的值。
教师写出例1的全部过程(主要规范学生做此类题目的格式)解:当a = -2、b = -3时, 2a 2-3ab +b 2=2)2(-⨯2-3)3()2(-⨯-⨯+(-3)2=2⨯4-3⨯(-2)⨯(-3)+9 =8-18+9 =-12..学习例2(补充例题)当x = 5、y =- 4时,求代数式 -3x -5y 的值。
(由学生仿照例1完成) 3.师生共探议一议(1) 先让学生完成表格(2) 从这张表格上你获得了哪些信息?(3) 随着值的逐渐增大,两个代数式的值怎样变化?(4) 当代数式2x +5的值为25时,代数式2(x +5)的值是多少? 4.巩固练习(2).剪绳子:1)将一根绳子对折1次再从中剪一刀,绳子变成( )段;将一根绳子对折2次再从中剪一刀,绳子变成( )段;将一根绳子对折3次再从中剪一刀,绳子变成( )段; 2)将一根绳子对折n 次再从中剪一刀,绳子变成( )段;3) 根据(2)的结论,将一根绳子对折10 次再从中剪一刀,绳子变成( )段;(探索本题中的规律较为困难,教学中让学生具体地“做” 用绳子、剪刀操作,然后再分析、思考。
2.3 代数式的值【教学目标】知识与技能1.让学生领会代数式值的概念.2.了解求代数式值的解题过程及格式.3.初步领悟代数式的值随字母的取值变化而变化的情况.过程与方法通过学习使学生了解求代数式的值在日常生活中的应用.情感态度培养学生的探索精神和探索能力.教学重点求代数式的值的含义及如何求代数式的值.教学难点求代数式的值的含义理解及一些应用.【教学过程】一、情景导入,初步认知通过上节课的学习,我们了解了什么?它的概念是什么?【教学说明】通过复习最近学过的知识,使学生尽快进入学习状态.二、思考探究,获取新知1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有的同学每人植树a棵,其余同学植树2棵.你用代数式表示他们共植树的总棵数吗?如果a=3,那么他们共植树多少棵?如果a=4,那么他们共植树又是多少棵?根据题意,他们共植树:×305a+(1-)×305×2=(122a+366)棵;当a=3时,代数式122a+366=122×3+366=732(棵);当a=4时,代数式122a+366=122×4+366=854(棵);我们将上面问题中的计算结果732和854,称为代数式122a+366当a=3和当a=4时的值.【归纳结论】如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时”,一定要按照代数式指明的运算进行.(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a+366中的字母a不能取负数,又如代数式中的字母b不能取零.2.思考:结合上述例题,回答下列问题:(1)求代数式的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?【教学说明】引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.3.(1)当x=-3时,求出代数式x2-3x+5的值;(2)当a=0.5,b=-2时,求的值;(3)当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.【教学说明】点拨:(1)注意书写格式,“当……时”的字样不要丢;(2)代数式中的乘法运算,当其中的字母用数字在替代时,要恢复“×”号;(3)要按照代数式指明的运算顺序进行计算;(4)如果字母的值是负数,代入时应将负数加上括号;如果字母的值是分数,就要计算它的平方、立方,代入时应将分数加上括号;(5)只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值和它对应.三、运用新知,深化理解1.教材P64例2.2.判断题:①当x=时,3x2=3()2=3;②当x=-2时,3x2=3-42=-1.答案:错,错.3.(1)若x+1=4,则(x+1)2= ;(2)若x+1=5,则(x+1)2-1= .答案:16;24.4.当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.5.当a=2,b=-1,c=-3时,求下列各代数式的值;(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解:(1)当a=2,b=-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4(3)当a=2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.6.若x+2y2+5的值为7,求代数式3x+6y2+4的值.分析:比较x+2y2与3x+6y2之间的异同,从而找到关键点进行解题.解:由已知x+2y2+5=7,则x+2y2=2∴3x+6y2+4=3(x+2y2)+4=3×2+4=10.7.已知a+b=3,求代数式(a+b)2+a+5+b的值.解:(a+b)2+a+5+b=(a+b)2+(a+b)+5因为a+b=3,所以(a+b)2+(a+b)+5=32+3+5=178.对于正数,运算“*”定义为a*b=,求3*(3*3) .分析:这里“*”告诉我们一个运算关系,a*b=,就是说:数*数=,按这个运算求3*(3*3).解:因为 a*b=所以3*(3*3)===19.