2014年高三数学一轮复习练习及详细解析不等
- 格式:doc
- 大小:507.50 KB
- 文档页数:14
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编17:平面向量一、选择题1 .(山东省桓台第二中学2014届高三上学期期中考试数学(理)试题)若非零向量b a ,满足||||b a =.0)2(=⋅+b b a ,则b a ,的夹角为( )A .30oB .60oC .120oD .150o【答案】C2 .(山东省淄博第一中学2014届高三上学期期中模块考试数学(理)试题)已知向量a →=(cos θ,sin θ),b →=(3,1),则|2a →―b →|的最大值和最小值分别为 ( )A .4,0B .16,0C .2,0D .16,4【答案】A3 .(山东省德州市2014届高三上学期期中考试数学(理)试题)如图,AB 是⊙O 的直径,点,C D 是半圆弧AB 的两个三等分点,,AB a AC b ==,则AD =( )A .12a b -B .12a b - C .12a b +D .12a b + 【答案】D4 .(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)已知i 与j 为互相垂直的单位向量,2a i j =-,b i j λ=+且a 与b 的夹角为锐角,则实数λ的取值范围是 ( ) A .1(,2)(2,)2-∞--B .1(,)2+∞C.22(2,)(,)33-+∞D .1(,)2-∞【答案】A5 .(山东省淄博第一中学2014届高三上学期期中模块考试数学(理)试题)设非零向量a .b .c 满足||||||c b a ==,=+,则向量.间的夹角为( )A .150°B .120°C .60°D .30°【答案】B6 .(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在ABC ∆中,2,3==AC AB ,若O为ABC ∆内部的一点,且满足0=++OC OB OA ,则BC AO ⋅= ( )A .21 B .52 C .31 D .41 【答案】C7 .(山东省淄博一中2014届高三上学期10月阶段检测理科数学)若点P 是△ABC 所在平面内的一点,且满足5AP→=3AB →+2AC →,则△ABP 与△ABC 的面积比为 ( )A .15B .25C .35D .45【答案】B .8 .(山东省青岛市2014届高三上学期期中考试数学(理)试题)设a .b 都是非零向量,下列四个条件中,一定能使0||||a ba b +=成立的是 ( )A .13a b =-B .//a bC .2a b =D .a b ⊥【答案】A9 .(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)下列各式正确的是( )A .a b =a b ⋅B .()222a b=a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅D . 若a b=a c ⋅⋅则b=c【答案】C10.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)如图,,90PA PB APB =∠=︒,点C 在线段PA 的延长线上,,D E 分别为ABC ∆的边,AB BC 上的点.若PE 与PA PB +共线,DE 与PA 共线,则PD BC ⋅的值为( )A .1-B .0C .1D .2【答案】B11.(山东省临沂市2014届高三上学期期中考试数学(理)试题)已知a,b 均为单位向量,它们的夹角为3π,则a b += ( )A . 1BCD .2【答案】C12.(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)在ABC ∆中,已知a .b .c 成等比数列,且33,cos 4a c B +==,则AB BC ⋅= ( )A .32B .32-C .3D .-3【答案】B13.(山东省文登市2014届高三上学期期中统考数学(理)试题)已知向量(3,4)a =, (2,1)b =-,如果向量a xb-与b 垂直,则x 的值为 ( )A .233B .323C .25D .25-【答案】C14.(山东省济南外国语学校2014届高三上学期质量检测数学(理)试题)设311(2sin ,),(,cos )264a xb x ==,且//a b ,则锐角x 为( )A .6πB .3π C .4π D .512π 【答案】C15.(山东省单县第五中学2014届高三第二次阶段性检测试题(数理))O 是平面上一定点,( )A .B .C 是平面上不共线的三个点,动点P 满足).,0[)||||(+∞∈⋅++=λλAC ACAB AB 则P 的轨迹一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心【答案】B16.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于( )A .9B .4C .0D .-4【答案】A17.(山东省威海市2014届高三上学期期中考试数学(理)试题)已知||1,||2,,60a b a b ==<>=,则|2|a b -=( )A .2B .4C .D .8【答案】A18.(山东省济南一中等四校2014届高三上学期期中联考数学(理)试题)已知向量(2,8),(8,16)a b a b +=--=-,则a 与b 夹角的余弦值为 ( )A .6365B .6365-C .6365±D .513【答案】B19.(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则 ( )A .0PA PB +=B .0PC PA += C .0PB PC +=D .0PA PB PC ++=【答案】B 二、填空题20.(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在直角三角形ABC 中,3,2==∠AC C π,取点D.E 使BE AB DA BD 3,2==,那么=⋅+⋅_________________________.【答案】321.(山东省济南一中等四校2014届高三上学期期中联考数学(理)试题)若向量(2,3),(4,7)BA CA ==,则BC =___________.【答案】(2,4)--22.(山东省文登市2014届高三上学期期中统考数学(理)试题)在ABC ∆中,3BC BD =,AD AB ⊥,1AD =,则AC AD ⋅=_________.23.(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)定义*a b 是向量a 和b 的“向量积”,它的长度*s i n a b a b α=,其中α为向量a 和b 的夹角,若()2,0u =,(1,3u v -=-,则*()u u v +=_____________.【答案】2324.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)已知向量(1,1),(1,2)a b ==-,若()(,)a a b R λμλμ⊥+∈,则λμ=___________.【答案】12-25.(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在ABC ∆中,若向量)sin sin ,sin sin 2(),sin ,sin (sin B A C A C B A +-=-=,且//,则角B____________________.【答案】4π26.(山东师大附中2014届高三第一次模拟考试数学试题)设M 是线段BC 的中点,点A 在直线BC外,216BC =,AB AC AB AC +=-,则AM =___________ .【答案】227.(山东省聊城市堂邑中学2014届高三上学期9月假期自主学习反馈检测数学(理)试题)如图,在正方形ABCD中,已知2AB =,M 为BC 的中点,若N 为正方形 内(含边界)任意一点,则AM AN ⋅的取值范围是______.【答案】[]0,6根据题意,由于在正方形ABCD 中,已知2AB =,M 为BC 的中点,若N 为正方形 内(含边界)任意一点,以A 为原点建立直角坐标系,那么可知M(2,1),B(2,0)N(x,y),则可知2AM AN x y ⋅=+,0202x y ≤≤⎧⎨≤≤⎩,结合线性规划可知当目标函数过点(0,0)最小,过点(2,2)最大,因此可知AM AN ⋅的取值范围是[]0,6.28.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为北偏西____★____度.【答案】3029.(山东省单县第五中学2014届高三第二次阶段性检测试题(数理))已知向量AB 与AC 的夹角为0120,且|AB →|=3,|AC →|=2,若λ=+AP AB AC ,且⊥AP BC ,则实数λ的值为__________.【答案】712三、解答题30.(山东省德州市2014届高三上学期期中考试数学(理)试题)在平面直角坐标系xOy 中,已知四边形OABC 是等腰梯形,(6,0),A C ,点,M 满足12OM OA =,点P 在线段BC 上运动(包括端点),如图. (1)求OCM ∠的余弦值;(2)是否存在实数λ,使()OA OP CM λ-⊥,若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.【答案】(1)由题意可得1(6,0),(1,3),(3,0)2OA OCOM OA ====,(2,3),(1,CM CO =-=-(2)设(P t ,其中15t ≤≤,()OP t λλ= 若()OA OP CM λ-⊥,则()0OA OP CM λ-⋅= 即12230(23)12t t λλλ-+=⇒-=,若32t =,则λ不存在 若32t ≠,则1223t λ=- 33[1,)(,5]22t ∈⋃,故12(,12][,)7λ∈-∞-⋃+∞31.(山东省淄博一中2014届高三上学期10月阶段检测理科数学)已知向量a →=(cos3x 2,sin 3x 2),b →=(cos x 2,―sin x2),且x ∈[0,π2].(1) 已知a →∥b →,求x;(2)若f(x)=a →·b →―2λ|a →+b →|+2λ的最小值等于―3,求λ的值.【答案】解:(1)∵ a →∥b →∴ cos3x 2×(―sin x 2)―sin 3x 2cos x2=0,即sin2x=0, ∵ x ∈[0,π2] ∴ x=0,π2(2)∴a →·b →=cos 3x 2cos x 2―sin 3x 2sin x2=cos2x;|a →+b →|=2+2a →·b →=2+2cos2x∵ x ∈[0,π2]∴ f(x)=cos2x―2λ1+2cos2x+2λ=2cos 2x―4λcosx+2λ―1令g(t)=2t 2―4λt+2λ―1,0≤t≤1∴ ① 当λ≤0时,g(t)在[0,1]上为增函数,g(t)min =g(0)=2λ―1=―3, ∴λ=―1≤0; ② 当0<λ≤1时,g(t)min =g(λ)=―3, ∴ λ2―λ―1=0 ∴ λ=1±52∉[0,1],舍去;③ 当λ>1时,g(t)在[0,1]上为减函数,g(t)min =g(1)= 1―2λ=―3, ∴λ=2>0 ∴ 由上可知,λ=―1或232.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |和|a -b |.【答案】解:(1)(2a -3b )·(2a +b )=61,解得a ·b =-6∴cos θ=a ·b |a ||b |=-64×3=-12,又0≤θ≤π,∴θ=2π3(2)|a +b |2=a 2+2a ·b +b 2=13, ∴|a +b |=13|a -b |2=a 2-2a ·b +b 2=37. ∴|a -b |=3733.(山东省文登市2014届高三上学期期中统考数学(理)试题)已知(2c o s ,2s i n )(a b ααββ==,,02αβπ<<<.(Ⅰ)若a b ⊥,求|2|a b -的值;(Ⅱ)设(2,0)c =,若2a b c +=,求βα,的值.【答案】解: (Ⅰ)∵⊥∴0a b ⋅=又∵2222||4cos 4sin 4a a αα==+=,1sin cos ||2222=+==ββ ∴2|2|a b -()222244448a ba ab b =-=-+=+=,∴|2|22a b -=.(Ⅱ)∵a 2b (2cos 2cos ,2sin 2sin )(2,0)αβαβ+=++= ∴cos cos 1sin sin 0αβαβ+=⎧⎨+=⎩即cos 1cos sin sin αβαβ=-⎧⎨=-⎩两边分别平方再相加得: 122cos β=- ∴1cos 2β=∴1cos 2α= ∵02,αβπ<<<且sin sin 0αβ+= ∴15,33απβπ==34.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)已知向量123,,AP AP AP 满足1230AP AP AP ++=,且123||||||1AP AP AP ===.求证:123PP P ∆为正三角形· 【答案】。
