人教版中考数学考纲
- 格式:doc
- 大小:84.00 KB
- 文档页数:8
第一部分 数与式 专题一 实数考点01 实数的有关概念 第1步 试真题 第2步 抓重点一、利用数轴理解与实数相关的概念 二、实数的分类 三、非负数的性质 第3步 学方法 考向1 科学记数法考向2 非负数性质的应用 第4步 过模拟考点02 实数的运算及大小比较 第1步 试真题 第2步 抓重点一、实数的大小比较 二、实数的运算 第3步 学方法考向 实数的混合运算 第4步 过模拟考点分布考点分频考点内容命题趋势 1.实数的有关概念 ★★★★★1.有理数、无理数和实数的概念2.数轴、相反数、倒数、绝对值的概念和意义3.平方根、算术根及立方根的概念4.实数的大小比较5.根据要求用有理数估计一个无理数的大致范围6.近似数、有效数字和科学计数法7.乘方的意义,实数的运算率 8.实数的混合运算,非负数的性质实数的概念和运算是历届中考的必考内容,在中考中一般为2-3题,分值为6-10分。
主要以考查相反数、倒数、绝对值等基本概念为主,多以选择题、填空题形式出现,科学记数法,实数的运算也是历年中考的热点之一2.实数的运算及大小比较★★★★专题二整式考点分布考点分频考点内容命题趋势1.代数式★★ 1.用字母表示数的意义,列代数式表示数量关系2.代数式的值,用问题提供的资料求代数式的值3.单项式、多项式、同类项的概念4.整数指数幂的意义和基本性质5.整式的加、减、乘法运算法则和运算6.平方差公式、完全平方公式7.用提公因式法、公式法进行因式分解法代数式在中考命题中多以考查基本的概念及运算为主,难度不大,近几年,随着新课标理念的进一步落实考查“数感”和“符号感”的新型题目逐渐增多,。
整式的有关知识及整式得四则运算,仍会以填空题、选择题和解答题的形式出现,乘法公式,因式分解正逐渐渗透到综合题中进行考查,数与式的应用题将是今后中考的一个热点2.整式及其运算★★★3.因式分解★★★考点03 代数式第1步试真题第2步抓重点一、列代数式二、代数式的值第3步学方法考向1 实际问题中的代数式考向2 求代数式的值考向3 用代数式表示数字或图形的变化规律第4步过模拟考点04 整式及其运算第1步试真题第2步抓重点一、同类项与合并同类项二、幂的运算三、乘法公式的应用考向1 整式的加减考向2 幂的运算与整式的乘除考向3 整式的混合运算—化简求值第4步过模拟考点05 因式分解第1步试真题第2步抓重点一、因式分解与整式的乘法二、因式分解的方法第3步学方法考向1 因式分解的常用方法第4步过模拟专题三分式考点分布考点分频考点内容命题趋势1.分式的概念和性质★★★ 1.分式的概念2.确定分式有意义的条件3.确定分式的值为0的条件4.分式的基本性质及通分、约分5.分式的加、减、乘、除运算及化简求值分式是中考的必考内容,在中考中一般为1-2道题,分值约为2-10分,近几年考题难度有所增加,方程、不等式与分式的化简求值相结合考查是近几年命题的热点2.分式的运算★★★★考点06分式的概念和性质第1步试真题第2步抓重点一、分式的概念二、分式的基本性质第3步学方法考向1 确定分式有意义及值为0的条件考向2 分式的基本性质的应用第4步过模拟考点07 分式的运算第1步试真题第2步抓重点分式的运算考向1 分式的化简于求值考向2 分式的基本性质的应用第4步过模拟专题四二次根式考点分布考点分频考点内容命题趋势二次根式★★ 1.二次根式的定义,有意义的条件2.二次根式的性质3.最简二次根式、同类二次根式4.二次根式的加、减、乘、除运算5.二次根式的加、减、乘、除运算法则及混合运算的顺序二次根式的知识点是新课标的基本考查内容之一,常常以客观题形式进行考查,重点要求熟练掌握基本运算。
人教版初中中考数学复习提纲 1第一章 有理数 2一、正数和负数 31、 正数、负数: 大于零的数叫做正数,小于零的数叫做负数。
4应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。
5二、有理数 61、概念:整数和分数统称为有理数。
7 2、分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数零正分数正整数正数或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 8注:分数和小数可以互化,所以小数可以归为分数类。
93、“0”表示的意义: 10(1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负11的状态(4)0是最小的自然数,即是最小的非负整数(5)0不能作为分母(6)0等相反数是120(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数13都为0. 144、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方15向,单位长度。