某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?分析:今年的产值为(1+10%)a,明年的产值为(1+10%)2a.解:由题意可得,今年的年产值为(1+10%)a亿元,于是明年的年产值为(1+10%)2a=1.21a(亿元)若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2=2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预测明年的年产值是2.42亿元.【教学说明】通过巩固训练,让学生学会求代数式的值的方法.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题2.3”中第2、3、5题.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2.1.3.代数式的值合肥市龙岗中学於国俊2013.10.24教材分析:本节课在内容安排上,首先从一个人的生活实例出发,引出代数式的值的概念,使学生实现从数到式的飞跃,知道了列代数式的目的是解决问题,解决问题的过程中,往往需要根据代数式中字母所取的值,确定代数式的值,也就是本节课的内容。
本节课的重难点在于让学生学会求代数式的值,并理解代数式里的字母取值应使得代数式与它所表示的实际数量有意义。
教学目标:知识与技能:了解代数式的值的概念,会求代数式的值,会利用求代数式的值解决较简单的实际问题。
过程与方法:在具体情境中感受代数式中的字母表示数的意义,体会代数式实际上是由计算关系反映的一种数量关系。
情感、态度与价值观:通本节内容的学习培养学生的学习兴趣和实际运用数学的能力。
教学重难点:重点:求代数式的值。
难点:理解代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
教具准备:多媒体课件。
教学方法:小组合作、精讲点拔、启发式教学。
教学过程:一、组织活动、引入新课课前和同学们聊天、交流,问:1.你们晚上一般几点钟睡觉?早晨几点钟起床啊?(学生积极回答),2.那么你们觉得睡这几个小时够不够呢?白天上课会不会打瞌睡啊?(学生回答有说够的,有说不够的),究竟够不够呢?我们等一会再说先上课,(师:上课,师生问好)刚才老师在上课前问了几名同学一些关于睡眠的问题,你们这个年龄段究竟要几个小时的睡眠才够呢?我们来看一看:一项调查研究显示:一个10—50岁的人,每天所需要的睡眠时间t h与他的年龄n岁之间的关系为:t= 。
例如,你们的数学老师我今年30岁了,那么我每天所需的睡眠时间是t=1030110-=8(h)10 110n-算一算,你每天所需要的睡眠时间?(算出的结果只能参考,具体情况要根据个人睡眠习惯和睡眠的质量等原因因人而异)。
(设计意图:以和学生息息相关的睡眠时间问题讲解分析代数式的值的概念,对学生兴趣的培养.学习目的的端正都是有益的,让学生在实际生活中去发现,代数式中的字母可以用数字代替求出固定的结果,初步体会求代数式值的过程)。
3.2代数式的值第1课时一、课题§3.2代数式的值二、教学目标1.使学生掌握代数式的值的概念,会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.三、教学重点和难点重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)从学生原有的认识结构提出问题1.用代数式表示:(投影)(1)a与b的和的平方;(2) a,b两数的平方和;(3)a与b的和的50%.2.用语言叙述代数式2n+10的意义.3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.(二)师生共同研究代数式的值的意义1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.2.结合上述例题,提出如下几个问题(1)求代数式2n+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.注意:如果代数式中省略乘号,代入后需添上乘号.解:(1)当a=4,b=12时,注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当……时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.最后,请学生总结出求代数值的步骤:①代入数值②计算结果(三)课堂练习1.(1)当x=2时,求代数式x2-1的值;2.填表:(投影)(1)(a+b)2; (2)(a-b)2.(四)师生共同小结首先,请学生回答下面问题:1.本节课学习了哪些内容?2.求代数式的值应分哪几步?3.在“代入”这一步应注意什么?其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的. 七、练习设计4. 梯形上底m ,下底是上底的2倍,高比上底小1,用代数式表示其面积。