2014届高考数学(理)一轮复习单元测试第六章数列单元能力测试一、选择题(本大题共12小题,每小题5分,共60分.) 1、(2013年高考某某卷理)等比数列x,3x+3,6x+6,..的第四项等于 A.-24 B.0 C.12 D.242、(2013年高考新课标Ⅱ卷理)等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a (A)31 (B)31- (C)91(D)91-3、(某某省江门某某两市2013届高三4月检测)已知数列}{n a 是等差数列,若3,244113==+a a a ,则数列}{n a 的公差等于( )A .1B .3C .5D .64、【某某市新华中学2013届高三第三次月考理】设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为( ) A.16 B. 13 C. 35 D. 565、【市昌平区2013届高三上学期期末理】设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 46、【某某省六校联盟2013届高三第一次联考理】等差数列}{n a 的前n 项和为n S ,已知6,835==S a ,则9a =( )A .8B .12C .16D .247、【某某省师大附中2013届高三第四次模拟测试1月理】已知各项均为正数的等比数列{n a }中,1237895,10,a a a a a a ==则456a a a =( )A.8、(某某某某2013高三三模)在正项等比数列}{n a 中,3lg lg lg 963=++a a a ,则111a a 的值是 ( )A. 10000B. 1000C. 100D. 109、(某某某某2013高三5月模拟)已知等比数列{}n a 的公比2=q ,且462,,48a a 成等差数列,则{}n a 的前8项和为 A.127B.255C.511D.102310.若m ,n ,m +n 成等差数列,m ,n ,m ·n 成等比数列,则椭圆x 2m +y 2n=1的离心率为( )A.12B.22C.32D.3311、已知n n a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A = A.9331)( B.9231)( C. 9431)( D.11231)( 12 .【某某省某某一中2013届高三1月调研理】已知定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列{}n a 满足11-=a ,且21n n S an n=⨯+,(其中n S 为{}n a 的前n 项和)。
阶段检测三 数列 不等式(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 5+a 11=30,a 4=7,则a 12的值为( ). A .15 B .23 C .25 D .372.已知实数列-1,x ,y ,z ,-2成等比数列,则xyz 等于( ). A .-4 B .±4 C .-22D .±2 23.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ).A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 4.已知x ,y 均为正数,且x ≠y ,则下列四个数中最小的一个是( ). A .12⎝ ⎛⎭⎪⎫1x +1y B .1x +yC .1xyD .12x 2+y 25.等比数列{a n }的首项a 1=1 002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为( ).A .8B .9C .10D .116.已知不等式组⎩⎪⎨⎪⎧x +y ≤1,x -y ≥-1,y ≥0表示的平面区域为M ,若直线y =kx -3k 与平面区域M 有公共点,则k 的取值X 围是( ).A.⎣⎢⎡⎦⎥⎤-13,0B.⎝⎛⎦⎥⎤-∞,13 C.⎝ ⎛⎦⎥⎤0,13D.⎝⎛⎦⎥⎤-∞,-13 7.若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b的最小值为( ).A .14B .12C .2D .4 8.已知各项均不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8等于( ).A .2B .4C .8D .169.若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ).A .0B .-2C .-52D .-310.(2012某某高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ).A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b211.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin2n π3,其前n 项和为S n ,则S 30为( ).A .470B .490C .495D .51012.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( ).A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b 2cd的最小值是__________.14.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.15.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为________.16.在数列{a n }中,若a 2n -a 2n +1=p (n ≥1,n ∈N *,p 为常数),则称{a n }为“等方差数列”,下列是对“等方差数列”的判断:①若{a n }是等方差数列,则{a 2n }是等差数列;②{(-1)n}是等方差数列;③若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列. 其中真命题的序号为__________(将所有真命题的序号填在横线上).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知a ,b ,c ∈R +,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.18.(12分)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值X 围.19.(12分)已知p :x -5x -3≥2,q :x 2-ax ≤x -a ,若⌝p 是⌝q 的充分条件,某某数a的取值X 围.20.(12分)已知数列{a n }满足a 1=1,a 2=-13,a n +2-2a n +1+a n =2n -6. (1)设b n =a n +1-a n ,求数列{b n }的通项公式; (2)求当n 为何值时,a n 的值最小.21.(12分)数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n (S n -1).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)设b n =log 2S nS n +2,数列{b n }的前n 项和为T n ,求满足T n ≥6的最小正整数n . 22.(12分)有n 个首项为1的等差数列,设第m 个数列的第k 项为a mk (m ,k =1,2,3,…,n ,n ≥3),公差为d m ,并且a 1n ,a 2n ,a 3n ,…,a nn 成等差数列.(1)当d 3=2时,求a 32,a 33,a 34以及a 3n ;(2)证明d m =p 1d 1+p 2d 2(3≤m ≤n ,p 1,p 2是m 的多项式),并求p 1+p 2的值;(3)当d 1=1,d 2=3时,将数列{}d m 分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…(每组数的个数构成等差数列),设前m 组中所有数之和为(c m )4(c m >0),求数列{2m c·d m }的前n 项和S n .参考答案1.B2.C 解析:∵xz =(-1)×(-2)=2,y 2=2, ∴y =-2(y =2不合题意). ∴xyz =-2 2.3.A 解析:由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.D 解析:∵12⎝ ⎛⎭⎪⎫1x +1y =x +y 2xy >2xy 2xy =1xy,∴不能选A.又∵1x +y <12xy <1xy, ∴不能选C ,下面比较B 和D.令x =1,y =2,则B 中的式子等于13,D 中的式子等于110.∴D 选项中的式子的值最小.5.C 解析:a n =1 002×⎝ ⎛⎭⎪⎫12n -1<1⇒n >10,即等比数列{a n }前10项均不小于1,从第11项起小于1,故p 10最大.6.A 解析:如图所示,画出可行域,直线y =kx -3k 过定点(3,0),由数形结合,知该直线的斜率的最大值为k =0,最小值为k =0-13-0=-13.7.D 解析:圆的标准方程为(x +1)2+(y -2)2=4,所以圆的直径为4,而直线被圆截得的弦长为4,则直线应过圆心(-1,2),所以有-2a -2b +2=0,即a +b =1.所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=1+1+b a +a b≥2+2b a ×a b=4.8.D 解析:因为{a n }为等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-a 27=0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=b 27=a 27=16.9.C 解析:设f (x )=x 2+ax +1,则对称轴为x =-a 2.若-a 2≥12,即a ≤-1时,f (x )在10,2⎛⎤ ⎥⎝⎦上是减函数,应有12f ⎛⎫ ⎪⎝⎭≥0⇒52-≤a ≤-1;若2a -≤0,即a ≥0时,则f (x )在10,2⎛⎤⎥⎝⎦上是增函数,应有f (0)=1>0恒成立,故a ≥0; 若0≤2a -≤12,即-1≤a ≤0,则应有222112424a aa a f ⎛⎫-=-+=- ⎪⎝⎭≥0恒成立,故-1≤a ≤0.,综上可得,有a ≥52-. 10.A 解析:v =2211aba b a b=++<2ab a b +-a =22ab a ab a b --+=2ab a a b -+>22a a a b -+=0,所以2aba b+>a ,即v >a .故选A. 11.A 解析:注意到a n =n 2cos 23n π,且函数y =cos 23x π的最小正周期是3,因此当n是正整数时,a n +a n +1+a n +2=12-n 2-12(n +1)2+(n +2)2=3n +72,其中n =1,4,7,…,S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=(3×1+72)+(3×4+72)+…+(3×28+72)=3×10(128)2⨯++72×10=470.12.C 解析:(x -a )⊗(x +a )<1 ⇔(x -a )[1-(x +a )]<1 ⇔-x 2+x +a 2-a -1<0 ⇔x 2-x -a 2+a +1>0.∵不等式对任意实数x 成立,∴Δ<0,即1-4(a -a 2+1)<0, 4a 2-4a -3<0,解得-12<a <32. 