16数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左17边的数小于右边的数。
185、相反数:只有符号不同的两个数叫做互为相反数。
与原点距离相等的两个数互为相反数。
19互为相反数的两个数相加得0(a ,b 互为相反数,则a+b=0) 206、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a| 21 |a|=⎩⎨⎧<-≥)0()0(a a a a22 两个负数,绝对值大的反而小。
23 三、有理数的加减法24 1、有理数的加法:25 (1)加法法则:26 同号两数相加,取相同的符号,并把绝对值相加;27 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去28 较小的绝对值。
互为相反数的两个数相加得0.29 一个数同0相加,仍得这个数。
30 (2)运算律:加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )31 2、有理数的减法:32 减法法则:减去一个数,等于加上这个数的相反数。
2022人教版初中数学考纲考点可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。
而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。
今天小编在这给大家整理了一些人教版初中数学考纲考点,我们一起来看看吧!人教版初中数学考纲考点1.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______Δ= b^2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)特殊值的形式2.特殊值的形式①当x=1时 y=a+b+c②当x=-1时 y=a-b+c③当x=2时 y=4a+2b+c④当x=-2时 y=4a-2b+c3.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+k[顶点式]此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随x的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方连用)。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。
完整版)初中数学中考考试大纲初中数学中考考试大纲一、知识与技能1、数与代数考试内容:本部分主要考察有理数、实数、二次根式、代数式、整式、因式分解、分式、方程与方程组、不等式与不等式组、函数及其表示等知识点。
要求目标:学生需要掌握有理数的概念、大小比较、加减乘除乘方运算、数的开方等基本知识;理解实数、无理数的概念,以及近似数和有效数字的概念;掌握代数式、整式的概念和基本运算法则,以及因式分解、分式、方程与方程组、不等式与不等式组等知识;理解函数的概念和表示方法,能够求解一次函数和反比例函数等问题。
2、几何考试内容:本部分主要考察平面图形的性质、三角形的性质、圆的性质、相似与全等等知识点。
要求目标:学生需要掌握平面图形的基本性质,如线段、角、多边形等;掌握三角形的性质,如三角形内角和、中线定理、角平分线定理等;掌握圆的性质,如圆心角、弧长、切线等;理解相似和全等的概念,能够判断两个图形是否相似或全等。
3、数据与统计考试内容:本部分主要考察数据的收集、整理和表示方法,以及统计分析方法等知识点。
要求目标:学生需要掌握数据的收集、整理和表示方法,如频数、频率、累计频率等;掌握统计分析方法,如均值、中位数、众数、极差、方差等;能够进行简单的数据分析和统计。
4、应用题考试内容:本部分主要考察数学知识在实际问题中的应用能力。
要求目标:学生需要能够将数学知识应用到实际问题中,解决生活中的实际问题。
例如,能够解决关于比例、利润、利率、速度等方面的实际问题。
反比例函数的意义是指两个变量之间的关系是反比例关系,即其中一个变量的值增加,另一个变量的值就会相应地减少。
例如,当一个物品的价格上涨时,人们购买该物品的数量会下降。
反比例函数的表达式通常写作y=k/x,其中k是常数。
这个表达式中,y和x分别代表两个变量的值,k是比例系数。
当x增加时,y会相应地减少,反之亦然。
反比例函数的图像是一个开口朝下的双曲线。
反比例函数也可以写成y=k/x^n的形式,其中n是正整数。