主备人 臧晓娟 学校 河阳学校 审核人 刘锁儿 欧阳荣金 杨玲 活动学校 珥陵初中 活动时间 2010.10.20课题:代数式的值(1)一.教学目标、重点难点:教学目标:了解代数式值的意义,会计算代数式的值.教学重点:了解代数式值的意义,会计算代数式的值.教学难点:负数添括号,乘法添“×”,负数、分数乘方添括号. 突破难点的关键:设置问题平台,让学生在解决问题的过程中自己感悟,自己探索与提炼. 二.内容分析与学生分析:学法:由于学生还处在小学与中学的衔接过程中,所以必须强调学生运算能力的培养.本节课主要以学生的练习为主,通过对代数式的值的求法的运算达到掌握这种方法、提高运算的速度和准确度的目的. 三.教学过程:1.情境引入:游戏:邻桌四个同学做一个传数游戏,第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。
思考并讨论:(1)如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个答案对吗?(2)邻桌四人另外换其它的数互相做传数游戏,讨论结果,发现规律。
总结规律:设第一个同学报给第二个同学的数是x ,则传数程序如下:x → x+1 → (x+1)2 → (x+1)2-1设计意图:从这个游戏引入新课,激发学生学习数学的兴趣,充分调动学生的积极性和主动性;由此也让学生知道一个环节出错,会导致全盘皆输,培养学生的细心。
2.概念形成:刚才的传数游戏,实际上就是用某个数去代替代数式(x+1)²–1中的字母x ,并按照其中的运算关系计算得出结果。
我们说这就是代数式的值。
现在谁能根据自己的理解说明什么叫代数式的值吗?定义:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中运算关系计算,所得的结果是代数式的值问题1:根据所给的x 的值,求15+-x 的值:(1)4=x . (2)x =2-. 解析:(1)当4=x 时,原式19145-=+⨯-=; (2)当2-=x 时,原式()11125=+-⨯-=.设计意图:格式要规范 本题是同一代数式在字母取不同值时的求值问题,为了清楚起见,书写一定要规范,求值时一定要先写“当=x ……”这句话 师生小结:求代数式的值的一般步骤:① 代入数值 ②计算结果注意:此时求得的-19是“当4=x ” 代数式15+-x 的值,而不能笼统地说成代数式15+-x 的值是-19 问题2:当3-=x ,21=y 时,求代数式xy y x --22的值.解析:当3-=x ,21=y 时,原式=()()21321322⨯--⎪⎭⎫⎝⎛--=92341+-=1041.设计意图:恢复运算符号,适当添加括号 代数式xy y x --22中本来没有括号,也没有乘号,但是把数值代入后,乘号要恢复,必要的括号也要加上。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
3.3 代数式的值(第一课时)
教学目标: 一、知识目标:
1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法
2、会利用代数式求值推断代数式所反映的规律 3能理解代数式值的实际意义
二、能力目标:
通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际问题能力。
三、情感目标:
让学生体会从生活中发现数学和应用数学解决生活中问题的过程,品尝成功的喜悦,激发学生应用数学的兴趣
教学重点:求代数式的值
教学难点:利用代数式求值推断代数式所反映的规律。
.教学过程: 一、创设情境:
1.求下图三角形的面积:
生:三角形的面积 =
2
h
a 2.继续求下图三角形的面积
生:三角形的面积 =
2
1
63⨯⨯= 9 3.用字母a 表示三角形的底,h 表示三角形的高,求当a =6,h = 3时,三角形的面积。
三角形的面积 =
2h a = 2
1
63⨯⨯= 9 4.揭示新课
(这节课我们就来学习4.3节代数式的值)
二、探索新知
1.师生共同学习例1
当a =-2、b = -3时,求代数式2a 2-3ab +b 2的值。
教师写出例1的全部过程(主要规范学生做此类题目的格式) 解:当a = -2、b = -3时, 2a 2-3ab +b 2
=2)2(-⨯2
-3)3()2(-⨯-⨯+(-3)2
=2⨯4-3⨯(-2)⨯(-3)+9 =8-18+9 =-1
2..学习例2(补充例题)
当x = 5、y =- 4时,求代数式 -3x -5y 的值。
(由学生仿照例1完成) 3.师生共探议一议
(1) 先让学生完成表格
(2) 从这张表格上你获得了哪些信息?
(3) 随着值的逐渐增大,两个代数式的值怎样变化?
(4) 当代数式2x +5的值为25时,代数式2(x +5)的值是多少? 4.巩固练习
(2).剪绳子:
1)将一根绳子对折1次再从中剪一刀,绳子变成( )段;将一根绳子对折2次再从中剪一刀,绳子变成( )段;将一根绳子对折3次再从中剪一刀,绳子变成( )段; 2)将一根绳子对折n 次再从中剪一刀,绳子变成( )段;
3) 根据(2)的结论,将一根绳子对折10 次再从中剪一刀,绳子变成( )段;
(探索本题中的规律较为困难,教学中让学生具体地“做” 用绳子、剪刀操作,然后
再分析、思考。
)
(3)用火柴棒按下图的方式搭正方形
1)搭n 个这样的正方形需要()根火柴棒;
2) 搭100 个这样的正方形需要()根火柴棒;
三、小结
通过本节课的学习,你学到了什么?还有什么疑问?
四、布置作业
习题4.3 1 .(1)(2)(3)(7)(8).
五、教后反思
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。