13.4 解析:由题知a +b =x +y ,cd =xy ,x >0,y >0,则2()a b cd+=2()x y xy +=4,当且仅当x =y 时取等号. 14.323(1-4-n) 解析:由a 2=2,a 5=14,得a 1=4,q =12.则a n =4·12⎛⎫ ⎪⎝⎭n -1=23-n ,a n a n +1=25-2n =23·14⎛⎫ ⎪⎝⎭n -1.所以a 1a 2,a 2a 3,…,a n a n +1是以14为公比,以23为首项的等比数列.故a 1a 2+a 2a 3+…+a n a n +1 =323(1-4-n). 15.3 解析:不等式组10,10x y x +-≥⎧⎨-≤⎩表示的区域为甲图中阴影部分.又因为ax -y +1=0恒过定点(0,1),当a =0时,不等式组10,10,10x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩所表示的平面区域的面积为12,不合题意;当a <0时,所围成的区域面积小于12,所以a >0,此时所围成的区域为三角形,如图乙所示,由其面积为S =12×1×(a +1)=2,解得a =3.甲乙16.①②③ 解析:①正确,因为a n 2-21n a +=p ,所以21n a +-2n a =-p ,于是数列{2n a }为等差数列.②正确,因为(-1)2n -(-1)2(n +1)=0为常数,于是数列{(-1)n}为等方差数列.③正确,因为2kn a -2kn k a +=(2kn a -21kn a +)+(21kn a +-22kn a +)+(22kn a +-23kn a +)+…+(21kn k a +--2kn k a +)=kp ,则{a kn }(k ∈N *,k 为常数)也是等方差数列.17.证明:∵a ,b ,c ∈R +,且a +b +c =1,∴111111a b c ⎛⎫⎛⎫⎛⎫---⎪⎪⎪⎝⎭⎝⎭⎝⎭ (1)(1)(1)a b c abc---=()()()b c a c a b abc+++=8=, 当且仅当a =b =c =13时取等号.18.解:(1)当a =-3时,f (x )=25,2,1,23,25, 3.x x x x x -+≤⎧⎪<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时 ,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)由f (x )≤|x -4|,得|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,由|x -4|-|x -2|≥|x +a |, 得4-x -(2-x )≥|x +a |, 即-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值X 围为[-3,0]. 19.解:由53x x --≥2,得13x x --≤0, ∴1≤x <3.由x 2-ax ≤x -a ,得(x -a )(x -1)≤0. (1)当a <1时,解得a ≤x ≤1; (2)当a =1时,解得x =1; (3)当a >1时,解得1≤x ≤a . ∵⌝p 是⌝q 的充分条件,∴q 是p 的充分条件.设p 对应集合A ,q 对应集合B ,则A ={x |1≤x <3}且B ⊆A . 当a <1时,B ={x |a ≤x ≤1},B A ,不符合题意; 当a =1时,B ={x |x =1},B ⊆A ,符合题意;当a >1时,B ={x |1≤x ≤a },若B ⊆A ,需1<a <3. 综上,得1≤a <3.∴实数a 的取值X 围是[1,3).20.解:(1)由a n +2-2a n +1+a n =2n -6得, (a n +2-a n +1)-(a n +1-a n )=2n -6, 即b n +1-b n =2n -6.b 1=a 2-a 1=-14.当n ≥2时,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=-14+(2×1-6)+(2×2-6)+…+[2(n -1)-6]=-14+2×(1)2n n --6(n -1)=n 2-7n -8. 经验证,当n =1时,上式也成立.∴数列{b n }的通项公式为b n =n 2-7n -8.(2)由(1)可知,a n +1-a n =n 2-7n -8=(n +1)(n -8). 当n <8时,a n +1<a n ,即a 1>a 2>a 3>…>a 8; 当n =8时,a 9=a 8;当n >8时,a n +1>a n ,即a 9<a 10<a 11<…. ∴当n =8或n =9时,a n 的值最小.21.(1)证明:∵S n 2=a n (S n -1),∴S n 2=(S n -S n -1)(S n -1)(n ≥2). ∴S n S n -1=S n -1-S n ,即1n S -11n S -=1. ∴1n S ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列. (2)解:由(1)知S n =1n,∴b n =log 2n +2n.∴T n =log 2(31×42×53×64×…×n +2n )=log 2(n +1)(n +2)2≥6.∴(n +1)(n +2)≥128.∵n ∈N *,∴n ≥10.∴满足T n ≥6的最小正整数为10. 22.解:(1)当d 3=2时,∵a 31=1,∴a 32=a 31+d 3=3,a 33=a 31+2d 3=5,a 34=a 31+3d 3=7,…,a 3n =a 31+(n -1)d 3=2n -1. (2)由题意知a mn =1+(n -1)d m ,a 2n -a 1n =[1+(n -1)d 2]-[1+(n -1)d 1]=(n -1)(d 2-d 1),同理,a 3n -a 2n =(n -1)(d 3-d 2),a 4n -a 3n =(n -1)(d 4-d 3),…,a nn -a (n -1)n =(n -1)(d n-d n -1).又因为a 1n ,a 2n ,a 3n ,…,a nn 成等差数列, 所以a 2n -a 1n =a 3n -a 2n =…=a nn -a (n -1)n .故d 2-d 1=d 3-d 2=…=d n -d n -1,即{d n }是公差为d 2-d 1的等差数列. 所以,d m =d 1+(m -1)(d 2-d 1)=(2-m )d 1+(m -1)d 2.令p 1=2-m ,p 2=m -1,则d m =p 1d 1+p 2d 2,此时p 1+p 2=1.(3)当d 1=1,d 2=3时,d m =2m -1(m ∈N *).数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…. 按分组规律,第m 组中有2m -1个奇数,所以第1组到第m 组共有1+3+5+…+(2m -1)=m 2个奇数.注意到前k 个奇数的和为1+3+5+…+(2k -1)=k 2,所以前m 2个奇数的和为(m 2)2=m 4.即前m 组中所有数之和为m 4,所以(c m )4=m 4.因为c m >0,所以c m =m ,从而2c m d m =(2m -1)·2m (m ∈N *).所以S n =1·2+3·22+5·23+7·24+…+(2n -3)·2n -1+(2n -1)·2n.2S n =1·22+3·23+5·24+…+(2n -3)·2n +(2n -1)·2n +1.故-S n =2+2·22+2·23+2·24+…+2·2n -(2n -1)·2n +1=2(2+22+23+…+2n )-2-(2n -1)·2n +1=2×2(2n-1)2-1-2-(2n -1)·2n +1=(3-2n )2n +1-6.所以S n =(2n -3)2n +1+6.。
课时作业(一)A [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.已知集合S ={1,2},T ={1,3},则S ∪T =( )A .{1}B .{2,3}C .{1,2,3}D .{1,2,1,3}2.[2012·商丘模拟] 设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则图K1-1中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}3.[2012·安徽省城名校联考] 若集合A ={x |x 2<9},B ={y |3y +1>0},则集合M ={x ∈N |x ∈A ∩B }子集的个数为( )A .2B .4C .8D .164.若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =________.能力提升5.已知集合A ={x |x 2-4x -12<0},B ={x |x <2},则A ∪(∁R B )=( )A .{x |x <6}B .{x |-2<x <2}C .{x |x >-2}D .{x |2≤x <6}6.[2013·江南十校联考] 若全集为R ,集合A ={x |log 12(2x -1)>0},则∁R A =( ) A.12,+∞ B .(1,+∞) C .0,12∪[1,+∞) D .-∞,12∪[1,+∞) 7.[2012·开封模拟] 设全集U ={x |x ≤7,x ∈N *},集合A ={1,3},B ={2,6},则∁U (A ∪B )=( )A .{2,3,6}B .{1,2,7}C .{2,5,7}D .{4,5,7}8.[2012·北京卷] 已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎝⎛⎭⎫-1,-23 C.⎝⎛⎭⎫-23,3 D .(3,+∞)9.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为________.10.集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a 的值为________.11.已知x ∈R ,y >0,集合A ={x 2+x +1,-x ,-x -1},集合B =-y ,-y 2,y +1,若A =B ,则x 2+y 2的值为____________________.12.(13分)集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},满足A ∩B ≠∅,A ∩C =∅,求实数a 的值.难点突破13.(12分)集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.课时作业(一)B [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.[2012·安徽示范高中联考] 已知集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则M ∩N 等于( )A .(0,+∞)B .[0,+∞)C .{2,4}D .{(2,4),(4,16)}2.[2012·浙江卷] 设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}3.[2012·合肥模拟] 已知M ={x |y =3x -1},N ={x |y =log 2(x -2x 2)},则∁R (M ∩N )=( )A.13,12B .-∞,13∪12,+∞ C .0,12D .(-∞,0)∪12,+∞ 4.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )=________.能力提升5.[2012·驻马店模拟] 集合A ={x |x 2-2x +a >0},1∉A ,则实数a 的取值范围是( )A .(-∞,0]B .[0,+∞)C .[1,+∞)D .(-∞,1]6.[2012·襄阳模拟] 设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分A -B图7.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}8.已知集合A ,B ,A ={x |-2≤x <2},A ∪B =A ,则集合B 不可能...为( ) A .∅ B .{x |0≤x ≤2}C .{x |0<x <2}D .{x |0≤x <2}9.