人教版初中中考数学复习提纲第一章有理数一、 正数和负数 1、正数、负数: 大于零的数叫做正数,小于零的数叫做负数。
应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。
二、 有理数 1、概念:整数和分数统称为有理数。
”正整数 正数/ 正分数 分类」零 合粉负整数 负数/ 负分数 •正整数 整数(零 或] 负整数 正分数 分数』 负分数注:分数和小数可以互化,所以小数可以归为分数类。
3、“ 0”表示的意义: (1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负的状态( 4)0 是最小的自然数,即是最小的非负整数( 5)0不能作为分母(6)0等相反数是0 (7)0的绝对值是0 (8) 0没有倒数(9)0乘以任何数都为0 ( 10)0除以任何不为0的数都为0. 4、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方向,单位长度。
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边 的数。
5、 相反数:只有符号不同的两个数叫做互为相反数。
与原点距离相等的两个数互为相反数。
互为相反数的两个数相加得 0( a , b 互为相反数,则 a+b=0) 6、 绝对值:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 两个负数,绝对值大的反而小。
三、有理数的加减法 1、有理数的加法: (1)加法法则: 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得 0. 一个数同0相加,仍得这个数。
(2 )运算律:加法交换律: a+b=b+a ;加法结合律:(a+b )+c=a+ ( b+c ) 2、有理数的减法: 减法法则:减去一个数,等于加上这个数的相反数。
杭州初中毕业升学文化考试实施细则数学依据教育部制定的《义务教育数学课程标准》(2011年版)的要求,参考《浙江省初中毕业生学业考试说明》,结合本市数学教学实际,制订2016年杭州市初中毕业升学文化考试数学学科的相关说明.一、考试笵围和要求【考试范围】《义务教育数学课程标准》(2011年版)中七至九年级的基本内容。
内容涉及“数与代数”、“空间与图形”、“统计与概率”和“综合与实践(课题学习)”四个领域.【考试要求】考试着重考查七至九年级数学的基础知识、基本技能、基本数学思想方法,以及数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想等数学思考和解决问题的能力.注重对学生应用意识和创新意识的考查.同时结合具体情境考查对学生情感与态度方面的培养效果。
学生在《义务教育数学课程标准》(2011年版)所确立的数学课程目标诸方面的进一步发展状况也是数学学习能力考试的重要内容。
数学学习能力考试对考试内容掌握程度的要求分为四个方面,依次用a、b、c、d表示。
其含义如下:a—-辨认。
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象;能感受经历过的有关数学活动,并从中辨认数学对象。
b--描述.能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系;能感受和体会有关数学活动,并能描述数学对象的有关特征.c——运用。
能在理解的基础上,把对象运用到新的情境中;能体会具有新情境的数学活动,并通过观察、实验、推理等活动,探索、发现数学对象的一些简单特征或与其他对象的区别和联系.d——综合。
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务;能在数学思维活动的基础上,发现、提出数学问题并加以解决,或探索、发现数学对象的某些特征和活动中隐含的数学规律,提出猜想并加以验证等.二、考试方式【考试方式与时间】采用闭卷、书面笔答的形式,考试时间为100分钟,满分为120分。
九年级上册数学复习知识提纲人教版推荐文章九年级化学上册知识点提纲热度:沪科版九年级上册物理复习提纲热度:人教版九年级上册语文复习知识提纲热度:九年级上册人教版化学提纲热度:九年级下册科粤版化学提纲热度:数学是三大主科之一,同时也是必考科目。
但是很多人的数学成绩都不是很理想,下面小编给大家分享一些九年级上册数学复习提纲人教版,希望能够帮助大家,欢迎阅读!九年级上册数学复习知识提纲人教版1、圆的有关概念:(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。