已知集合M ={(x ,y )|x +y =1},N ={(x ,y )|x -y =1},则M ∩N =________.10.设集合A ={5,log 2(a +3)},B ={a ,b },若A ∩B ={2},则A ∪B =________.11.集合A ={(x ,y )|y =1-x 2},B ={(x ,y )|y =x +b },若A ∩B 的子集有4个,则b 的取值范围是________.12.(13分)[2012·芜湖模拟] 已知集合A ={x |-2<x -1<2},B ={x |x 2+ax -6<0},C ={x |x 2-2x -15<0}.(1)若A∪B=B,求a的取值范围;(2)是否存在a的值使得A∪B=B∩C,若存在,求出a的值;若不存在,请说明理由.难点突破13.(6分)(1)[2012·北京西城区模拟] 已知集合A={a1,a2,…,a20},其中a k>0(k=1,2,…,20),集合B={(a,b)|a∈A,b∈A,a-b∈A},则集合B中的元素至多有() A.210个B.200个C.190个D.180个(6分)(2)[2012·北京朝阳区模拟] 已知集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数}.若O为坐标原点,M,N为集合A所表示的平面区域与集合B所表示的平面区域的边界的交点,则△MON的面积S与m的关系式为________.课时作业(二)[第2讲命题及其关系、充分条件、必要条件](时间:35分钟分值:80分)基础热身1.[2012·重庆卷] 命题“若p,则q”的逆命题是()A.若q,则p B.若綈p,则綈qC.若綈q,则綈p D.若p,则綈q2.[2013·安徽示范高中联考] 设a>0且a≠1,则“函数f(x)=a x在R上是增函数”是“函数g(x)=x a在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题4.[2013·扬州中学月考] 已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是________________________.能力提升5.“a=2”是“函数f(x)=x a-12为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.下列有关命题的说法中,正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.“x>1”是“x2+x-2>0”的充分不必要条件C.命题“∃x0∈R,使得x20+x0+1<0”的否定是“∀x∈R,都有x2+x+1>0”D.命题“若α>β,则tanα>tanβ”的逆命题为真命题7.[2013·江南十校联考] 下列说法不正确的是()A.“∃x0∈R,x20-x0-1<0”的否定是“∀x∈R,x2-x-1≥0”B.命题“若x>0且y>0,则x+y>0”的否命题是假命题C.“∃a∈R,使“方程2x2+x+a=0的两根x1,x2满足x1<1<x2”和“函数f(x)=log2(ax -1)在[1,2]上单调递增”同时为真D.△ABC中,A是最大角,则sin2B+sin2C<sin2A是△ABC为钝角三角形的充要条件8.[2012·郑州模拟] 设p :|2x +1|>a ,q :x -12x -1>0,使p 是q 的必要不充分条件的实数a 的取值范围是( )A .(-∞,0)B .(-∞,-2]C .[-2,3]D .(-∞,3]9.[2012·怀远一中模拟] 若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是________.10.已知命题“若a >b ,则ac 2>bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.11.“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的________条件.12.(13分)π为圆周率,a ,b ,c ,d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d .(1)写出命题p 的否定并判断真假;(2)写出命题p 的逆命题、否命题、逆否命题并判断真假;(3)“a =c 且b =d ”是“a π+b =c π+d ”的什么条件?并证明你的结论.难点突破13.(12分)[2012·巢湖月考] 设不等式组⎩⎪⎨⎪⎧y ≥x ,y ≥-x ,y ≤1表示的平面区域为A ,不等式y ≥ax 2+b (b <0,b 为常数)表示的平面区域为B ,P (x ,y )为平面上任意一点.命题p :点P (x ,y )在区域A 内,命题q :点P (x ,y )在区域B 内,若p 是q 的充分不必要条件,求a 的取值范围.课时作业(三) [第3讲 简单的逻辑联结词、全称量词与存在量词](时间:35分钟 分值:80分)基础热身1.已知命题p :∀x ∈R ,x >sin x ,则命题p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC .∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x2.已知命题p :存在x ∈R ,使x 2≤0,命题q :若x ≠1,则x 2-3x +2≠0,下面结论正确的是( )A .命题p 和q 均是真命题B .命题p 和q 均是假命题C .命题“p 且q ”是假命题D .命题p 的否定是:任意x ∈R ,x 2≥03.[2012·河北五校联考] 下列结论错误的是( )A .命题“若x 2-3x +2=0,则x =2”的逆否命题为“若x ≠2,则x 2-3x +2≠0”B .命题“存在x 为实数,x 2-x >0”的否定是“任意x 是实数,x 2-x ≤0”C .“ac 2>bc 2”是“a >b ”的充分不必要条件D .若p 且q 为假命题,则p ,q 均为假命题4.命题“存在点P (x 0,y 0),使x 20+y 20≤0成立”的否定是________.能力提升5.[2012·黄冈中学月考] 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条......件.是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤56.[2013·德州模拟] 下列有关命题的说法正确的是( )A .命题“若xy =0,则x =0”的否命题为:“若xy =0,则x ≠0”B .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题C .命题“∃x 0∈R ,使得2x 20-1<0”的否定是:“∀x ∈R ,均有2x 2-1<0”D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题7.命题“存在α,β∈R ,使sin(α+β)sin(α-β)≥sin 2α-sin 2β”的否定为( )A .任意α,β∈R ,使sin(α+β)sin(α-β)≥sin 2α-sin 2βB .任意α,β∈R ,使sin(α+β)sin(α-β)<sin 2α-sin 2βC .存在α,β∈R ,使sin(α+β)sin(α-β)<sin 2α-sin 2βD .存在α,β∈R ,使sin(α+β)sin(α-β)≤sin 2α-sin 2β8.[2012·大庆模拟] 已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )9.[2012·安庆模拟] 已知命题p :|x -1|+|x +1|≥3a 恒成立,命题q :y =(2a -1)x 为减函数,若p 且q 为真命题,则a 的取值范围是________.10.[2012·宁德质检] 若“∀x ∈R ,(a -2)x +1>0”是真命题,则实数a 的取值集合是________.11.下列四个命题:①∀x ∈R ,x 2+x +1≥0;②∀x ∈Q ,12x 2+x -13是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;④∃x ,y ∈Z ,使3x -2y =10.所有真命题的序号是________.12.(13分)[2012·吉林模拟] 已知p :f (x )=x 3-ax 在(2,+∞)上为增函数,q :g (x )=x 2-ax +3在(1,2)上为减函数,若p 或q 为真命题,p 且q 为假命题,求a 的取值范围.难点突破13.(12分)已知p :方程a 2x 2+ax -2=0在[-1,1]上有解;q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若“p 或q ”是假命题,求实数a 的取值范围.课时作业(四)A [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.[2012·石家庄质检] 下列函数中与函数y =x 相同的是( )A .y =|x |B .y =1xC .y =x 2D .y =3x 32.[2012·郑州质检] 函数f (x )=2x -1log 2x的定义域为( ) A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)3.下列函数中,值域为[0,3]的函数是( )A .y =-2x +1(-1≤x ≤0)B .y =3sin xC .y =x 2+2x (0≤x ≤1)D .y =x +34.[2012·陕西卷] 设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝⎛⎭⎫12x ,x <0,则f (f (-4))=________.能力提升5.[2012·江西卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( ) A.15 B .3 C.23 D.1396.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,x ∈{-2};(2)y =2x 2+1,x ∈{2};(3)y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2-1,值域为{-1,5}的“孪生函数”共有( )A .5个B .4个C .3个D .2个7.[2012·唐山模拟] 函数y =1-lg (x +2)的定义域为( )A .(0,8]B .(-2,8]C .(2,8]D .[8,+∞)8.函数f (x )=2-2x +x 21-x的值域是( ) A .(-∞,-2)∪(2,+∞) B .(-∞,-2)C .(-∞,-2]∪[2,+∞)D .[2,+∞)9.[2012·汕头质检] 已知f (x )=⎩⎪⎨⎪⎧sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫56的值为________. 10.[2012·皖北协作区联考] 函数y =log 3(3x 2-x -2)的定义域是________________.11.已知g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12=________. 12.(13分)[2012·宿州质检] 已知函数f (x )=x 2+bx +2.(1)若当x ∈[-1,4]时,f (x )≥b +3恒成立,求f (x );(2)若函数f (x )的定义域与值域都是[0,2],求b 的值.难点突破13.(12分)已知二次函数f (x )有两个零点0和-2,且f (x )的最小值是-1,函数g (x )与f (x )的图象关于原点对称.(1)求f (x )和g (x )的解析式;(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围.课时作业(四)B [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.下列是映射的是(图 1A .(1)(2)(3)B .(1)(2)(5)C .(1)(3)(5)D .(1)(2)(3)(5) 2.[2012·江西师大附中月考] 已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0a x ,x >0,若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .43.[2012·马鞍山二模] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .34.函数y =x -x 的值域是________.能力提升5.已知f (x )的图象恒过点(1,2),则f (x +3)的图象恒过点( )A .(-3,1)B .(2,-2)C .(-2,2)D .(3,5)6.[2012·肇庆一模] 已知函数f (x )=lg x 的定义域为M ,函数y =⎩⎪⎨⎪⎧2x ,x >2,-3x +1,x <1的定义域为N ,则M ∩N =( )A .(0,1)B .(2,+∞)C .(0,+∞)D .(0,1)∪(2,+∞)7.[2012·江南十校联考] 设函数y =f (x )在R 上有定义,且对正数M ,定义函数f M (x )⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1C. 2 D .- 28.[2012·石家庄质检] 设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A 且f (f (x 0))∈A ,则x 0的取值范围是( )A.⎝⎛⎦⎤0,14B.⎝⎛⎭⎫14,12 C.⎝⎛⎦⎤14,12 D.⎣⎡⎦⎤0,38 9.函数f (x )=11-2x的定义域是________.(用区间表示) 10.[2012·济南三模] 已知函数f (x )=a sin x +bx 3+5,且f (1)=3,则f (-1)=________.11.[2012·安庆一模] 函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥1,log 12x ,0<x <1的值域是________. 12.(13分)(1)求函数f (x )=lg (x 2-2x )9-x 2的定义域; (2)已知函数f (x )的定义域为[0,1],求下列函数的定义域:①f (x 2),②f (x -1);(3)已知函数f (lg(x +1))的定义域是[0,9],求函数f (2x )的定义域.难点突破13.(12分)已知f (x )是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.课时作业(五) [第5讲 函数的单调性与最值](时间:45分钟 分值:100分)基础热身1.下列函数中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)2.函数f (x )=1-1x在[3,4)上( ) A .有最小值无最大值B .有最大值无最小值C .既有最大值又有最小值D .最大值和最小值皆不存在3.[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x 2,x ∈R D .y =x 3+1,x ∈R4.函数f (x )=x x +1的最大值为________.能力提升5.[2013·黄山月考] 若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a <-3D .a >-36.[2012·宿州二中检测] 下列函数中,在区间[-1,0)上为减函数的是( )A .y =x 13B .y =sin x +π2C .y =-12x D .y =lg|x | 7.[2012·哈尔滨师范大学附中期中] 函数y =⎝⎛⎭⎫121x 2+1的值域为( )A .(-∞,1) B.⎝⎛⎭⎫12,1C.⎣⎡⎭⎫12,1D.⎣⎡⎭⎫12,+∞8.[2013·惠州二调] 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .(2-2,2+2)B .[2-2,2+2]C .[1,3]D .(1,3)9.[2013·皖南八校联考] 已知函数y =f (x )是x ∈R 上的奇函数且满足f (x +5)≥f (x ),f (x +1)≤f (x ),则f (2 013)的值为( )A .0B .1C .2D .410.若函数y =f (x )的值域是⎣⎡⎦⎤12,3,则函数F (x )=f (x )+1f (x )的值域是________. 11.若在区间⎣⎡⎦⎤12,2上,函数f (x )=x 2+px +q 与g (x )=x +1x在同一点取得相同的最小值,则f (x )在该区间上的最大值是________.12.函数y =x x +a在(-2,+∞)上为增函数,则a 的取值范围是________. 13.函数y =ln 1+x 1-x的单调递增区间是________. 14.(10分)试讨论函数f (x )=x x 2+1的单调性.15.(13分)[2012·德州模拟] 已知函数f (x )是定义在R 上的单调函数,满足f (-3)=2,且对任意的实数a ∈R 有f (-a )+f (a )=0恒成立.(1)试判断f (x )在R 上的单调性,并说明理由.(2)解关于x 的不等式f m -x x+f (m )<0,其中m ∈R 且m >0.难点突破16.(12分)已知函数f(x)=x2x-2(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.课时作业(六)A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈RB .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1a x (a >0,a ≠1)的图象( ) A .关于原点对称 B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2012·安庆模拟] 设f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=log 2(2-x )2,则f (2)=( )A .3B .4C .6D .84.[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.[2012·威海模拟] 定义在R 上的奇函数f (x )满足f (x +3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2 012)=( )A .-2B .2C .-12 D.126.[2012·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a 2=( ) A.33 B .-33C .1D .-18.[2012·广东六校联考] 若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10) B.110,10C.110,+∞ D .0,110∪(10,+∞) 9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·南昌一中、十中联考] 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1. 11.[2012·南京三模] 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.课时作业(六)B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( )A .y =|x |B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.[2012·成都调研] 若函数f (x )=2x +2-x 与g (x )=2x -2-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数4.[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5.[2012·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( )A .p ∨q 真B .p ∧q 真C .綈p 真D .綈q 假9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.10.[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.[2012·合肥六中模拟] 设f (x )=cos(x -sin x ),x ∈R .关于f (x )有以下结论: ①f (x )是奇函数;②f (x )的值域是[0,1];③f (x )是周期函数;④x =π是函数y =f (x )图象的一条对称轴;⑤f (x )在[0,π]上是减函数.其中不正确...的结论是________.(写出所有不正确的结论的序号) 12.(13分)已知函数f (x )=lg 1+x 1-x. (1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ; (2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(七) [第7讲 二次函数](时间:45分钟 分值:100分)基础热身1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-22.函数y =(cos x -a )2+1,当cos x =a 时有最小值,当cos x =-1时有最大值,则a 的取值范围是( )A .[-1,0]B .[-1,1]C .(-∞,0]D .[0,1]3.[2012·长春外国语学校月考] 若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则f (x )在区间(-∞,0]上是( )A .增函数B .减函数C .常数D .增函数或常数4.a ≥2是函数f (x )=x 2-2ax +3在区间[1,2]上单调的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件能力提升5.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>256.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .27.[2012·汕头模拟] 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是( )A .-94,0∪(1,+∞) B .[0,+∞)C .-94,+∞D .-94,0∪(2,+∞)8.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关 9.[2012·牡丹江一中期中] 如图K7-1是二次函数f (x )=x 2-bx +a 的图象,其函数f (x )的导函数为f ′(x ),则函数g (x )=ln x +f ′(x )( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)10.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3(-2≤x <0),x 2-2x -3(0≤x ≤3)的值域是________.11.方程|x 2-2x |=a 2+1(a ∈(0,+∞))的解的个数是________.12.实数a ,b 两数中的最小值用min{a ,b }表示.若函数f (x )=min{x 2,(x -m )2}(m 为常数)的图象关于直线x =1对称,则函数f (x )在[0,4]上的值域为________.13.[2012·北京卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________.14.(10分)[2012·正定月考] 已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)对于任意x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的范围.15.(13分)设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.难点突破16.(12分)[2013·衡水中学一调] 已知对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)对任意实数b,函数恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)的图象上A,B两点的横坐标是f(x)的不动点,且A,B两点关于直线y=kx+12a2+1对称,求b的最小值.