第一章九年级数学总复习提纲-人教新课标版★重点★ 实数的有关概念及性质;实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0)常见的非负数有:性质:若干个非负数的和为0;则每个非负数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中;a ≠0;C.0<a <1时1/a >1;a >1时;1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时;a ≠-a;B.a 与-a 在数轴上的位置;C.和为0;商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0;符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目;只要其中有“││”出现;其关键一步是去掉“││”符号。
二、实数的运算实数 无理数(无限不循环小数)负整数 (有限或无限循环性数) 整数分数0 实数 负数整数分数无理数有理数正数 整数 分数无理数有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图;求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0;(a ≠0;b ≠0);判断a 、b 的符号。
杭州初中毕业升学文化考试实施细则数学依据教育部制定的《义务教育数学课程标准》(2011年版)的要求,参考《浙江省初中毕业生学业考试说明》,结合本市数学教学实际,制订2016年杭州市初中毕业升学文化考试数学学科的相关说明。
一、考试笵围和要求【考试范围】《义务教育数学课程标准》(2011年版)中七至九年级的基本内容。
内容涉及“数与代数”、“空间与图形”、“统计与概率”和“综合与实践(课题学习)”四个领域。
【考试要求】考试着重考查七至九年级数学的基础知识、基本技能、基本数学思想方法,以及数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想等数学思考和解决问题的能力。
注重对学生应用意识和创新意识的考查。
同时结合具体情境考查对学生情感与态度方面的培养效果。
学生在《义务教育数学课程标准》(2011年版)所确立的数学课程目标诸方面的进一步发展状况也是数学学习能力考试的重要内容。
数学学习能力考试对考试内容掌握程度的要求分为四个方面,依次用a、b、c、d表示。
其含义如下:a——辨认。
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象;能感受经历过的有关数学活动,并从中辨认数学对象。
b——描述。
能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系;能感受和体会有关数学活动,并能描述数学对象的有关特征。
c——运用。
能在理解的基础上,把对象运用到新的情境中;能体会具有新情境的数学活动,并通过观察、实验、推理等活动,探索、发现数学对象的一些简单特征或与其他对象的区别和联系。
d——综合。
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务;能在数学思维活动的基础上,发现、提出数学问题并加以解决,或探索、发现数学对象的某些特征和活动中隐含的数学规律,提出猜想并加以验证等。
二、考试方式【考试方式与时间】采用闭卷、书面笔答的形式,考试时间为100分钟,满分为120分。
考试过程中不得使用计算器。
【试卷结构】三、考试目标根据教育部制定的《义务教育数学课程标准》(2011年版)和杭州市数学教学实际情况,分“数与代数”、“空间与图形”、“统计与概率”、“综合与实践(课题学习)四个领域列出2016年杭州市初中毕业升学文化考试内容的具体目标要求。
【数与代数】1.有理数(1)有理数的意义 a(2)用数轴上的点表示有理数及有理数的相反数和绝对值 b(3)有理数的大小比较 c(4)求有理数的相反数与绝对值(绝对值内不含字母) b(5)乘方的意义 a(6)有理数的加、减、乘、除、乘方运算及混合运算(以三步为主),用有理数的运算律简化运算 c2.实数(1)平方根、算术平方根、立方根和二次根式的概念 a(2)用根号表示平方根、立方根 b(3)开方与乘方互为逆运算 a(4)求某些非负数的算术平方根,求实数的立方根 b(5)无理数和实数的概念 a(6)实数与数轴上的点一一对应关系 a(7)对含有较大数字的信息作出合理的解释和推断 b(8)用有理数估计一个无理数的大致范围 b(9)近似数的概念 a (10)二次根式的加、减、乘、除运算法则及最简二次根式的概念 b (11)实数的简单四则运算 c3.