课时作业(八)A [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.2log 510+log 50.25=( ) A .0 B .1 C .2 D .42.下列等式能够成立的是( )A.⎝⎛⎭⎫n m 5=m 15n 5B.12(-2)4=3-2C.4x 3+y 3=(x +y )34D.39=33 3.[2012·宿州月考] 已知指数函数y =f (x )满足f (3)=9,则f (9)=________.4.[2012·正定中学月考] 计算lg 14-lg25100-12=________.能力提升5.若log 2log 3log 4x =log 3log 4log 2y =log 4log 2log 3z =0,则x +y +z 的值为( ) A .50 B .58 C .89 D .1116.[2012·武汉调研] 若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.34 D.43 7.[2012·重庆卷] 已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c8.若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,则xy=( )A .2B .3C.12D.139.[2012·海南五校联考] x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.10.[(1-log 63)2+log 62·log 618]÷log 64=________.11.方程4x -2x +1-3=0的解是________.12.(13分)设x >1,y >1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.难点突破13.(12分)已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值;(2)若f (x )·f (y )=4,g (x )·g (y )=8,求g (x +y )g (x -y )的值.课时作业(八)B [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.下列命题中,正确命题的个数为( ) ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1; ③3x 4+y 6=x 43+y 2;④5-3=10(-3)2.A .0B .1C .2D .32.化简:(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-23.log(n +1+n )(n +1-n )=( ) A .1 B .-1 C .2 D .-24.已知a 12=49,则log 23a =________.能力提升5.若10x =2,10y =3,则103x -y2=( )A.263B.63C.233D.366.函数y =x 2+2x +1+3x 3-3x 2+3x -1的图象是( ) A .一条直线 B .两条射线 C .抛物线 D .半圆7.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值等于( ) A. 6 B .2或-2 C .2 D .-28.[2012·唐山模拟] 已知3x =4y =12,则1x +1y=( )A. 2 B .1 C.12 D .29.设f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞),则满足f (x )=14的x 值为________.10.[2012·合肥模拟] 已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)的值是________.11.方程log 2(x 2+x )=log 2(2x +2)的解是________.12.(13分)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.难点突破13.(12分)设a ,b ,c 均为正数,且满足a 2+b 2=c 2.(1)求证:log 2⎝⎛⎭⎫1+b +c a +log 2⎝⎛⎭⎫1+a -c b =1;(2)若log 4⎝⎛⎭⎫1+b +c a =1,log 8(a +b -c )=23,求a ,b ,c 的值.课时作业(九) [第9讲 指数函数、对数函数、幂函数](时间:45分钟 分值:100分)基础热身1.[2012·西安质检] 已知a =32,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n满足的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n2.设实数x 满足2x +log 2x =0,则有( ) A .2x <1<x B .x <1<2x C .1<x <2x D .1<2x <x 3.[2012·四川卷] x -a (a >0,且a ≠1)的图象可能是( )K9-14.[2012·南通模拟] 已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=________.能力提升 5.[2012·汕头测评] 下列各式中错误..的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1 D .lg1.6>lg1.4 6.[2012·怀远模拟] 下列函数中值域为正实数的是( )A .y =-5xB .y =131-xC .y =⎝⎛⎭⎫12x -1D .y =1-2x7.[2012·南昌调研] 函数f (x )=log 22x 2+1的值域为( )A .[1,+∞)B .(0,1]C .(-∞,1]D .(-∞,1)8.[2012·三明联考] 已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值等于( )A.1lg2 B .-1lg2 C .lg2 D .-lg29.已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.[2013·黄冈中学月考] 若∃x ∈1,52,使函数g (x )=log 2(tx 2+2x -2)有意义,则t 的取值范围为________.11.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是________.12.[2013·河北五校联盟调研] 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,(x >0),2x ,(x ≤0)且关于x 的方程f (x )+x-a =0有且只有一个实根,则实数a 的取值范围是________.13.[2012·长春外国语学校月考] 关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称; ②f (x )的最小值是lg2;③当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.14.(10分)设a >0,f (x )=e x a +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数; (3)解方程f (x )=2.15.(13分)己知函数f (x )=2-x 2+ax +3. (1)当a =0时,求函数f (x )的值域;(2)若A ={x |y =lg(5-x )},函数f (x )=2-x 2+ax +3在A 内是增函数,求a 的取值范围.难点突破16.(12分)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.课时作业(十) [第10讲 函数的图象与性质的综合](时间:45分钟 分值:100分)基础热身1.函数f (x )=1x+2x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.为了得到函数y =3⎝⎛⎭⎫13x 的图象,可以把函数y =⎝⎛⎭⎫13x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度3.下列四个函数中,图象如图 )A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x 4.[2012·开封质检] 把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是________________________________________________________________________.能力提升5.[2012·蚌埠质检] 已知函数f (x )=⎩⎨⎧-2x (-1≤x ≤0),x (0<x ≤1),则下列的图象错误的是( )图K10-26.已知图K10-3①中的图象对应的函数为y=f(x),则图K10-3②中的图象对应的函数为()-3A.y=f(|x|) B.y=|f(x)|C.y=f(-|x|) D.y=-f(|x|)7.[2012·郑州调研]图K10-以下为编号为①②③④的四个方程:①x-y=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.请按曲线A,B,C,D的顺序,依次写出与之对应的方程的编号为()A.④②①③B.④①②③C.①③④②D.①②③④8.函数f(x)=1+1-x()9.[2012·北海质检] 现有四个函数①y=sin|x|;②y=x·|sin x|;③y=|x|·cos x;④y=x+sin x 的部分图象如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()图K10-6A.①③②④B.①③④②C.③①②④D.③①④②10.将函数y=2x+1的图象按向量a平移得到函数y=2x+1的图象,则a=________.11.[2012·海淀一模] 函数f (x )=x +1x图象的对称中心为________.12.设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为________. 13.[2012·唐山二模] 奇函数f (x )、偶函数g (x )的图象分别如图K10-7(1),K10-7(2)所示,方程f (g (x ))=0,g (f (x ))=0的实根个数分别为a ,b ,则a +b =________.14.(10分)设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).求g (x )的解析式.15.(13分)已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.难点突破16.(12分)(1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图象关于直线x =m 对称;(2)若函数y =log 2|ax -1|的图象的对称轴是x =2,求非零实数a 的值.课时作业(十一) [第11讲 函数与方程](时间:45分钟 分值:100分)基础热身 1.[2013·安庆四校联考] 图K11-1是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( )图K11-1A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1] 2.[2012·唐山期末] 设f (x )=e x +x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 3.[2012·宣城质检] 若函数f (x )=ax +b 的零点为2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,124.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.能力提升5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定6.