代数式(1)用字母表示数的意义 b(2)用代数式表示简单问题的数量关系 b(3)解释一些简单代数式的实际背景或几何意义 b(4)求代数式的值 c(5)整数指数幂的意义和基本性质 a(6)用科学记数法表示数 b(7)整式和分式及最简分式的概念 a(8)简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘) b(9)平方差、完全平方公式的推导及运用 c (10)提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解c (11)运用分式基本性质进行约分和通分 b (12)简单的分式加、减、乘、除运算 c (13) 去括号法则 b4.方程与方程组(1)根据具体问题中的数量关系,列出方程或方程组 b(2)解一元一次方程和二元一次方程组 c(3)解可化为一元一次方程的分式方程(方程中分式不超过两个) c(4)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程 c(5)一元二次方程根的判别式 c(6)根据具体问题的实际意义,检验结果是否合理b5.不等式与不等式组(1)不等式的意义 a(2)不等式的基本性质 c(3)解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集 b6.函数(1)常量、变量的意义 a(2)举出函数的实例 b (3)函数的概念及函数的三种表示方法 b (4)结合图象对简单实际问题中的函数关系进行分析 c (5)求简单整式、分式和简单实际问题中的函数的自变量的取值范围 b (6)求函数值 b (7)用适当的函数表示法刻画某些实际问题中变量之间的关系 b (8)结合对函数关系的分析,尝试对变量的变化规律进行初步预测 c (9)一次函数、反比例函数和二次函数的意义 a (10)根据已知条件确定一次函数和反比例函数的表达式 b (11)通过对实际问题情境的分析确定二次函数表达式 c (12)画一次函数、反比例函数的图象 b (13)用描点法画二次函数的图象 b (14)理解一次函数和反比例函数的性质 a (15)通过图象认识二次函数的性质 c (16)根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆) a (17)运用一次函数图象求二元二次方程组的近似解 c (18)利用二次函数图象求一元二次方程的近似解 c (19)利用一次函数、反比例函数和二次函数解决实际问题 d【空间与图形】7.图形的认识(1)认识点、线、面 a (2)角的概念与表示 b (3)认识度、分、秒,能进行度、分、秒的简单换算a (4)角的大小比较或估计 b (5)角度的和差计算 b (6)角平分线及其性质 a 8.相交线与平行线(1)补角、余角、对顶角等概念 a (2)等角的余角相等,等角的补角相等,对顶角相等 c (3)垂线、垂线段等概念,了解垂线段最短 a (4)点到直线的距离和两条平行直线之间的距离 a (5)过一点有且仅有一条直线垂直于已知直线 a (6)线段垂直平分线及其性质 a (7)两直线平行,同位角相等 c (8)过直线外一点有且仅有一条直线平行于已知直线 a(9)用三角尺和直尺过已知直线外一点画这条直线的平行线 c 9.三角形(1)三角形的有关概念(内角、外角、中线、高、角平分线) a (2)三角形的角平分线的性质 b (3)三角形线中位线及其性质 c (4)全等三角形的概念 a (5)三角形全等的条件 c (6)等腰三角形、等边三角形和直角三角形的有关概念 a (7)等腰三角形、等边三角形和直角三角形的性质 c (8)判定等腰三角形、直角三角形的条件 c (9)勾股定理及其简单运用 c 10.四边形(1)正多边形的概念及其与圆的关系 a (2)多边形的内角和与外角和公式 b (3)平行四边形、矩形、菱形、正方形的概念 a (4)平行四边形、矩形、菱形、正方形的性质 c (5)平行四边形、矩形、菱形、正方形之间的关系 b (6)判定平行四边形、矩形、菱形、正方形的条件 c 11.圆(1)圆及其有关概念 b (2)弧、弦、圆心角的关系 a (3)点与圆、直线与圆的位置关系 a (4)圆的简单性质 c (5)圆周角与圆心角的关系,直径所对圆周角的特征 b (6)三角形的内心和外心 a (7)圆内接四边形的概念及相关性质 a (8)切线的概念 a (9)切线与过切点的半径之间的关系,会过圆上一点画圆的切线 b (10)判定一条直线是否为圆的切线 c (11)计算弧长和扇形的面积,计算圆锥的侧面积和全面积 c 12.尺规作图(1)基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;过一点作已知直线的垂线 b(2)利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形;已知一直角边和斜边作三角形 b(3)过不在同一直线上的三点作圆 b(4)作三角形的内切圆、外接圆 b(5)作圆内接正方形和正六边形 b(6)对于尺规作图题,应保留作图痕迹但不要写作法 b 13.