[2012·宿州调研] 已知x 0是函数f (x )=11-x+ln x 的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>07.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根C .有且仅有两个根D .有无穷多个根9.[2012·石家庄质检] 已知函数f (x )=⎝⎛⎭⎫12x -sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .410.[2012·怀远一中模拟] 若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.11.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x-1,则函数g (x )=f (x )-log 3|x |的零点个数为________.13.[2013·扬州中学月考] 已知函数f (x )=|x 2-1|x -1-kx +2恰有两个零点,则k 的取值范围是________.14.(10分)已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.15.(13分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.难点突破16.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1),-25x +125(1<x ≤5).(1)若函数y =f (x )的图象与直线kx -y -k +1=0有两个交点,求实数k 的取值范围;(2)试求函数g (x )=xf (x )的值域.课时作业(十二) [第12讲 函数模型及其应用](时间:45分钟 分值:100分)基础热身1.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A .y =t 2B .y =log 2tC .y =2tD .y =2t 22.等边三角形的边长为x ,面积为y ,则y 与x 之间的函数关系式为( )A .y =x 2B .y =12x 2C .y =32x 2D .y =34x 23.[2012·厦门月考] 设甲、乙两地的距离为a (a >0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y )图K12-24.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.能力提升5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x 之间关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是()7.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元8.[2013·荆州中学一检] 下列所给4个图象中,与所给3件事吻合最好的顺序为()(a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(c)K12A.(1)(2)(4) B.(4)(2)(3)C.(4)(1)(3) D.(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件10.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b ⎝⎛⎭⎫0<b ≤32为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.11.[2012·珠海模拟] 一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时,才能开车.(精确到1小时)12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.13.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (mg)与时间t (h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝⎛⎭⎫116t -a (a 为常数),如图K12-6 所示,据测定,当空气中每立方米的含药量降低到0.25 mg 以下时,学生方可进教室,那从药物释放开始,至少需要经过________h 后,学生才能回到教室.14.(10分)某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价-成本价)]15.(13分)围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图K12-7所示.已知旧墙的维修费为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.。
惠州市2014届高三第二次调研考试试题数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1. 已知集合{}0,1S =,集合{}0T =,∅表示空集,那么S T = ( ) A .∅ B .{0} C .{0,1} D .{0,1,0}2. 命题“存在实数x ,使210x x +-<”的否定为( )A .对任意实数x ,都有210x x +-≥ B .不存在实数x ,使210x x +-≥ C .对任意实数x ,都有210x x +-< D .存在实数x ,使210x x +-≥3. 双曲线221169x y -=的离心率为( ) A .53 B .54 C .35 D . 454. 直线40y +=与圆22(2)(1)9x y -++=的位置关系是( )A .相切B .相交且直线不经过圆心C .相离D .相交且直线经过圆心5. 已知(a = ,(1,)b x =,若a b ⊥ ,则x 等于( )A .2BC .3D 6. 函数()()2log 31xf x =-的定义域为( )A .[)1,+∞B .()1,+∞ C .[)0,+∞ D . ()0,+∞7. 已知等差数列{}n a 的前n 项和为n S ,若125a a +=,349a a +=,则10S 为( ) A .55 B .60 C .65 D .708. 已知函数sin()(0,||)2y x πωϕωϕ=+><的部分图像如图所示,则,ωϕ的值分别为( ) A .2,3π- B .2,6π-C .4,6π- D .4,3π9.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题:①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .②③C .③④D .①④ 10. 设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=.则集合S 表示的平面区域是( )A .三角形区域B .四边形区域C .五边形区域D .六边形区域二、填空题:(本大题共5小题,分为必做题和选做题两部分.每小题5分,满分20分) (一)必做题:第11至13题为必做题,每道试题考生都必须作答. 11.复数2(1)i -的虚部为__________.12.如图所示,程序框图(算法流程图)的输出结果为_________.13.设变量,x y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =+的最大值为_________.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
[第33讲 不等关系与不等式](时间:35分钟 分值:80分)基础热身1.已知a ,b ,c ∈R ,则“a >b ”是“ac 2>bc 2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.设a >b >0,c <d <0,则下列不等式正确的是( )A .a -c <b -dB .ac >bd C.3a <3b D.1a 2<1b 2 3.[2013·保定一模] 若a >0且a ≠1,b >0,则“log a b >0”是“(a -1)(b -1)>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.某厂生产甲产品每件需用A 原料2 kg 、B 原料4 kg ,生产乙产品每件需用A 原料3 kg 、B 原料2 kg ;A 原料每日供应量限额为60 kg ,B 原料每日供应量限额为80 kg.要求每天生产的乙种产品不能比甲种产品多10件以上,若设每天生产甲产品x 件,乙产品y 件,用不等式(组)表示上述关系式为________.能力提升5.[2013·潍坊联考] 设0<b <a <1,则下列不等式成立的是( )A .ab <b 2<1B .log 12b <log 12a <0 C .2b <2a <2 D .a 2<ab <16.[2013·长春调研] 设a ∈R ,则“a -1a 2-a +1<0”是“|a |<1”成立的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件7.[2013·武汉二模] 若a >b >0,则下列不等式一定成立的是( )A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >a b8.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a2>b 2.其中正确的命题是( )A .①②B .②③C .③④D .①④9.已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.10.已知-π2<α<β<π,则α-β2的取值范围是________. 11.同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高.这两个事实可以用数学语言描述为:若有限数列a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n ,则______________(结论用数学式子表示).12.(13分)[2013·沅江质检] 下表为广州亚运会官方票务网站公布的几种球类比赛的.门票,其中篮球比赛门票数与乒乓球比赛门票数相同,且篮球比赛门票的费用不超过足球比赛门票的费用,求可以预订的足球比赛门票数.难点突破13.(12分)甲、乙两人同时从教室到音乐室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到音乐室?课时作业(三十三)【基础热身】1.B [解析] 当c 2=0时,ac 2=bc 2,即a >b 不一定能推出ac 2>bc 2;反之,ac 2>bc2⇒a >b ,故选B.2.D [解析] 由c <d ,得-c >-d ,又a >b ,则a -c >b -d ,A 选项错;由c <d <0,得-c >-d >0,又a >b >0,则-ac >-bd ,即ac <bd ,选项B 错;由a >b >0,得3a >3b >0,选项C错;由a >b >0,得a 2>b 2>0,则1a 2<1b 2,故选D. 3.C [解析] 若log a b >0,即log a b >log a 1,则⎩⎪⎨⎪⎧0<a <1,b <1或⎩⎪⎨⎪⎧a >1,b >1,得(a -1)(b -1)>0;反之,亦成立,故选C.4.⎩⎪⎨⎪⎧2x +3y ≤60,4x +2y ≤80,y -x ≤10,x ≥0,x ∈N *,y ≥0,y ∈N *. [解析] 由已知,得需用A 原料(2x +3y ) kg ,需用B 原料(4x +2y ) kg ,且乙产品与甲产品的差不大于10,故可得不等式组⎩⎪⎨⎪⎧2x +3y ≤60,4x +2y ≤80,y -x ≤10,x ≥0,x ∈N *,y ≥0,y ∈N *. 【能力提升】5.C [解析] 由0<b <a <1,得0<b 2<1,0<a 2<1,ab <a 2,b 2<ab ,log 12b >log 12a >0,2b <2a <2,则A ,B ,D 错,故选C.6.C [解析] 因为a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,则a -1a 2-a +1<0⇒a -1<0⇒/ |a |<1;若|a |<1,则-1<a <1,故选C.7.A [解析] 取特殊值a =2,b =1,可排除B ,D ;若a >b >0,则1b >1a>0,选项A 成立;而a -1b >b -1b ,b -1b <b -1a,选项C 不成立,故选A. 8.B [解析] 当c =0时,ac 2=bc 2,则①不正确;a >|b |≥0,a 2>|b |2=b 2,则②正确;a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +12b 2+34b 2>0,则③正确;取a =2,b =-3,则|a |>b ,但a 2=4<b 2=9,即④不正确,故选B.9.ba -c <ab -d [解析]c <d <0⇒-c >-d >0,又∵a >b >0,则a -c >b -d >0,∴0<1a -c <1b -d ,故b a -c <a b -d. 10.⎝ ⎛⎭⎪⎫-3π4,0 [解析] 由-π2<α<β<π,得-π2<α<π,-π<-β<π2, ∴-3π2<α-β<3π2,即-3π4<α-β2<3π4.又∵α-β<0,∴-3π4<α-β2<0, 故α-β2的取值范围是⎝ ⎛⎭⎪⎫-3π4,0. 11.a 1+a 2+…+a m m ≤a 1+a 2+…+a n n(1≤m <n )和 a m +1+a m +2+…+a n n -m ≥a 1+a 2+…+a n n(1≤m <n ) [解析] 设1≤m <n ,如果去掉a m +1,a m +2,…,a n ,则a 1+a 2+…+a m m ≤a 1+a 2+…+a n n , 如果去掉a 1,a 2,…,a m ,则a m +1+a m +2+…+a n n -m ≥a 1+a 2+…+a n n. 12.解:设预订篮球比赛门票数与乒乓球比赛门票数都是n (n ∈N *)张,则足球比赛门票预订(15-2n )张,由题意得⎩⎪⎨⎪⎧80n +60n +100(15-2n )≤1 200,80n ≤100(15-2n ),n ∈N *,解得5≤n ≤5514, 由n ∈N *,可得n =5,∴15-2n =5.∴可以预订足球比赛门票5张.【难点突破】13.解:设从教室到音乐室的路程为s ,甲、乙两人的步行速度为v 1,跑步速度为v 2,且v 1<v 2.甲所用的时间t 甲=s 2v 1+s 2v 2=s (v 1+v 2)2v 1v 2, 乙所用的时间t 乙=2s v 1+v 2, ∴t 甲t 乙=s (v 1+v 2)2v 1v 2×v 1+v 22s =(v 1+v 2)24v 1v 2=v 21+v 22+2v 1v 24v 1v 2>4v 1v 24v 1v 2=1, ∵t 甲>0,t 乙>0,∴t 甲>t 乙,即乙先到音乐室.。
2014年高三数学一轮复习练习及详细解析:不等式一、不等关系与不等式(一)应用不等式表示不等关系※相关链接※1、将实际的不等关系写成对应的不等式时,应注意实际问题中关键性的文字语言与对应的数学符号之间的正确转换,这关系到能否正确地用不等式表示出不等关系。
常见的文字语言与数学符号之间的转换关系如下表:2、注意区分“不等关系”和“不等式”的异同,不等关系强调的是关系,可用表示,不等式则是表现不等关系的式子,对于实际问题中的不等关系可以从“不超过”、“至少”、“至多”等关键词上去把握,并考虑到实际意义。
※例题解析※〖例〗某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1000万元的资金购买单价分别为40万元、90万元的A型汽车和B型汽车。
根据需要,A型汽车至少买5辆,B型汽车至少买6辆,写出满足上述所有不等关系的不等式。
思路解析:把握关键点,不超过1000万元,且A、B两种车型分别至少5辆、6辆,则不等关系不难表示,要注意取值范围。
解答:设购买A型汽车和B型汽车分别为x辆、y辆,则,. ,,+≤+≤⎧⎧⎪⎪≥≥⎪⎪⎨⎨≥≥⎪⎪⎪⎪∈∈⎩⎩40x90y10004x9y100 x5x5y6y6x y N x y N(二)比较大小※相关链接※比较实数或代数式的大小的方法主要是作差法和作商法。
1、“作差法”的一般步骤是:(1)作差;(2)变形;(3)判断符号;(4)得出结论。
用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法。
常用的结论有,,等。
当两个式子都为正时,有时也可以先平方再作差。
2、作商法的一般步骤是:(1)作商;(2)变形;(3)判断商与1的大小;(4)得出结论。
注:当商与1的大小确定后必须对商式的分母的正负做出判断方可得出结论,如:1,0baa<>时,b a<;0a<时,b a>3、特例法若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.※例题解析※〖例〗(1)(2012·南平模拟)若a、b是任意实数,且a>b,则下列不等式成立的是( )()()()l ++-22a bb A a 1b 1B 1a11C g a b 0D 33()>()<()>()<(2)已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M 与N 的大小关系是( )(A )M <N (B )M >N ()M=N (D )不确定[来源:](3)已知a >b >0,比较aabb 与abba 的大小.【方法诠释】(1)运用特殊值验证即可.(2)可用作差法求解.(3)利用作商法求解判断.解析:(1)选D.令,=-1a 2b=-1,则A 、B 、均不成立,故选D. (2)选B.∵M-N=a1a2-a1-a2+1=a1(a2-1)-(a2-1)=(a1-1)(a2-1)又a1,a2∈(0,1),故(a1-1)(a2-1)>0,故M >N.(3)∵()---==a b a b a b b a a b a b a a a b b b ,又a >b >0,故,a 1b >a-b >0, ∴(),-a b a 1b >即,a b b a a b 1a b >又abba >0,∴aabb >abba,∴aabb 与abba 的大小关系为:aabb >abba.(三)不等式性质的应用〖例〗(1)(2011·浙江高考)若a 、b 为实数,则“0<ab <1”是“11a b b a <或>”的( ) (A)充分而不必要条件 (B)必要而不充分条件 ()充分必要条件 (D)既不充分也不必要条件(2)已知函数f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.【方法诠释】(1)利用不等式的基本性质进行判断.(2)利用待定系数法寻找f(-2)与f(-1),f(1)之间的关系,即用f(-1),f(1)整体表示f(-2),再利用不等式的性质求f(-2)的取值范围.解析:(1)选A.0<ab <1可分为两种情况:当a >0,b >0时,由0<ab <1两边同除以b 可得;1a b <当a <0, b <0时,两边同除以a 可得.1b a > ∴“0<ab <1”是“11a b b a <或>”的充分条件,反之,当11a b b a <或>时,可能有ab <0,∴“0<ab <1”是 “11a b b a <或>”的不必要条件,故应为充分不必要条件. (2)方法一:设f(-2)=mf(-1)+nf(1)(m 、n 为待定系数),则4a-2b=m(a-b)+n(a+b).即4a-2b=(m+n)a+(n-m)b.于是得+==⎧⎧⎨⎨-=-=⎩⎩m n 4m 3n m 2n 1,解得, ∴f(-2)=3f(-1)+f(1).又∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,即5≤f(-2)≤10.方法二:()()()()()(),,..⎧=-+⎪-=-⎧⎪⎪⎨⎨=+⎪⎪⎩=--⎪⎩1a f 1f 1f 1a b 21f 1a b b f 1f 12[]即[]∴f(-2)=4a-2b=3f(-1)+f(1).又∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,即5≤f(-2)≤10.(四)不等式的证明〖例〗已知a >0,b >0,且a+b=1 求证 (a+a 1)(b+b 1)≥425。
证明:证法一: (分析综合法)欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab ≤41或ab ≥8∵a >0,b >0,a+b=1,∴ab ≥8不可能成立∵1=a+b ≥2ab ,∴ab ≤41,从而得证。
证法二: (均值代换法)设a=21+t1,b=21+t2。
∵a+b=1,a >0,b >0,∴t1+t2=0,|t1|<12,|t2|<12,.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t bb a a b b a a显然当且仅当t=0,即a=b=21时,等号成立证法三:(比较法)∵a+b=1,a >0,b >0,∴a+b ≥2ab ,∴ab ≤41,425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a abab ab ab ab b a b b a a b b a a证法四:(综合法)∵a+b=1, a >0,b >0,∴a+b ≥ab ≤14,22225(1)1139(1)1251611(1)1441644ab ab ab ab ab ab ⎧-+≥⎪-+⎪∴-≥-=⇒-≥⇒⇒≥⎨⎪≥⎪⎩425)1)(1(≥++b b a a 即。
证法五:(三角代换法)∵ a >0,b >0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,2π),.425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα方法提示:由a<f(x,y)<b,c<g(x,y)<d,求F(x,y)的取值范围,可利用待定系数法解决,即设F(x,y)=mf(x,y)+ng(x,y),用恒等变形求得m,n,再利用不等式的性质求得F(x,y)的取值范围.提醒:同时应用多个不等式时,容易改变不等式的范围,特别是多次运用同向不等式相加这一性质,因不是等价关系,易导致出错.二、一元二次不等式及其解法(一)一元二次不等式的解法※相关链接※解一元二次不等式的一般步骤(1)对不等式变形,使一端为0且二次项系数大于0,即20(0)ax bx c a++>>;20(0)ax bx c a++<>(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集。
※例题解析※[来源:学科网]〖例〗解下列不等式:(1)2x2+4x+3<0;(2)-3x2-2x+8≤0;(3)8x-1≥16x2.思路解析:首先将二次项系数转化为正数,再看二次基项式能否因式分解,若能,则可得方程的两根,且大于号取两边,小于号取中间,若不能,则再“Δ”,利用求根公式求解方程的根,而后写出解集。
解答:(1)∵Δ=42-4×2×3=16-24=-8<0,∴方程2x2+4x+3=0没有实根,∴2x2+4x+3<0的解集为Φ;(2)原不等式等价于3x2+2x-8≥0⇔(x+2)(3x-4)≥0⇒x≤-2或x≥4 3(3)原不等式等价于16x2-8x+1≤0⇔(4x-1)2≤0,∴只有当4x-1=0,即x=14时,不等式成立。
故不等式的解集为1 4⎧⎫⎨⎬⎩⎭(二)含字母参数的不等式的解法※相关链接※含参数的一元二次不等式关于字母参数的取值范围问题,其主要考查二次不等式的解集与系数的关系以及分类讨论的数学思想。
1、解答分类讨论问题的基本方法和步骤是:(1)要确定讨论对象以及所讨论对象的全体的范围;(2)确定分类标准,正确进行合理分类;(3)对所分类逐步进行讨论,分级进行,获取阶段性结果;(4)进行归纳总结,综合得出结论。
2、对于解含有参数的二次不等式,一般讨论的顺序是:(1)讨论二次项系数是否为0,这决定此不等式是否为二次不等式;(2)当二次项系数不为0时,讨论判别式是否大于0;(3)当判别式大于0时,讨论二次项系数是否大于0,这决定所求不等式的不等号的方向;(4)判断二次不等式两根的大小。
※例题解析※〖例〗解关于x的不等式(1-ax)2<1思路解析:将不等式左边化为二次三项式,右边等于0的形式,并将左边因式分解,据a的取值情况分类讨论。
解答:由(1-ax)2<1处22211,(2)0.a x ax ax ax-+<-<即(1)000,a=<当时,不等式转化为故x无解。