视图与展开图(1)画简单几何体(直棱柱、圆柱、圆锥、球)的三视图 c (2)判断简单物体的三视图 b (3)根据三视图描述简单几何体或简单物体的实物原型 b (4)直棱柱、圆锥的侧面展开图 a (5)基本几何体及其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装) b(6)根据展开图判断立体模型 c 14.图形与变换(1)轴对称、平移和旋转的概念 a (2)轴对称、平移和旋转的基本性质 c (3)按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形 c(4)找出成轴对称的两个图形或轴对称图形的对称轴 b (5)等腰三角形、矩形、菱形、正多边形、圆的轴对称性及其相关性质 c (6)线段、平行四边形、正多边形、圆是中心对称图形 a (7)探索图形之间的变换关系(轴对称、平移、旋转及其组合) c (8)应用轴对称、平移、旋转或它们的组合进行图案设计 c (9)欣赏现实生活中的轴对称,欣赏平移、旋转在现实生活中的应用 b 15.图形的相似(1)比例的基本性质、线段的比、成比例线段 a (2)黄金分割 b (3)两条直线被一组平行线所截,所得的对应线段成比例(4)图形相似、三角相似的概念 a (5)图形相似的简单性质 c (6)两个三角形相似的判定依据 c (7)观察和认识现实生活中的物体相似 a (8)利用图形的相似解决一些实际问题 d 16.三角函数(1)锐角三角函数sin A,cos A,tan A的概念 a(2)30°,45°,60°角的三角函数值 b (3)运用三角函数解决与直角三角形有关的简单实际问题 d 17.图形与坐标(1)平面直角坐标系的概念 a (2)在给定的直角坐标系中,由坐标描出点的位置,由点的位置写出它的坐标 b (3)在方格纸上建立适当的直角坐标系,描述物体的位置 c (4)在同一坐标系中感受图形变换后点的坐标的变化 b (5)运用不同的方式确定物体的位置 c 18.图形与证明(l)证明的作用、反例的作用 b (2)定义、命题、定理的含义 a (3)命题的构成(区分条件与结论) c (4)逆命题的概念 a (5)两个互逆命题的关系 b (6)反证法的含义b(7)综合法证明的格式 c (8)掌握下列“证明的依据”: c 一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个全角形全等;全等三角形的对应边、对应角分别相等(9)利用“证明的依据”(上一条目)中的基本事实证明下列命题: c 平行线的性质定理(内错角相等、同旁内角互补)平行线的判定定理(内错角相等或同旁内角互补,则两直线平行)三角形的内角和定理及推论直角三角形全等的判定定理角平分线性质定理及逆定理,三角形三个内角的平分线交于一点(内心)垂直平分线性质定理及逆定理,三角形三边的垂直平分线交于一点(外心)三角形中位线定理等腰三角形、等边三角形、直角三角形的性质和判定定理平行四边形、矩形、菱形、正方形的性质和判定定理【统计与概率】19.统计(1)收集、整理、描述和分析数据 a(2)抽样的意义,简单随机抽样的概念 a(3)总体、个体、样本的概念 a(4)用样本估计总体的思想 c(5)用扇形统计图表示数据 c(6)理解平均数的意义 a(7)中位数、众数、加权平均数的计算 b(8)选择合适的统计量表示数据的集中程度 c(9)用样本的平均数估计总体的平均数 c(10)方差的概念 a(11)方差的计算 b(12)用方差表示数据的离散程度 c(13)用样本的方差估计总体的方差 c(14)频数、频率的概念 a(15)频数分布的意义和作用 a(16)列频数分布表、画频数直方图及其应用 c(17)根据统计结果作出合理的判断和预测 c(18)从有关实问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法c(19)运用统计知识解决一些简单的实际问题 c20.概率(1)概率的意义 a(2)运用列表、画树状图计算简单事件发生的概率 b(3)理解大量重复实验的频率可作为事件发生概率的估计值b【综合与实践(课题学习)】结合“数与代数”、“空间与图形”、“统计与概率”三个学习领域的内容进行课题学习内容的考查,要求如下:(1)有初步的研究问题的方法和经验;(2)能探讨一些较简单的具有挑战性的研究课题,体验从实际问题中抽象数学问题、建立数学模型、综合应用已有的知识解决问题的过程;(3)体验数学知识之间的内在联系,对数学有整体性的认识;(4)能积极思考所面临的课题,清楚地表达自己的观点,并解决问题。